1
|
Wang J, Giordani S, Marassi V, Placci A, Roda B, Reschiglian P, Zattoni A. Multi-environment and multi-parameter screening of stability and coating efficiency of gold nanoparticle bioconjugates in application media. Sci Rep 2024; 14:31568. [PMID: 39738087 DOI: 10.1038/s41598-024-73624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 01/01/2025] Open
Abstract
Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector. Citrate-coated AuNPs ( AuCIT, 25.1 ± 0.2 nm) and PEG-coated AuNPs (AuPEG, 38.3 ± 0.8 nm) were employed with albumin as a model system. Attention was put in investigating the influence of Au/BSA mass ratios, that allowed to identify the yield-maximizing (1:1) and product-maximizing (2.5:1) conditions for the generation of AuNPs-protein conjugates. Furthermore, bioconjugate properties were thoroughly assessed across various saline media with different pH and ionic strengths. While AuNPs with PEG coating exhibit greater stability at high salinities, such as 30 mM, their conjugates are less stable over time. In contrast, although bare AuNPs are significantly affected by pH and salt concentration, once conjugates are formed, their stability surpasses that of the conjugates formed with AuPEG. The developed methodology can fill the vacancy of standard reference quality control (QC) procedures for bioconjugate synthesis and application in (bio)sensors and Nano-pharmaceutics, screening in a short time many combinations, easily scaling up to the semi-preparative scale or translating to different bioconjugates.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy
| | - Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy.
- byFlow srl, Bologna, 40129, Italy.
| | - Anna Placci
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy
- byFlow srl, Bologna, 40129, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy
- byFlow srl, Bologna, 40129, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy
- byFlow srl, Bologna, 40129, Italy
| |
Collapse
|
2
|
Mao Z, Wu Y, Kong L, Zhou L, Zhang X, Geng A, Cai J, Yang H, Peili H. Changes in cargoes of platelet derived extracellular vesicles heterogeneous subpopulations induced by PM 0.1--Undisclosed cardiovascular injury communication mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123845. [PMID: 38522605 DOI: 10.1016/j.envpol.2024.123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Epidemiological evidence has indicated a closely link between PM0.1 exposure and the incidence rate of cardiovascular diseases. This study explores the underlying communication roles of platelet-derived extracellular vesicles (PEVs) heterogeneous subpopulations in cardiovascular injury. PEVs and PMEVs which were extracted from platelet-rich plasma (PRP) un-exposure or exposure to PM0.1 by TIM4 affinity beads. By optimizing separation conditions, replacing pipelines, and resetting injection procedures, Asymmetric flow field-flow fractionation (AF4) was employed to separate, purify, characterize, and enrich PEVs and PMEVs heterogeneous subpopulations (small PEVs, PEVs-S/PMEVs-S: <100 nm; medium PEVs, PEVs-M/PMEVs-M: 100-200 nm; and large PEVs, PEVs-L/PMEVs-L: >200 nm). The results showed that the cargoes of PMEVs heterogeneous subpopulations which were released by PRP stimulated by PM0.1 were changed obviously. Moreover, compared with PEVs, PMEVs can lead to a decrease in the survival rate of Human Umbilical Vein Endothelial Cells (HUVECs). In PMEVs-S subpopulations, the alterations of lipids associated with membrane fusion and cell signaling transport (such as PC, Cer), as well as miRNAs related to inflammation, angiogenesis, and migration (miR-223, miR-22, miR-126, and miR-150), are similar to those in PMEVs-M subpopulations but distinct from PMEVs-L subpopulations. This study revealed the diverse communication mechanisms underlying PM0.1-induced cardiovascular injury, thereby offering potential avenues for the development of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Zhen Mao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yingting Wu
- School of Pharmacy, Capital Medical University, No. 10 Xitoutiao You An Men, Beijing, 100069, China
| | - Ling Kong
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Institute for Brain Disorders, National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
| | - Lihong Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaodan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Aobo Geng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jin Cai
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Hong Yang
- Yanjing Medical College, Capital Medical University, No.4 Dadong Road, Shunyi District, Beijing, 101300, China
