1
|
Tiberio F, Salvati M, Polito L, Tisci G, Vita A, Parolini O, Massimi L, Di Pietro L, Ceci P, Tamburrini G, Arcovito A, Falvo E, Lattanzi W. Targeted allele-specific FGFR2 knockdown via human recombinant ferritin nanoparticles for personalized treatment of Crouzon syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102427. [PMID: 39906733 PMCID: PMC11790506 DOI: 10.1016/j.omtn.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025]
Abstract
Crouzon syndrome is a rare genetic craniofacial malformation caused by heterozygous gain-of-function mutations in the FGFR2 gene. The resulting constitutive activation of the FGFR2 signaling causes the premature osteogenic differentiation of calvarial mesenchymal stromal cells in skull sutures, leading to early suture ossification. Craniectomy is the gold standard treatment, being invasive and burdened by complications. To address these issues, we developed personalized allele-specific (AS) small interfering RNA (siRNA) to knockdown the expression of the FGFR2 mutant allele in Crouzon patient-derived suture cells. The selected therapeutic siRNA mitigated FGFR2 cascade downregulating phosphorylation of FGFR2 (48%) and of its key effector ERK1/2 (77%) as RUNX2 protein levels (34%). This effect was confirmed by the reduced osteogenic commitment and differentiation of treated cells, evidenced by decreased expression of osteogenic marker genes and a 5-fold decrease in mineralized matrix deposition. We developed a highly biocompatible delivery system for siRNAs, based on human recombinant ferritin nanoparticles (NPs), combining cell targeting with improved nucleic acid encapsulation and endosomal escape properties. We demonstrated the ability of these NPs to deliver and release siRNAs within target cells, sustaining their inhibitory and AS effects. Here, we show that ferritin-mediated AS FGFR2 knockdown by siRNA represents a suitable strategy to dampen FGFR2 overactivation in patients' cells.
Collapse
Affiliation(s)
- Federica Tiberio
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luca Polito
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giada Tisci
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology, P.le Aldo Moro 7, 00185 Rome, Italy
| | - Alessia Vita
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Luca Massimi
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Pierpaolo Ceci
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology, P.le Aldo Moro 7, 00185 Rome, Italy
| | - Gianpiero Tamburrini
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Elisabetta Falvo
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology, P.le Aldo Moro 7, 00185 Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| |
Collapse
|
2
|
Asad F, Batool N, Nadeem A, Bano S, Anwar N, Jamal R, Ali S. Fe-NPs and Zn-NPs: Advancing Aquaculture Performance Through Nanotechnology. Biol Trace Elem Res 2024; 202:2828-2842. [PMID: 37723405 DOI: 10.1007/s12011-023-03850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Aquaculture is a growing industry facing several challenges, including disease control, water quality management, and sustainable feed production. One potential solution to these challenges is the use of trace elements such as iron (Fe) and zinc (Zn), either in their conventional form or as nanoparticles (NPs). Aquatic animals need these micronutrients for normal growth, physiological processes, and overall health. In marine species, iron boosts development, immunity, and disease resistance. At the same time, zinc enhances metabolism, synthesizes essential enzymes, and produces hormones that play a part in defenses, growth, reproduction, and antioxidative activities. According to this review, species-specific requirements by different Fe and Zn compounds have all emphasized the impacts on animal growth and development, antioxidant capacity, reproductive efficiency, and immunological response. However, NPs of Fe and Zn have been found to have higher bioavailability and efficacy than conventional forms. This work examines the effects of applications of Fe and Fe nanoparticles (Fe-NPs) and Zn and Zn nanoparticles (Zn-NPs) in aquaculture. However, the source of Fe and Zn in aquaculture species and administration volume may significantly impact efficacy. Nanotechnology boosts the positive benefits of Fe and Zn by converting them to their nanoforms (Fe-NPs) and (Zn-NPs), which are better used by animals and have a broader intake range. As a result, Fe-NPs and Zn-NPs offer an effective method for using nutrients in aquaculture.
