1
|
Efat AH, Hasan SMM, Uddin MP, Mamun MA. A Multi-level ensemble approach for skin lesion classification using Customized Transfer Learning with Triple Attention. PLoS One 2024; 19:e0309430. [PMID: 39446759 PMCID: PMC11500880 DOI: 10.1371/journal.pone.0309430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024] Open
Abstract
Skin lesions encompass a variety of skin abnormalities, including skin diseases that affect structure and function, and skin cancer, which can be fatal and arise from abnormal cell growth. Early detection of lesions and automated prediction is crucial, yet accurately identifying responsible regions post-dominance dispersion remains a challenge in current studies. Thus, we propose a Convolutional Neural Network (CNN)-based approach employing a Customized Transfer Learning (CTL) model and Triple Attention (TA) modules in conjunction with Ensemble Learning (EL). While Ensemble Learning has become an integral component of both Machine Learning (ML) and Deep Learning (DL) methodologies, a specific technique ensuring optimal allocation of weights for each model's prediction is currently lacking. Consequently, the primary objective of this study is to introduce a novel method for determining optimal weights to aggregate the contributions of models for achieving desired outcomes. We term this approach "Information Gain Proportioned Averaging (IGPA)," further refining it to "Multi-Level Information Gain Proportioned Averaging (ML-IGPA)," which specifically involves the utilization of IGPA at multiple levels. Empirical evaluation of the HAM1000 dataset demonstrates that our approach achieves 94.93% accuracy with ML-IGPA, surpassing state-of-the-art methods. Given previous studies' failure to elucidate the exact focus of black-box models on specific regions, we utilize the Gradient Class Activation Map (GradCAM) to identify responsible regions and enhance explainability. Our study enhances both accuracy and interpretability, facilitating early diagnosis and preventing the consequences of neglecting skin lesion detection, thereby addressing issues related to time, accessibility, and costs.
Collapse
Affiliation(s)
- Anwar Hossain Efat
- Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - S. M. Mahedy Hasan
- Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Md. Palash Uddin
- Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md. Al Mamun
- Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| |
Collapse
|
2
|
Ramamurthy K, Thayumanaswamy I, Radhakrishnan M, Won D, Lingaswamy S. Integration of Localized, Contextual, and Hierarchical Features in Deep Learning for Improved Skin Lesion Classification. Diagnostics (Basel) 2024; 14:1338. [PMID: 39001229 PMCID: PMC11241006 DOI: 10.3390/diagnostics14131338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Skin lesion classification is vital for the early detection and diagnosis of skin diseases, facilitating timely intervention and treatment. However, existing classification methods face challenges in managing complex information and long-range dependencies in dermoscopic images. Therefore, this research aims to enhance the feature representation by incorporating local, global, and hierarchical features to improve the performance of skin lesion classification. We introduce a novel dual-track deep learning (DL) model in this research for skin lesion classification. The first track utilizes a modified Densenet-169 architecture that incorporates a Coordinate Attention Module (CoAM). The second track employs a customized convolutional neural network (CNN) comprising a Feature Pyramid Network (FPN) and Global Context Network (GCN) to capture multiscale features and global contextual information. The local features from the first track and the global features from second track are used for precise localization and modeling of the long-range dependencies. By leveraging these architectural advancements within the DenseNet framework, the proposed neural network achieved better performance compared to previous approaches. The network was trained and validated using the HAM10000 dataset, achieving a classification accuracy of 93.2%.