| | - Huang Peili
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Toma L, Mattarozzi M, Ronda L, Marassi V, Zattoni A, Fortunati S, Giannetto M, Careri M. Are Aptamers Really Promising as Receptors for Analytical Purposes? Insights into Anti-Lysozyme DNA Aptamers through a Multitechnique Study. Anal Chem 2024; 96:2719-2726. [PMID: 38294352 DOI: 10.1021/acs.analchem.3c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Aptamers are recognition elements increasingly used for the development of biosensing strategies, especially in the detection of proteins or small molecule targets. Lysozyme, which is recognized as an important biomarker for various diseases and a major allergenic protein found in egg whites, is one of the main analytical targets of aptamer-based biosensors. However, since aptamer-based strategies can be prone to artifacts and data misinterpretation, rigorous strategies for multifaceted characterization of the aptamer-target interaction are needed. In this work, a multitechnique approach has been devised to get further insights into the binding performance of the anti-lysozyme DNA aptamers commonly used in the literature. To study molecular interactions between lysozyme and different anti-lysozyme DNA aptamers, measurements based on a magneto-electrochemical apta-assay, circular dichroism spectroscopy, fluorescence spectroscopy, and asymmetrical flow field-flow fractionation were performed. The reliability and versatility of the approach were proved by investigating a SELEX-selected RNA aptamer reported in the literature, that acts as a positive control. The results confirmed that an interaction in the low micromolar range is present in the investigated binding buffers, and the binding is not associated with a conformational change of either the protein or the DNA aptamer. The similar behavior of the anti-lysozyme DNA aptamers compared to that of randomized sequences and polythymine, used as negative controls, showed nonsequence-specific interactions. This study demonstrates that severe testing of aptamers resulting from SELEX selection is the unique way to push these biorecognition elements toward reliable and reproducible results in the analytical field.
Collapse
Affiliation(s)
- Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma 43124, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- CNR, Institute of Biophysics, Pisa 56124, Italy
| | - Valentina Marassi
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna 40126, Italy
- byFlow srl, Bologna 40126, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Andrea Zattoni
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna 40126, Italy
- byFlow srl, Bologna 40126, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Simone Fortunati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Marco Giannetto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma 43124, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma 43124, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| |
Collapse
|
4
|
De Marchis F, Vanzolini T, Maricchiolo E, Bellucci M, Menotta M, Di Mambro T, Aluigi A, Zattoni A, Roda B, Marassi V, Crinelli R, Pompa A. A biotechnological approach for the production of new protein bioplastics. Biotechnol J 2024; 19:e2300363. [PMID: 37801630 DOI: 10.1002/biot.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
The future of biomaterial production will leverage biotechnology based on the domestication of cells as biological factories. Plants, algae, and bacteria can produce low-environmental impact biopolymers. Here, two strategies were developed to produce a biopolymer derived from a bioengineered vacuolar storage protein of the common bean (phaseolin; PHSL). The cys-added PHSL* forms linear-structured biopolymers when expressed in the thylakoids of transplastomic tobacco leaves by exploiting the formation of inter-chain disulfide bridges. The same protein without signal peptide (ΔPHSL*) accumulates in Escherichia coli inclusion bodies as high-molar-mass species polymers that can subsequently be oxidized to form disulfide crosslinking bridges in order to increase the stiffness of the biomaterial, a valid alternative to the use of chemical crosslinkers. The E. coli cells produced 300 times more engineered PHSL, measured as percentage of total soluble proteins, than transplastomic tobacco plants. Moreover, the thiol groups of cysteine allow the site-specific PEGylation of ΔPHSL*, which is a desirable functionality in the design of a protein-based drug carrier. In conclusion, ΔPHSL* expressed in E. coli has the potential to become an innovative biopolymer.
