1
|
Concha JL, Delgadillo R, Arteaga-Pérez LE, Segura C, Norambuena-Contreras J. Optimised Sunflower Oil Content for Encapsulation by Vibrating Technology as a Rejuvenating Solution for Asphalt Self-Healing. Polymers (Basel) 2023; 15:1578. [PMID: 36987356 PMCID: PMC10056262 DOI: 10.3390/polym15061578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to determine an optimal dosage of sunflower oil (i.e., Virgin Cooking Oil, VCO) as a rejuvenator for asphalt self-healing purposes, evaluating its effect on the chemical (carbonyl, and sulfoxide functional groups), physical (penetration, softening point, and viscosity), and rheological (dynamic shear modulus, and phase angle) properties of long-term aged (LTA) bitumen. Five concentrations of sunflower oil (VCO) were used: 1%, 2%, 3%, 4%, and 5% vol. of LTA bitumen. VCO was encapsulated in alginate biopolymer under vibrating jet technology using three biopolymer:oil (B:O) mass ratios: 1:1, 1:5, and 1:9. The physical, thermal, and mechanical properties of the capsules were studied, as well as their effect on the physical properties of dense asphalt mixtures. The main results showed that an optimal VCO content of 4% vol. restored the chemical, physical, and rheological properties of LTA bitumen to a short-term ageing (STA) level. VCO capsules with B:O ratios of 1:5 presented good thermal and mechanical stability, with high encapsulation efficiency. Depending on the B:O ratio, the VCO capsule dosage to rejuvenate LTA bitumen and asphalt mixtures varied between 5.03-15.3% wt. and 0.24-0.74% wt., respectively. Finally, the capsule morphology significantly influenced the bulk density of the asphalt mixtures.
Collapse
Affiliation(s)
- Jose L. Concha
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4051381, Chile
| | - Rodrigo Delgadillo
- Departamento de Obras Civiles, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Luis E. Arteaga-Pérez
- LPTC, Department of Wood Engineering, University of Bío-Bío, Concepción 4051381, Chile
| | - Cristina Segura
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile
| | - Jose Norambuena-Contreras
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4051381, Chile
| |
Collapse
|
2
|
Self-Healing Performance of Asphalt Concrete with Ca-Alginate Capsules under Low Service Temperature Conditions. Polymers (Basel) 2022; 15:polym15010199. [PMID: 36616548 PMCID: PMC9823866 DOI: 10.3390/polym15010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Calcium alginate capsules containing rejuvenators represent a promising method for asphalt concrete premaintenance, but their healing capacities under lower temperature conditions are still unknown. This paper investigated the healing performance of asphalt concrete containing calcium alginate capsules at low service temperatures. The Ca-alginate capsules were synthesized, and their morphology, compressive strength, thermal resistance, and relative oil content were evaluated. Besides, evaluations for the healing of asphalt concrete and the rejuvenator-release ratio of the capsules were determined via fracture-healing-refracture testing and Fourier-transform infrared spectrum experiments. Meanwhile, the glass transition temperature and rheological property of asphalt binder after compressive loading under different temperatures were explored via a differential scanning calorimeter and dynamic shear rheometer. The results showed that the capsules had good thermal resistance and mechanical strength. The capsules released less oil under -15, -10, and -5 °C than at 20 °C, and the healing ratios of the asphalt concrete with the capsules at -15, -10, and -5 °C were obviously lower than that at 20 °C. The released rejuvenator from the capsules could decrease the complex modulus and glass transition temperature of the asphalt binder. When compared with low service temperatures, the asphalt binder containing the capsules and serving at a high temperature has a better softening effect and low-temperature performance due to more oil being released.