Collapse
Affiliation(s)
- Karthik Ramamurthy
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai 600127, India
| | - Illakiya Thayumanaswamy
- Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Menaka Radhakrishnan
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai 600127, India
| | - Daehan Won
- System Sciences and Industrial Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Sindhia Lingaswamy
- Department of Computer Applications, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
3
|
Zeng X, Ji Z, Zhang H, Chen R, Liao Q, Wang J, Lyu T, Zhao L. DSP-KD: Dual-Stage Progressive Knowledge Distillation for Skin Disease Classification. Bioengineering (Basel) 2024; 11:70. [PMID: 38247947 PMCID: PMC10813127 DOI: 10.3390/bioengineering11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The increasing global demand for skin disease diagnostics emphasizes the urgent need for advancements in AI-assisted diagnostic technologies for dermatoscopic images. In current practical medical systems, the primary challenge is balancing lightweight models with accurate image analysis to address constraints like limited storage and computational costs. While knowledge distillation methods hold immense potential in healthcare applications, related research on multi-class skin disease tasks is scarce. To bridge this gap, our study introduces an enhanced multi-source knowledge fusion distillation framework, termed DSP-KD, which improves knowledge transfer in a dual-stage progressive distillation approach to maximize mutual information between teacher and student representations. The experimental results highlight the superior performance of our distilled ShuffleNetV2 on both the ISIC2019 dataset and our private skin disorders dataset. Compared to other state-of-the-art distillation methods using diverse knowledge sources, the DSP-KD demonstrates remarkable effectiveness with a smaller computational burden.
Collapse
Affiliation(s)
- Xinyi Zeng
- Hebei Key Laboratory of Industrial Intelligent Perception, College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China; (X.Z.); (Z.J.)
| | - Zhanlin Ji
- Hebei Key Laboratory of Industrial Intelligent Perception, College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China; (X.Z.); (Z.J.)
- Telecommunications Research Centre (TRC), University of Limerick, V94 T9PX Limerick, Ireland
| | - Haiyang Zhang
- Department of Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China;
| | - Rui Chen
- Changgeng Hospital, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; (R.C.); (Q.L.)
| | - Qinping Liao
- Changgeng Hospital, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; (R.C.); (Q.L.)
| | - Jingkun Wang
- Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China;
| | - Tao Lyu
- Changgeng Hospital, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; (R.C.); (Q.L.)
| | - Li Zhao
- Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
4
|
Almufareh MF, Tariq N, Humayun M, Khan FA. Melanoma identification and classification model based on fine-tuned convolutional neural network. Digit Health 2024; 10:20552076241253757. [PMID: 38798885 PMCID: PMC11119457 DOI: 10.1177/20552076241253757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Background Breakthroughs in skin cancer diagnostics have resulted from recent image recognition and Artificial Intelligence (AI) technology advancements. There has been growing recognition that skin cancer can be lethal to humans. For instance, melanoma is the most unpredictable and terrible form of skin cancer. Materials and Methodology This paper aims to support Internet of Medical Things (IoMT) applications by developing a robust image classification model for the early detection of melanoma, a deadly skin cancer. It presents a novel approach to melanoma detection using a Convolutional Neural Network (CNN)-based method that employs image classification techniques based on Deep Learning (DL). We analyze dermatoscopic images from publicly available datasets, including DermIS, DermQuest, DermIS&Quest, and ISIC2019. Our model applies convolutional and pooling layers to extract meaningful features, followed by fully connected layers for classification. Results The proposed CNN model achieves high accuracy demonstrates the model's effectiveness in distinguishing between malignant and benign skin lesions. We developed deep features and used transfer learning to improve the categorization accuracy of medical images. Soft-max classification layer and support vector machine have been used to assess the classification performance of deep features. The proposed model's efficacy is rigorously evaluated using benchmark datasets: DermIS, DermQuest, and ISIC2019, having 621, 1233, and 25000 images, respectively. Its performance is compared to current best practices showing an average of 5% improved detection accuracy in DermIS, 6% improvement in DermQuest, and 0.81% in ISIC2019 datasets. Conclusion Our study showcases the potential of CNN in melanoma detection, contributing to early diagnosis and improved patient outcomes. The developed model proves its capability to aid dermatologists in accurate decision-making, paving the way for enhanced skin cancer diagnosis.