Collapse
Affiliation(s)
- Francesca De Marchis
- Institute of Biosciences and Bioresources, Division of Perugia, National Research Council, Perugia, Italy
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Elisa Maricchiolo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, Division of Perugia, National Research Council, Perugia, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Tomas Di Mambro
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Bologna (BO), Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Bologna (BO), Italy
| | - Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Bologna (BO), Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Andrea Pompa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| |
Collapse
|
5
|
Mavridi-Printezi A, Giordani S, Menichetti A, Mordini D, Zattoni A, Roda B, Ferrazzano L, Reschiglian P, Marassi V, Montalti M. The dual nature of biomimetic melanin. NANOSCALE 2023; 16:299-308. [PMID: 38059484 DOI: 10.1039/d3nr04696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Melanin-inspired nanomaterials offer unique photophysical, electronic and radical scavenging properties that are widely explored for health and environmental preservation, or energy conversion and storage. The incorporation of functional melanin building blocks in more complex nanostructures or surfaces is typically achieved via a bottom-up approach starting from a molecular precursor, in most cases dopamine. Here we demonstrate that indeed, the oxidative polymerization of dopamine, for the synthesis of melanin-like polydopamine (PDA), leads to the simultaneous formation of more than one nanosized species with different compositions, morphologies and properties. In particular, a low-density polymeric structure and dense nanoparticles (NP) are simultaneously formed. The two populations could be separated and analyzed in real time using a chromatographic technique free of any stationary phase (flow field fractionation, FFF). The results following the synthesis of melanin-like PDA showed that the NP are formed only during the first 6 hours as a result of a supramolecular self-assembly-driven polymerization, while the formation of the polymer continues for about 36 hours. The two populations were also separated and characterized using TEM, UV-vis absorption spectroscopy, fluorescence and light scattering spectroscopy, DLS, FTIR, ζ-potential measurements, gel electrophoresis and pH titrations. Interestingly, very different properties between the two populations were observed: in particular the polymer contains a higher number of catechol units (8 mmol g-1 -OH) with respect to the NP (1 mmol g-1 -OH) and presents a much higher antioxidant activity. The attenuation of light by NP is more efficient than that by the polymer especially in the Vis-NIR region. Moreover, while the NP scatter light with an efficiency up to 27% they are not fluorescent, and the polymer does not scatter light but shows an excitation wavelength-dependent fluorescence typical of multi-fluorophoric uncoupled systems.
Collapse
Affiliation(s)
| | - Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Lucia Ferrazzano
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | | | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| |
Collapse
|
6
|
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236:115751. [PMID: 37778202 DOI: 10.1016/j.jpba.2023.115751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Liposomes are nano-sized lipid-based vesicles widely studied for their drug delivery capabilities. Compared to standard carries they exhibit better properties such as improved site-targeting and drug release, protection of drugs from degradation and clearance, and lower toxic side effects. At present, scientific literature is rich of studies regarding liposomes-based systems, while 14 types of liposomal products have been authorized to the market by EMA and FDA and many others have been approved by national agencies. Although the interest in nanodevices and nanomedicine has steadily increased in the last two decades the development of documentation regulating and standardizing all the phases of their development and quality control still suffers from major inadequacy due to the intrinsic complexity of nano-systems characterization. Many generic documents (Type 1) discussing guidelines for the study of nano-systems (lipidic and not) have been proposed while there is a lack of robust and standardized methods (Type 2 documents). As a result, a widespread of different techniques, approaches and methodologies are being used, generating results of variable quality and hard to compare with each other. Additionally, such documents are often subject to updates and rewriting further complicating the topic. Within this context the aim of this work is focused on bridging the gap in liposome characterization: the most recent standardized methodologies suitable for liposomes characterization are here reported (with the corresponding Type 2 documents) and revised in a short and pragmatical way focused on providing the reader with a practical background of the state of the art. In particular, this paper will put the accent on the methodologies developed to evaluate the main critical quality attributes (CQAs) necessary for liposomes market approval.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Pierluigi Reschiglian