Collapse
|
3
|
Liu Y, Fan XG, Liu MY, Wang L, Wang PY, Xu HR, Chen YX, Chen SP. Fatty acid wax from epoxidation and hydrolysis treatments of waste cooking oil: synthesis and properties. RSC Adv 2022; 12:36018-36027. [PMID: 36545106 PMCID: PMC9753898 DOI: 10.1039/d2ra06390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
To provide low-cost wax and a new methodology for utilizing waste cooking oil (WCO), fatty acid wax based on WCO was synthesized by using epoxidation and hydrolysis treatments, whose properties included melting point, color, hardness, combustion properties, aldehyde content, and microscopic morphology were tested and analyzed. The obtained WCO-based wax contained mixed fatty acids, including palmitic acid and 9,10-dihydroxystearic acid as main constituents, which could form a 3D stable crossing network constructed by large long-rod crystals. The WCO-based wax with high fatty acid content (96.41 wt%) has a high melting point (44-53 °C), light color (Lovibond color code Y = 11.9, R = 2.3), good hardness (needle penetration index = 2.66 mm), long candle burning time (293 min), and low aldehyde content (7.98 × 10-2 μg g-1), which could be a lower-cost alternative of commercial soybean wax (SW) for producing various wax products including candles, crayons, waxworks, etc.
Collapse
Affiliation(s)
- Yan Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| | - Xin-Gang Fan
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| | - Meng-Yu Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| | - Lei Wang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| | - Peng-Yu Wang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| | - Han-Rui Xu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| | - Yu-Xin Chen
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| | - Shuo-Ping Chen
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of TechnologyGuilin 541004P. R. China
| |
Collapse
|
4
|
Concha JL, Arteaga-Pérez LE, Gonzalez-Torre I, Liu Q, Norambuena-Contreras J. Biopolymeric Capsules Containing Different Oils as Rejuvenating Agents for Asphalt Self-Healing: A Novel Multivariate Approach. Polymers (Basel) 2022; 14:5418. [PMID: 36559786 PMCID: PMC9785134 DOI: 10.3390/polym14245418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the effect of two encapsulation methods (i.e., dropping funnel and syringe pump), two concentrations of the alginate-based encapsulating material (2%, and 3%), and three oils as bitumen rejuvenators (virgin sunflower oil, waste cooking oil, and virgin engine oil) on the morphological, physical, chemical, thermal, and mechanical properties of encapsulated rejuvenators for asphalt self-healing purposes. A general factorial design 2 × 2 × 3 was proposed to design 12 different Ca-alginate capsules. Significant differences on the morphological, physical, and mechanical properties of the capsules were analysed by three-way ANOVA and Tukey HSD Post Hoc analyses. The effect of the type of oil on the self-healing capacity of cracked bitumen samples was also evaluated. The main results showed that the design parameters and their interactions significantly affected the morphological, physical, and mechanical properties of the capsules. Capsules synthesised via syringe pump method, with virgin cooking oil and 2% alginate was the most appropriate for asphalt self-healing purposes since its uniform morphology, encapsulation efficiency up to 80%, thermal degradation below 5% wt., and compressive strength above the reference asphalt compaction load of 10 N. Finally, the healing tests showed that virgin cooking oil can be potentially used as a rejuvenator to promote asphalt crack-healing.