Collapse
Affiliation(s)
- Maram F Almufareh
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah Al Jouf, Saudi Arabia
| | - Noshina Tariq
- Department of Avionics Engineering, Air University, Islamabad Pakistan
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah Al Jouf, Saudi Arabia
| | - Farrukh Aslam Khan
- Center of Excellence in Information Assurance, King Saud University, Riyadh Saudi Arabia
| |
Collapse
|
5
|
Khan S, Khan A. SkinViT: A transformer based method for Melanoma and Nonmelanoma classification. PLoS One 2023; 18:e0295151. [PMID: 38150449 PMCID: PMC10752524 DOI: 10.1371/journal.pone.0295151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Over the past few decades, skin cancer has emerged as a major global health concern. The efficacy of skin cancer treatment greatly depends upon early diagnosis and effective treatment. The automated classification of Melanoma and Nonmelanoma is quite challenging task due to presence of high visual similarities across different classes and variabilities within each class. According to the best of our knowledge, this study represents the classification of Melanoma and Nonmelanoma utilising Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC) under the Nonmelanoma class for the first time. Therefore, this research focuses on automated detection of different skin cancer types to provide assistance to the dermatologists in timely diagnosis and treatment of Melanoma and Nonmelanoma patients. Recently, artificial intelligence (AI) methods have gained popularity where Convolutional Neural Networks (CNNs) are employed to accurately classify various skin diseases. However, CNN has limitation in its ability to capture global contextual information which may lead to missing important information. In order to address this issue, this research explores the outlook attention mechanism inspired by vision outlooker, which improves important features while suppressing noisy features. The proposed SkinViT architecture integrates an outlooker block, transformer block and MLP head block to efficiently capture both fine level and global features in order to enhance the accuracy of Melanoma and Nonmelanoma classification. The proposed SkinViT method is assessed by different performance metrics such as recall, precision, classification accuracy, and F1 score. We performed extensive experiments on three datasets, Dataset1 which is extracted from ISIC2019, Dataset2 collected from various online dermatological database and Dataset3 combines both datasets. The proposed SkinViT achieved 0.9109 accuracy on Dataset1, 0.8911 accuracy on Dataset3 and 0.8611 accuracy on Dataset2. Moreover, the proposed SkinViT method outperformed other SOTA models and displayed higher accuracy compared to the previous work in the literature. The proposed method demonstrated higher performance efficiency in classification of Melanoma and Nonmelanoma dermoscopic images. This work is expected to inspire further research in implementing a system for detecting skin cancer that can assist dermatologists in timely diagnosing Melanoma and Nonmelanoma patients.
Collapse
Affiliation(s)
- Somaiya Khan
- School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ali Khan
- School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
6
|
Sanga P, Singh J, Dubey AK, Khanna NN, Laird JR, Faa G, Singh IM, Tsoulfas G, Kalra MK, Teji JS, Al-Maini M, Rathore V, Agarwal V, Ahluwalia P, Fouda MM, Saba L, Suri JS. DermAI 1.0: A Robust, Generalized, and Novel Attention-Enabled Ensemble-Based Transfer Learning Paradigm for Multiclass Classification of Skin Lesion Images. Diagnostics (Basel) 2023; 13:3159. [PMID: 37835902 PMCID: PMC10573070 DOI: 10.3390/diagnostics13193159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models' performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions.
Collapse
Affiliation(s)
- Prabhav Sanga
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (P.S.); (A.K.D.)
- Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| | - Jaskaran Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
| | - Arun Kumar Dubey
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (P.S.); (A.K.D.)