Collapse
Affiliation(s)
- Farkhanda Asad
- Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Navaira Batool
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aiman Nadeem
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehar Bano
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Noshaba Anwar
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rafia Jamal
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shahbaz Ali
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
3
|
Wu J, Li Y, Wu H, Zhang H, Sha X, Ma J, Yang R. The application of ferritin in transporting and binding diverse metal ions. Food Chem 2024; 439:138132. [PMID: 38081094 DOI: 10.1016/j.foodchem.2023.138132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The ferritin cage can not only load iron ions in its inner cavity, but also has the capacity to carry other metal ions, thus constructing a new biological nano-transport system. The nanoparticles formed by ferritin and minerals can be used as ingredients of mineral supplements, which overcome the shortcomings of traditional mineral ingredients such as low bioavailability. Moreover, ferritin can be used to remove heavy metal ions from contaminated food. Silver and palladium nanoparticles formed by ferritin are also applied as anticancer agents. Ferritin combined with metal ions can be also used to detect harmful substances. This review aims to provide a comprehensive overview of ferritin's function in transporting and binding metal ions, and discusses the limitations and future prospects, which offers valuable insights for the application of ferritin in mineral supplements, food detoxifiers, anticancer agents, and food detections.
Collapse
Affiliation(s)
- Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huimin Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haotong Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Cassioli ML, Fay M, Turyanska L, Bradshaw TD, Thomas NR, Pordea A. Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide. RSC Adv 2024; 14:14008-14016. [PMID: 38686295 PMCID: PMC11056943 DOI: 10.1039/d3ra07430g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Protein capsules are promising drug delivery vehicles for cancer research therapies. Apoferritin (AFt) is a self-assembling 12 nm diameter hollow nanocage with many desirable features for drug delivery, however, control of drug retention inside the protein cage remains challenging. Here we report the encapsulation of copper(ii)-1,10-phenanthroline (Cu(phen)) within the horse spleen AFt (HSAFt) nanocage, by diffusion of the metal through the pores between the protein subunits. Transmission electron microscopy revealed the formation of organised copper adducts inside HSAFt, without affecting protein integrity. These structures proved stable during storage (>4 months at -20 °C). Exposure to physiologically relevant conditions (37 °C) showed some selectivity in cargo release after 24 h at pH 5.5, relevant to the internalisation of AFt within the endosome (60% release), compared to pH 7.4, relevant to the bloodstream (40% release). Co-encapsulation of temozolomide, a prodrug used to treat glioblastoma multiforme, and Cu(phen) enabled entrapment of an average of 339 TMZ molecules per cage. In vitro results from MTT and clonogenic assays identified cytotoxic activity of the Cu(phen), HSAFt-Cu(phen) and HSAFt-Cu(phen)-TMZ adducts against colorectal cancer cells (HCT-116) and glioblastoma cells (U373V, U373M). However, the presence of the metal also contributed to more potent activity toward healthy MRC5 fibroblasts, a result that requires further investigation to assess the clinical viability of this system.
Collapse
Affiliation(s)
| | - Michael Fay
- Nanoscale and Microscale Research Centre, University of Nottingham NG7 2RD UK
| | | | - Tracey D Bradshaw
- Biodiscovery Institute, School of Pharmacy, University of Nottingham NG7 2RD UK
| | - Neil R Thomas
- Biodiscovery Institute, School of Chemistry, University of Nottingham NG7 2RD UK
| | - Anca Pordea
- Faculty of Engineering, University of Nottingham NG7 2RD UK
| |
Collapse
|
5
|
Qiu Z, Yu Z, Xu T, Wang L, Meng N, Jin H, Xu B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells 2022; 11:cells11233761. [PMID: 36497021 PMCID: PMC9737081 DOI: 10.3390/cells11233761] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
As the most dangerous tumors, brain tumors are usually treated with surgical removal, radiation therapy, and chemotherapy. However, due to the aggressive growth of gliomas and their resistance to conventional chemoradiotherapy, it is difficult to cure brain tumors by conventional means. In addition, the higher dose requirement of chemotherapeutic drugs caused by the blood-brain barrier (BBB) and the untargeted nature of the drug inevitably leads to low efficacy and systemic toxicity of chemotherapy. In recent years, nanodrug carriers have attracted extensive attention because of their superior drug transport capacity and easy-to-control properties. This review systematically summarizes the major strategies of novel nano-drug delivery systems for the treatment of brain tumors in recent years that cross the BBB and enhance brain targeting, and compares the advantages and disadvantages of several strategies.