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
7
|
Marassi V, Giordani S, Placci A, Punzo A, Caliceti C, Zattoni A, Reschiglian P, Roda B, Roda A. Emerging Microfluidic Tools for Simultaneous Exosomes and Cargo Biosensing in Liquid Biopsy: New Integrated Miniaturized FFF-Assisted Approach for Colon Cancer Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9432. [PMID: 38067805 PMCID: PMC10708636 DOI: 10.3390/s23239432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Stefano Giordani
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Anna Placci
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Angela Punzo
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy—CIRI FRAME, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research—CIRI Agrofood, University of Bologna, 47521 Cesena, Italy
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
| |
Collapse
|
8
|
Giordani S, Marassi V, Placci A, Zattoni A, Roda B, Reschiglian P. Field-Flow Fractionation in Molecular Biology and Biotechnology. Molecules 2023; 28:6201. [PMID: 37687030 PMCID: PMC10488451 DOI: 10.3390/molecules28176201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Field-flow fractionation (FFF) is a family of single-phase separative techniques exploited to gently separate and characterize nano- and microsystems in suspension. These techniques cover an extremely wide dynamic range and are able to separate analytes in an interval between a few nm to 100 µm size-wise (over 15 orders of magnitude mass-wise). They are flexible in terms of mobile phase and can separate the analytes in native conditions, preserving their original structures/properties as much as possible. Molecular biology is the branch of biology that studies the molecular basis of biological activity, while biotechnology deals with the technological applications of biology. The areas where biotechnologies are required include industrial, agri-food, environmental, and pharmaceutical. Many species of biological interest belong to the operational range of FFF techniques, and their application to the analysis of such samples has steadily grown in the last 30 years. This work aims to summarize the main features, milestones, and results provided by the application of FFF in the field of molecular biology and biotechnology, with a focus on the years from 2000 to 2022. After a theoretical background overview of FFF and its methodologies, the results are reported based on the nature of the samples analyzed.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Valentina Marassi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Anna Placci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Andrea Zattoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
9
|
De Simone G, Varricchio R, Ruberto TF, di Masi A, Ascenzi P. Heme Scavenging and Delivery: The Role of Human Serum Albumin. Biomolecules 2023; 13:biom13030575. [PMID: 36979511 PMCID: PMC10046553 DOI: 10.3390/biom13030575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Heme is the reactive center of several metal-based proteins that are involved in multiple biological processes. However, free heme, defined as the labile heme pool, has toxic properties that are derived from its hydrophobic nature and the Fe-atom. Therefore, the heme concentration must be tightly controlled to maintain cellular homeostasis and to avoid pathological conditions. Therefore, different systems have been developed to scavenge either Hb (i.e., haptoglobin (Hp)) or the free heme (i.e., high-density lipoproteins (HDL), low-density lipoproteins (LDL), hemopexin (Hx), and human serum albumin (HSA)). In the first seconds after heme appearance in the plasma, more than 80% of the heme binds to HDL and LDL, and only the remaining 20% binds to Hx and HSA. Then, HSA slowly removes most of the heme from HDL and LDL, and finally, heme transits to Hx, which releases it into hepatic parenchymal cells. The Hx:heme or HSA:heme complexes are internalized via endocytosis mediated by the CD91 and CD71 receptors, respectively. As heme constitutes a major iron source for pathogens, bacteria have evolved hemophores that can extract and uptake heme from host proteins, including HSA:heme. Here, the molecular mechanisms underlying heme scavenging and delivery from HSA are reviewed. Moreover, the relevance of HSA in disease states associated with increased heme plasma concentrations are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Romualdo Varricchio
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Tommaso Francesco Ruberto
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
- Centro Linceo Interdisciplinare Beniamino Segre, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
10
|