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
| | - Georgios Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Jagjit S. Teji
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | - Vijay Rathore
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Puneet Ahluwalia
- Department of Uro Oncology, Medanta the Medicity, Gurugram 122001, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Jasjit S. Suri
- Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
- Department of Computer Science and Engineering, Graphic Era University (G.E.U.), Dehradun 248002, India
| |
Collapse
|
7
|
Aydin Y. A Comparative Analysis of Skin Cancer Detection Applications Using Histogram-Based Local Descriptors. Diagnostics (Basel) 2023; 13:3142. [PMID: 37835884 PMCID: PMC10572674 DOI: 10.3390/diagnostics13193142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Among the most serious types of cancer is skin cancer. Despite the risk of death, when caught early, the rate of survival is greater than 95%. This inspires researchers to explore methods that allow for the early detection of skin cancer that could save millions of lives. The ability to detect the early signs of skin cancer has become more urgent in light of the rising number of illnesses, the high death rate, and costly healthcare treatments. Given the gravity of these issues, experts have created a number of existing approaches for detecting skin cancer. Identifying skin cancer and whether it is benign or malignant involves detecting features of the lesions such as size, form, symmetry, color, etc. The aim of this study is to determine the most successful skin cancer detection methods by comparing the outcomes and effectiveness of the various applications that categorize benign and malignant forms of skin cancer. Descriptors such as the Local Binary Pattern (LBP), the Local Directional Number Pattern (LDN), the Pyramid of Histogram of Oriented Gradients (PHOG), the Local Directional Pattern (LDiP), and Monogenic Binary Coding (MBC) are used to extract the necessary features. Support vector machines (SVM) and XGBoost are used in the classification process. In addition, this study uses colored histogram-based features to classify the various characteristics obtained from the color images. In the experimental results, the applications implemented with the proposed color histogram-based features were observed to be more successful. Under the proposed method (the colored LDN feature obtained using the YCbCr color space with the XGBoost classifier), a 90% accuracy rate was achieved on Dataset 1, which was obtained from the Kaggle website. For the HAM10000 data set, an accuracy rate of 96.50% was achieved under a similar proposed method (the colored MBC feature obtained using the HSV color space with the XGBoost classifier).
Collapse
Affiliation(s)
- Yildiz Aydin
- Department of Computer Engineering, Erzincan Binali Yildirim University, Erzincan 24000, Turkey
| |
Collapse
|
8
|
Wang J, Gao M, Yang L, Huang Y, Wang J, Wang B, Song G, Wang Z. Cell recognition based on atomic force microscopy and modified residual neural network. J Struct Biol 2023; 215:107991. [PMID: 37451561 DOI: 10.1016/j.jsb.2023.107991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Cell recognition methods are in high demand in cell biology and medicine, and the method based on atomic force microscopy (AFM) shows a great value in application. The difference in mechanical properties or morphology of cells has been frequently used to detect whether cells are cancerous, but this detection method cannot be a general means for cancer cell detection, and the traditional artificial feature extraction method also has its limitations. In this work, we proposed an analytic method based on the physical properties of cells and deep learning method for recognizing cell types. The residual neural network used for recognition was modified by multi-scale convolutional fusion, attention mechanism and depthwise separable convolution, so as to optimize feature extraction and reduce operation costs. In the method, the collected cells were imaged by AFM, and the processed images were analyzed by the optimized convolutional neural network. The recognition results of two groups of cells (HL-7702 and SMMC-7721, SGC-7901 and GES-1) by this method show that the recognition rate of dataset with the combination of cell surface morphology, adhesion and Young's modulus is higher, and the recognition rate of the dataset with optimal resolution is higher. Our study indicated that the recognition of physical properties of cells using deep learning technology can serve as a universal and effective method for the automated analysis of cell information.
Collapse
Affiliation(s)
- Junxi Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Mingyan Gao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Lixin Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Yuxi Huang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiahe Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Guicai Song
- College of Physics, Changchun University of Science and Technology, Changchun 130022, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK.