Collapse
Affiliation(s)
- Jose L. Concha
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4051381, Chile
| | - Luis E. Arteaga-Pérez
- LPTC, Department of Wood Engineering, University of Bío-Bío, Concepción 4051381, Chile
| | - Irene Gonzalez-Torre
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4051381, Chile
| | - Quantao Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jose Norambuena-Contreras
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4051381, Chile
| |
Collapse
|
5
|
Alpizar-Reyes E, Concha JL, Martín-Martínez FJ, Norambuena-Contreras J. Biobased Spore Microcapsules for Asphalt Self-Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31296-31311. [PMID: 35772026 DOI: 10.1021/acsami.2c07301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asphalt pavements and bituminous composites are majorly damaged by bitumen aging and fatigue cracking by traffic load. To add, maintenance and reparation of asphalt pavements is expensive and also releases significant amounts of greenhouse gases. These issues can be mitigated by promoting asphalt self-healing mechanisms with encapsulated rejuvenators. The ability of the required microcapsules to be resilient against high temperatures, oxidation, and mechanical stress is essential to promote such self-healing behavior without compromising the field performance of the asphalt pavement. This work proposes, for the first time, the use of extremely resistant biobased spores for the encapsulation of recycled oil-based rejuvenators to produce more resilient self-healing pavements. Spore encapsulants were obtained from natural spores (Lycopodium clavatum) by applying different chemical treatments, which enabled the selection of the best morphologically intact and clean spore encapsulant. The physical, morphological, and physicochemical changes were examined using fluorescence images, ATR-FTIR, SEM, size distribution, XRD, TGA and DSC analyses. Sunflower oil was used as the encapsulated rejuvenator with an optimal sol colloidal mixture for sporopollenin-oil of 1:5 (gram-to-gram). Vacuum, passive, and centrifugal encapsulation techniques were tested for loading the rejuvenator inside the clean spores and for selecting the best encapsulation technology. The encapsulation efficiency and the profiles of the accelerated release of the rejuvenator from the loaded spores over time were studied, and these processes were visualized with optical and inverted fluorescence microscopy. Vacuum encapsulation was identified as the best loading technique with an encapsulation efficiency of 93.02 ± 3.71%. The rejuvenator was successfully encapsulated into the clean spores, as observed by optical and SEM morphologies. In agreement with the TGA and DSC, the microcapsules were stable up to 204 °C. Finally, a self-healing test was conducted through fluorescence tests to demonstrate how these biobased spore microcapsules completely heal a crack into an aged bitumen sample in 50 min.
Collapse
Affiliation(s)
- Erik Alpizar-Reyes
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4081112, Chile
| | - José L Concha
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4081112, Chile
| | - Francisco J Martín-Martínez
- Department of Chemistry, Swansea University, Swansea, Wales SA2 8PP, U.K
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - José Norambuena-Contreras
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción 4081112, Chile
| |
Collapse
|
6
|
Abadeen AZU, Hussain A, Sathish Kumar V, Murali G, Vatin NI, Riaz H. Comprehensive Self-Healing Evaluation of Asphalt Concrete Containing Encapsulated Rejuvenator. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3672. [PMID: 35629700 PMCID: PMC9145983 DOI: 10.3390/ma15103672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022]
Abstract
Ultraviolet radiation, oxidation, temperature, moisture, and traffic loads produce degradation and brittleness in the asphalt pavement. Microcracks develop into macrocracks, which eventually lead to pavement failure. Although asphalt has an inherent capacity for self-healing, it is constricted. As a result, damages build beyond the ability of asphalt to repair themselves. This research employs the in-situ crack healing method of encapsulated rejuvenator technology to enhance the insufficient self-healing capability of roads. This allows the extrinsically induced healing in asphalt to assist it in recovering from damage sustained during service life. Optical microscopy, thermogravimetric analysis, and the compressive load test of capsules were done to characterise their properties. We measured the self-healing behaviour of encapsulated rejuvenator-induced asphalt utilising the three-point bending beam tests on unaged, short-term aged and long-term aged asphalt beams. The rate of oil release before and after healing was quantified using Fourier transform infrared spectroscopy. The results of these tests were utilised to explain the link between healing time, temperature, asphalt ageing, and healing level. Overall, it was determined that the encapsulated rejuvenator was acceptable for mending asphalt mixes because it increased healing temperature and duration, resulting in an up to 80% healing index.
Collapse
Affiliation(s)
- Ali Zain Ul Abadeen
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; (A.H.); (H.R.)
| | - Arshad Hussain
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; (A.H.); (H.R.)
| | - Veerappan Sathish Kumar
- Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia
| | - Gunasekaran Murali
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (G.M.); (N.I.V.)
| | - Nikolai Ivanovich Vatin
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (G.M.); (N.I.V.)
| | - Hassan Riaz
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; (A.H.); (H.R.)
| |
Collapse
|