Marassi V, Zanoni I, Ortelli S, Giordani S, Reschiglian P, Roda B, Zattoni A, Ravagli C, Cappiello L, Baldi G, Costa AL, Blosi M. Native Study of the Behaviour of Magnetite Nanoparticles for Hyperthermia Treatment during the Initial Moments of Intravenous Administration. Pharmaceutics 2022; 14:2810. [PMID: 36559302 PMCID: PMC9782478 DOI: 10.3390/pharmaceutics14122810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic nanoparticles (MNPs) present outstanding properties making them suitable as therapeutic agents for hyperthermia treatments. Since the main safety concerns of MNPs are represented by their inherent instability in a biological medium, strategies to both achieve long-term stability and monitor hazardous MNP degradation are needed. We combined a dynamic approach relying on flow field flow fractionation (FFF)-multidetection with conventional techniques to explore frame-by-frame changes of MNPs injected in simulated biological medium, hypothesize the interaction mechanism they are subject to when surrounded by a saline, protein-rich environment, and understand their behaviour at the most critical point of intravenous administration. In the first moments of MNPs administration in the patient, MNPs change their surrounding from a favorable to an unfavorable medium, i.e., a complex biological fluid such as blood; the particles evolve from a synthetic identity to a biological identity, a transition that needs to be carefully monitored. The dynamic approach presented herein represents an optimal alternative to conventional batch techniques that can monitor only size, shape, surface charge, and aggregation phenomena as an averaged information, given that they cannot resolve different populations present in the sample and cannot give accurate information about the evolution or temporary instability of MNPs. The designed FFF method equipped with a multidetection system enabled the separation of the particle populations providing selective information on their morphological evolution and on nanoparticle-proteins interaction in the very first steps of infusion. Results showed that in a dynamic biological setting and following interaction with serum albumin, PP-MNPs retain their colloidal properties, supporting their safety profile for intravenous administration.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Ilaria Zanoni
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Simona Ortelli
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Costanza Ravagli
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Laura Cappiello
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Giovanni Baldi
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Anna L. Costa
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Magda Blosi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
11
|
The Challenges of O 2 Detection in Biological Fluids: Classical Methods and Translation to Clinical Applications. Int J Mol Sci 2022; 23:ijms232415971. [PMID: 36555613 PMCID: PMC9786805 DOI: 10.3390/ijms232415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dissolved oxygen (DO) is deeply involved in preserving the life of cellular tissues and human beings due to its key role in cellular metabolism: its alterations may reflect important pathophysiological conditions. DO levels are measured to identify pathological conditions, explain pathophysiological mechanisms, and monitor the efficacy of therapeutic approaches. This is particularly relevant when the measurements are performed in vivo but also in contexts where a variety of biological and synthetic media are used, such as ex vivo organ perfusion. A reliable measurement of medium oxygenation ensures a high-quality process. It is crucial to provide a high-accuracy, real-time method for DO quantification, which could be robust towards different medium compositions and temperatures. In fact, biological fluids and synthetic clinical fluids represent a challenging environment where DO interacts with various compounds and can change continuously and dynamically, and further precaution is needed to obtain reliable results. This study aims to present and discuss the main oxygen detection and quantification methods, focusing on the technical needs for their translation to clinical practice. Firstly, we resumed all the main methodologies and advancements concerning dissolved oxygen determination. After identifying the main groups of all the available techniques for DO sensing based on their mechanisms and applicability, we focused on transferring the most promising approaches to a clinical in vivo/ex vivo setting.
Collapse
|
12
|
Preparation of Temperature-Responsive Antibody–Nanoparticles by RAFT-Mediated Grafting from Polymerization. Polymers (Basel) 2022; 14:polym14214584. [DOI: 10.3390/polym14214584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 10/31/2022] Open
Abstract
Herein, we report the preparation of temperature-responsive antibody–nanoparticles by the direct polymerization of N-isopropylacrylamide (NIPAAm) from immunoglobulin G (IgG). To this end, a chain transfer agent (CTA) was introduced into IgG, followed by the precipitation polymerization of NIPAAm in an aqueous medium via reversible addition–fragmentation chain transfer polymerization above the lower critical solution temperature (LCST). Consequently, antibody–polymer particles with diameters of approximately 100–200 nm were formed. Owing to the entanglement of the grafted polymers via partial chemical crosslinking, the antibody–nanoparticles maintained their stability even at temperatures below the LCST. Further, the dispersed nanoparticles could be collected by thermal precipitation above the LCST. Additionally, the antibody–nanoparticles formulation could maintain its binding constant and exhibited a good resistance against enzymatic treatment. Thus, the proposed antibody–nanoparticles can be useful for maximizing the therapeutic potential of antibody–drug conjugates or efficacies of immunoassays and antibody recovery and recycling.