| |
Collapse
|
9
|
Olayah F, Senan EM, Ahmed IA, Awaji B. AI Techniques of Dermoscopy Image Analysis for the Early Detection of Skin Lesions Based on Combined CNN Features. Diagnostics (Basel) 2023; 13:diagnostics13071314. [PMID: 37046532 PMCID: PMC10093624 DOI: 10.3390/diagnostics13071314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Melanoma is one of the deadliest types of skin cancer that leads to death if not diagnosed early. Many skin lesions are similar in the early stages, which causes an inaccurate diagnosis. Accurate diagnosis of the types of skin lesions helps dermatologists save patients’ lives. In this paper, we propose hybrid systems based on the advantages of fused CNN models. CNN models receive dermoscopy images of the ISIC 2019 dataset after segmenting the area of lesions and isolating them from healthy skin through the Geometric Active Contour (GAC) algorithm. Artificial neural network (ANN) and Random Forest (Rf) receive fused CNN features and classify them with high accuracy. The first methodology involved analyzing the area of skin lesions and diagnosing their type early using the hybrid models CNN-ANN and CNN-RF. CNN models (AlexNet, GoogLeNet and VGG16) receive lesions area only and produce high depth feature maps. Thus, the deep feature maps were reduced by the PCA and then classified by ANN and RF networks. The second methodology involved analyzing the area of skin lesions and diagnosing their type early using the hybrid CNN-ANN and CNN-RF models based on the features of the fused CNN models. It is worth noting that the features of the CNN models were serially integrated after reducing their high dimensions by Principal Component Analysis (PCA). Hybrid models based on fused CNN features achieved promising results for diagnosing dermatoscopic images of the ISIC 2019 data set and distinguishing skin cancer from other skin lesions. The AlexNet-GoogLeNet-VGG16-ANN hybrid model achieved an AUC of 94.41%, sensitivity of 88.90%, accuracy of 96.10%, precision of 88.69%, and specificity of 99.44%.
Collapse
Affiliation(s)
- Fekry Olayah
- Department of Information System, Faculty Computer Science and Information System, Najran University, Najran 66462, Saudi Arabia
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana’a, Yemen
| | | | - Bakri Awaji
- Department of Computer Science, Faculty of Computer Science and Information System, Najran University, Najran 66462, Saudi Arabia
| |
Collapse
|
10
|
Hasan MK, Ahamad MA, Yap CH, Yang G. A survey, review, and future trends of skin lesion segmentation and classification. Comput Biol Med 2023; 155:106624. [PMID: 36774890 DOI: 10.1016/j.compbiomed.2023.106624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Bioengineering, Imperial College London, UK; Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Md Asif Ahamad
- Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, UK.
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, UK; Cardiovascular Research Centre, Royal Brompton Hospital, UK.
| |
Collapse
|
11
|
Skin lesion classification of dermoscopic images using machine learning and convolutional neural network. Sci Rep 2022; 12:18134. [PMID: 36307467 PMCID: PMC9616944 DOI: 10.1038/s41598-022-22644-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Detecting dangerous illnesses connected to the skin organ, particularly malignancy, requires the identification of pigmented skin lesions. Image detection techniques and computer classification capabilities can boost skin cancer detection accuracy. The dataset used for this research work is based on the HAM10000 dataset which consists of 10015 images. The proposed work has chosen a subset of the dataset and performed augmentation. A model with data augmentation tends to learn more distinguishing characteristics and features rather than a model without data augmentation. Involving data augmentation can improve the accuracy of the model. But that model cannot give significant results with the testing data until it is robust. The k-fold cross-validation technique makes the model robust which has been implemented in the proposed work. We have analyzed the classification accuracy of the Machine Learning algorithms and Convolutional Neural Network models. We have concluded that Convolutional Neural Network provides better accuracy compared to other machine learning algorithms implemented in the proposed work. In the proposed system, as the highest, we obtained an accuracy of 95.18% with the CNN model. The proposed work helps early identification of seven classes of skin disease and can be validated and treated appropriately by medical practitioners.
