1
|
Zuo HL, Huang HY, Lin YCD, Liu KM, Lin TS, Wang YB, Huang HD. Effects of Natural Products on Enzymes Involved in Ferroptosis: Regulation and Implications. Molecules 2023; 28:7929. [PMID: 38067658 PMCID: PMC10708253 DOI: 10.3390/molecules28237929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis is a form of regulated cell death that is characterized by the accumulation of iron-dependent lipid peroxides. The regulation of ferroptosis involves both non-enzymatic reactions and enzymatic mechanisms. Natural products have demonstrated potential effects on various enzymes, including GPX4, HO-1, NQO1, NOX4, GCLC, and GCLM, which are mainly involved in glutathione metabolic pathway or oxidative stress regulation, and ACSL3 and ACSL4, which mainly participate in lipid metabolism, thereby influencing the regulation of ferroptosis. In this review, we have provided a comprehensive overview of the existing literature pertaining to the effects of natural products on enzymes involved in ferroptosis and discussed their potential implications for the prevention and treatment of ferroptosis-related diseases. We also highlight the potential challenge that the majority of research has concentrated on investigating the impact of natural products on the expression of enzymes involving ferroptosis while limited attention is given to the regulation of enzyme activity. This observation underscores the considerable potential and scope for exploring the influence of natural products on enzyme activity.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Kun-Meng Liu
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Ting-Syuan Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yi-Bing Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-Y.H.); (Y.-C.-D.L.); (T.-S.L.); (Y.-B.W.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
2
|
Tiwari RK, Ahmad A, Khan AF, Al-Keridis LA, Saeed M, Alshammari N, Alabdallah NM, Ansari IA, Mujeeb F. Ethanolic Extract of Artemisia vulgaris Leaf Promotes Apoptotic Cell Death in Non-Small-Cell Lung Carcinoma A549 Cells through Inhibition of the Wnt Signaling Pathway. Metabolites 2023; 13:metabo13040480. [PMID: 37110139 PMCID: PMC10144959 DOI: 10.3390/metabo13040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The Wnt signaling pathway is reported to be associated with lung cancer progression, metastasis and drug resistance, and thus it is an important therapeutic target for lung cancer. Plants have been shown as reservoirs of multiple potential anticancer agents. In the present investigation, the ethanolic leaf extract of Artemisia vulgaris (AvL-EtOH) was initially analyzed by means of gas chromatography-mass spectrometry (GC–MS) to identify the important phytochemical constituents. The GC–MS analysis of AvL-EtOH exhibited 48 peaks of various secondary metabolites such as terpenoids, flavonoids, carbohydrates, coumarins, amino acids, steroids, proteins, phytosterols, and diterpenes. It was found that the treatment with increasing doses of AvL-EtOH suppressed the proliferation and migration of lung cancer cells. Furthermore, AvL-EtOH induced prominent nuclear alteration along with a reduction in mitochondrial membrane potential and increased ROS (reactive oxygen species) generation in lung cancer cells. Moreover, AvL-EtOH-treated cells exhibited increased apoptosis, demonstrated by the activation of caspase cascade. AvL-EtOH also induced downregulation of Wnt3 and β-catenin expression along with cell cycle protein cyclin D1. Thus, the results of our study elucidated the potential of bioactive components of Artemisia vulgaris in the therapeutic management of lung cancer cells.
Collapse
|