Collapse
|
13
|
Zappi A, Marassi V, Kassouf N, Giordani S, Pasqualucci G, Garbini D, Roda B, Zattoni A, Reschiglian P, Melucci D. A Green Analytical Method Combined with Chemometrics for Traceability of Tomato Sauce Based on Colloidal and Volatile Fingerprinting. Molecules 2022; 27:molecules27175507. [PMID: 36080273 PMCID: PMC9457838 DOI: 10.3390/molecules27175507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato sauce is a world famous food product. Despite standards regulating the production of tomato derivatives, the market suffers frpm fraud such as product adulteration, origin mislabelling and counterfeiting. Methods suitable to discriminate the geographical origin of food samples and identify counterfeits are required. Chemometric approaches offer valuable information: data on tomato sauce is usually obtained through chromatography (HPLC and GC) coupled to mass spectrometry, which requires chemical pretreatment and the use of organic solvents. In this paper, a faster, cheaper, and greener analytical procedure has been developed for the analysis of volatile organic compounds (VOCs) and the colloidal fraction via multivariate statistical analysis. Tomato sauce VOCs were analysed by GC coupled to flame ionisation (GC-FID) and to ion mobility spectrometry (GC-IMS). Instead of using HPLC, the colloidal fraction was analysed by asymmetric flow field-fractionation (AF4), which was applied to this kind of sample for the first time. The GC and AF4 data showed promising perspectives in food-quality control: the AF4 method yielded comparable or better results than GC-IMS and offered complementary information. The ability to work in saline conditions with easy pretreatment and no chemical waste is a significant advantage compared to environmentally heavy techniques. The method presented here should therefore be taken into consideration when designing chemometric approaches which encompass a large number of samples.
Collapse
Affiliation(s)
- Alessandro Zappi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
- Correspondence:
| | - Nicholas Kassouf
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Stefano Giordani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Gaia Pasqualucci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Davide Garbini
- COOP ITALIA Soc. Cooperativa, Casalecchio di Reno, 40033 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
| | - Dora Melucci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- CIRI Agrifood, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
14
|
Application of Af4-Multidetection to Liraglutide in Its Formulation: Preserving and Representing Native Aggregation. Molecules 2022; 27:molecules27175485. [PMID: 36080254 PMCID: PMC9457993 DOI: 10.3390/molecules27175485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Aggregation is among the most critical parameters affecting the pharmacological and safety profile of peptide Active Pharmaceutical Ingredients (APIs). For this reason, it is of utmost importance to define the exact aggregation state of peptide drugs, particularly when the API is marketed as a ready-to-use solution. Consequently, appropriate non-destructive techniques able to replicate the peptide environment must be employed. In our work, we exploited Asymmetrical Flow Field-Flow Fractionation (AF4), connected to UV, dRI, fluorescence, and MALS detectors, to fully characterize the aggregation state of Liraglutide, a peptide API used for the treatment of diabetes type 2 and chronic obesity. In previous studies, Liraglutide was hypothesized to assemble into hexa-octamers in phosphate buffer, but no information on its behavior in the formulation medium was provided up to now. The method used allowed researchers to work using formulation as the mobile phase with excellent recoveries and LoQ/LoD, discerning between stable and degraded samples, and detecting, when present, aggregates up to 108 Da. The native state of Liraglutide was assessed and found to be an association into pentamers, with a non-spherical conformation. Combined to benchmark analyses, the sameness study was complete and descriptive, also giving insight on the aggregation process and covalent/non-covalent aggregate types.
Collapse
|