Collapse
|
12
|
Analysis of Skin Cancer and Patient Healthcare Using Data Mining Techniques. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2250275. [PMID: 36199959 PMCID: PMC9529455 DOI: 10.1155/2022/2250275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Skin cancer is the uncontrolled growth of irregular cancer cells in the human-skin's outer layer. Skin cells commonly grow in an uneven pattern on exposed skin surfaces. The majority of melanomas, aside from this variety, form in areas that are rarely exposed to sunlight. Harmful sunlight, which results in a mutation in the DNA and irreparable DNA damage, is the primary cause of skin cancer. This demonstrates a close connection between skin cancer and molecular biology and genetics. Males and females both experience the same incidence rate. Avoiding revelation to ultraviolet (UV) emissions can lower the risk rate. This needed to be known about in order to be prevented from happening. To identify skin cancer, an improved image analysis technique was put forth in this work. The skin alterations are routinely monitored by this proposed skin cancer categorization approach. Therefore, early detection of suspicious skin changes can aid in the early discovery of skin cancer, increasing the likelihood of a favourable outcome. Due to the blessing of diagnostic technology and recent advancements in cancer treatment, the survival rate of patients with skin cancer has grown. The strategy for detecting skin cancer using image processing technologies is presented in this paper. The system receives the image of the skin lesion as an input and analyses it using cutting-edge image processing methods to determine whether skin cancer is present. The Lesion Image Analysis Tools use texture, size, and shape assessment for image segmentation and feature phases to check for various cancer criteria including asymmetries, borders, pigment, and diameter. The image is classified as Normal skin and a lesion caused by skin cancer using the derived feature parameters.
Collapse
|
13
|
An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics (Basel) 2022; 12:diagnostics12092115. [PMID: 36140516 PMCID: PMC9497837 DOI: 10.3390/diagnostics12092115] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
Efficient skin cancer detection using images is a challenging task in the healthcare domain. In today’s medical practices, skin cancer detection is a time-consuming procedure that may lead to a patient’s death in later stages. The diagnosis of skin cancer at an earlier stage is crucial for the success rate of complete cure. The efficient detection of skin cancer is a challenging task. Therefore, the numbers of skilful dermatologists around the globe are not enough to deal with today’s healthcare. The huge difference between data from various healthcare sector classes leads to data imbalance problems. Due to data imbalance issues, deep learning models are often trained on one class more than others. This study proposes a novel deep learning-based skin cancer detector using an imbalanced dataset. Data augmentation was used to balance various skin cancer classes to overcome the data imbalance. The Skin Cancer MNIST: HAM10000 dataset was employed, which consists of seven classes of skin lesions. Deep learning models are widely used in disease diagnosis through images. Deep learning-based models (AlexNet, InceptionV3, and RegNetY-320) were employed to classify skin cancer. The proposed framework was also tuned with various combinations of hyperparameters. The results show that RegNetY-320 outperformed InceptionV3 and AlexNet in terms of the accuracy, F1-score, and receiver operating characteristic (ROC) curve both on the imbalanced and balanced datasets. The performance of the proposed framework was better than that of conventional methods. The accuracy, F1-score, and ROC curve value obtained with the proposed framework were 91%, 88.1%, and 0.95, which were significantly better than those of the state-of-the-art method, which achieved 85%, 69.3%, and 0.90, respectively. Our proposed framework may assist in disease identification, which could save lives, reduce unnecessary biopsies, and reduce costs for patients, dermatologists, and healthcare professionals.
Collapse
|
14
|
Yilmaz A, Gencoglan G, Varol R, Demircali AA, Keshavarz M, Uvet H. MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes. J Clin Med 2022; 11:5102. [PMID: 36079042 PMCID: PMC9457478 DOI: 10.3390/jcm11175102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Dermoscopy is the visual examination of the skin under a polarized or non-polarized light source. By using dermoscopic equipment, many lesion patterns that are invisible under visible light can be clearly distinguished. Thus, more accurate decisions can be made regarding the treatment of skin lesions. The use of images collected from a dermoscope has both increased the performance of human examiners and allowed the development of deep learning models. The availability of large-scale dermoscopic datasets has allowed the development of deep learning models that can classify skin lesions with high accuracy. However, most dermoscopic datasets contain images that were collected from digital dermoscopic devices, as these devices are frequently used for clinical examination. However, dermatologists also often use non-digital hand-held (optomechanical) dermoscopes. This study presents a dataset consisting of dermoscopic images taken using a mobile phone-attached hand-held dermoscope. Four deep learning models based on the MobileNetV1, MobileNetV2, NASNetMobile, and Xception architectures have been developed to classify eight different lesion types using this dataset. The number of images in the dataset was increased with different data augmentation methods. The models were initialized with weights that were pre-trained on the ImageNet dataset, and then they were further fine-tuned using the presented dataset. The most successful models on the unseen test data, MobileNetV2 and Xception, had performances of 89.18% and 89.64%. The results were evaluated with the 5-fold cross-validation method and compared. Our method allows for automated examination of dermoscopic images taken with mobile phone-attached hand-held dermoscopes.
Collapse
Affiliation(s)
- Abdurrahim Yilmaz
- Mechatronics Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
- Department of Business Administration, Bundeswehr University Munich, 85579 Munich, Germany
| | - Gulsum Gencoglan
- Department of Dermatology, Liv Hospital Vadistanbul, Istinye University, 34396 Istanbul, Turkey
| | - Rahmetullah Varol
- Mechatronics Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
- Department of Business Administration, Bundeswehr University Munich, 85579 Munich, Germany
| | - Ali Anil Demircali
- Department of Metabolism, Digestion and Reproduction, The Hamlyn Centre, Imperial College London, Bessemer Building, London SW7 2AZ, UK
| | - Meysam Keshavarz
- Department of Electrical and Electronic Engineering, The Hamlyn Centre, Imperial College London, Bessemer Building, London SW7 2AZ, UK
| | - Huseyin Uvet
- Mechatronics Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
| |
Collapse
|
15
|
Skin Diseases Classification Using Hybrid AI Based Localization Approach. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6138490. [PMID: 36072725 PMCID: PMC9444379 DOI: 10.1155/2022/6138490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
One of the most prevalent diseases that can be initially identified by visual inspection and further identified with the use of dermoscopic examination and other testing is skin cancer. Since eye observation provides the earliest opportunity for artificial intelligence to intercept various skin images, some skin lesion classification algorithms based on deep learning and annotated skin photos display improved outcomes. The researcher used a variety of strategies and methods to identify and stop diseases earlier. All of them yield positive results for identifying and categorizing diseases, but proper disease categorization is still lacking. Computer-aided diagnosis is one of the most crucial methods for more accurate disease detection, although it is rarely used in dermatology. For Feature Extraction, we introduced Spectral Centroid Magnitude (SCM). The given dataset is classified using an enhanced convolutional neural network; the first stage of preprocessing uses a median filter, and the final stage compares the accuracy results to the current method.
Collapse
|
16
|
Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S. Skin Cancer Classification With Deep Learning: A Systematic Review. Front Oncol 2022; 12:893972. [PMID: 35912265 PMCID: PMC9327733 DOI: 10.3389/fonc.2022.893972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Skin cancer is one of the most dangerous diseases in the world. Correctly classifying skin lesions at an early stage could aid clinical decision-making by providing an accurate disease diagnosis, potentially increasing the chances of cure before cancer spreads. However, achieving automatic skin cancer classification is difficult because the majority of skin disease images used for training are imbalanced and in short supply; meanwhile, the model's cross-domain adaptability and robustness are also critical challenges. Recently, many deep learning-based methods have been widely used in skin cancer classification to solve the above issues and achieve satisfactory results. Nonetheless, reviews that include the abovementioned frontier problems in skin cancer classification are still scarce. Therefore, in this article, we provide a comprehensive overview of the latest deep learning-based algorithms for skin cancer classification. We begin with an overview of three types of dermatological images, followed by a list of publicly available datasets relating to skin cancers. After that, we review the successful applications of typical convolutional neural networks for skin cancer classification. As a highlight of this paper, we next summarize several frontier problems, including data imbalance, data limitation, domain adaptation, model robustness, and model efficiency, followed by corresponding solutions in the skin cancer classification task. Finally, by summarizing different deep learning-based methods to solve the frontier challenges in skin cancer classification, we can conclude that the general development direction of these approaches is structured, lightweight, and multimodal. Besides, for readers' convenience, we have summarized our findings in figures and tables. Considering the growing popularity of deep learning, there are still many issues to overcome as well as chances to pursue in the future.
Collapse
Affiliation(s)
- Yinhao Wu
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Bin Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - An Zeng
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Dan Pan
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ruixuan Wang
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shen Zhao
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|