Collapse
Affiliation(s)
- Ziyi Qiu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenhua Yu
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
| | - Ting Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liuyou Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nanxin Meng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huawei Jin
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
- Correspondence: (H.J.); (B.X.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (H.J.); (B.X.)
| |
Collapse
|
6
|
Rashk-E-Eram, Mukherjee K, Saha A, Bhattacharjee S, Mallick A, Sarkar B. Nanoscale iron for sustainable aquaculture and beyond. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Enhanced Cellular Uptake of H-Chain Human Ferritin Containing Gold Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111966. [PMID: 34834381 PMCID: PMC8623468 DOI: 10.3390/pharmaceutics13111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.
Collapse
|
8
|
Yin S, Zhang B, Lin J, Liu Y, Su Z, Bi J. Development of purification process for dual-function recombinant human heavy-chain ferritin by the investigation of genetic modification impact on conformation. Eng Life Sci 2021; 21:630-642. [PMID: 34690634 PMCID: PMC8518560 DOI: 10.1002/elsc.202000105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Ferritin is a promising drug delivery platform and has been functionalized through genetic modifications. This work has designed and expressed a dual-functional engineered human heavy-chain ferritin (HFn) with the inserted functional peptide PAS and RGDK to extend half-life and improve tumor targeted drug delivery. A facile and cost-effective two-step purification pathway for recombinant HFn was developed. The genetic modification was found to affect HFn conformation, and therefore varied the purification performance. Heat-acid precipitation followed by butyl fast flow hydrophobic interaction chromatography (HIC) has been developed to purify HFn and modified HFns. Nucleic acid removal reached above 99.8% for HFn and modified HFns. However, HFn purity reached above 95% and recovery yield (overall) above 90%, compared with modified HFns purity above 82% and recovery yield (overall) above 58%. It is interesting to find that the inserted functional peptides significantly changed the molecule conformation, where a putative turnover of the E-helix with the inserted functional peptides formed a "flop" conformation, in contrast with the "flip" conformation of HFn. It could be the cause of fragile stability of modified HFns, and therefore less tolerant to heat and acid condition, observed by the lower recovery yield in heat-acid precipitation.
Collapse
Affiliation(s)
- Shuang Yin
- School of Chemical Engineering & Advanced MaterialsFaculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideAustralia
| | - Bingyang Zhang
- School of Chemical Engineering & Advanced MaterialsFaculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideAustralia
| | - Jianying Lin
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanP. R. China
| | - Yongdong Liu
- State Key Laboratory of Biochemistry EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemistry EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced MaterialsFaculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideAustralia
| |
Collapse
|
9
|
Miao X, Yue H, Ho SL, Cha H, Marasini S, Ghazanfari A, Ahmad MY, Liu S, Tegafaw T, Chae KS, Chang Y, Lee GH. Synthesis, Biocompatibility, and Relaxometric Properties of Heavily Loaded Apoferritin with D-Glucuronic Acid-Coated Ultrasmall Gd2O3 Nanoparticles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Falvo E, Damiani V, Conti G, Boschi F, Messana K, Giacomini P, Milella M, De Laurenzi V, Morea V, Sala G, Fracasso G, Ceci P. High activity and low toxicity of a novel CD71-targeting nanotherapeutic named The-0504 on preclinical models of several human aggressive tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:63. [PMID: 33568214 PMCID: PMC7877078 DOI: 10.1186/s13046-021-01851-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Background Ferritin receptor (CD71) is an example of a very attractive cancer target, since it is highly expressed in virtually all tumor types, including metastatic loci. However, this target can be considered to be inaccessible to conventional target therapies, due to its presence in many healthy tissues. Here, we describe the preclinical evaluation of a tumor proteases-activatable human ferritin (HFt)-based drug carrier (The-0504) that is able to selectively deliver the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors, preventing the limiting toxic effects associated with CD71-targeting therapies. Methods CD71 expression was evaluated using flow cytometry and immunohistochemistry techniques. The-0504 antiproliferative activity towards several cancer cell lines was assessed in vitro. The-0504 antitumor efficacy and survival benefit were evaluated in different human tumors, which had been grown either as xenografts or patient-derived xenografts in mice. The-0504 toxicology profile was investigated in multiple-cycle repeat-dose study in rodents. Results In vitro studies indicate that The-0504 is highly specific for CD71 expressing cells, and that there is a relationship between CD71 levels and The-0504 anticancer activity. In vivo treatments with The-0504 showed a remarkable efficacy, eradicating several human tumors of very diverse and aggressive histotypes, such as pancreas, liver and colorectal carcinomas, and triple-negative breast cancer. Conclusions Durable disease-free survival, persistent antitumor responses after discontinuation of treatment and favorable toxicology profile make The-0504 an ideal candidate for clinical development as a novel, CD71-targeted, low-toxicity alternative to chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01851-8.
Collapse
Affiliation(s)
- Elisabetta Falvo
- CNR - National Research Council of Italy, Institute of Molecular Biology and Pathology, Rome, Italy.
| | - Verena Damiani
- Center for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Giamaica Conti
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Katia Messana
- IRCCS Regina Elena National Cancer Institute, Oncogenomics and Epigenetics, Rome, Italy
| | - Patrizio Giacomini
- IRCCS Regina Elena National Cancer Institute, Oncogenomics and Epigenetics, Rome, Italy
| | - Michele Milella
- Oncologia Medica, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Veronica Morea
- CNR - National Research Council of Italy, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Gianluca Sala
- Center for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Giulio Fracasso
- Department of Medicine, University of Verona, Verona, Italy.
| | - Pierpaolo Ceci
- CNR - National Research Council of Italy, Institute of Molecular Biology and Pathology, Rome, Italy.,Thena Biotech, Latina, Italy
| |
Collapse
|
11
|
Engineered Human Nanoferritin Bearing the Drug Genz-644282 for Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12100992. [PMID: 33092088 PMCID: PMC7589674 DOI: 10.3390/pharmaceutics12100992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal tumors, including pancreatic and colorectal cancers, represent one of the greatest public health issues worldwide, leading to a million global deaths. Recent research demonstrated that the human heavy chain ferritin (HFt) can encapsulate different types of drugs in its cavity and can bind to its receptor, CD71, in several solid and hematological tumors, thus highlighting the potential use of ferritin for tumor-targeting therapies. Here, we describe the development and characterization of a novel nanomedicine based on the HFt that is named The-0504. In particular, this novel system is a nano-assembly comprising an engineered version of HFt that entraps about 80 molecules of a potent, wide-spectrum, non-camptothecin topoisomerase I inhibitor (Genz-644282). The-0504 can be produced by a standardized pre-industrial process as a pure and homogeneously formulated product with favourable lyophilization properties. The preliminary anticancer activity was evaluated in cultured cancer cells and in a mouse model of pancreatic cancer. Overall results reported here make The-0504 a candidate for further preclinical development against CD-71 expressing deadly tumors.
Collapse
|
12
|
Silver nanoparticle synthesis in human ferritin by photochemical reduction. J Inorg Biochem 2020; 206:111016. [DOI: 10.1016/j.jinorgbio.2020.111016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
|
13
|
Palombarini F, Di Fabio E, Boffi A, Macone A, Bonamore A. Ferritin Nanocages for Protein Delivery to Tumor Cells. Molecules 2020; 25:E825. [PMID: 32070033 PMCID: PMC7070480 DOI: 10.3390/molecules25040825] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
The delivery of therapeutic proteins is one of the greatest challenges in the treatment of human diseases. In this frame, ferritins occupy a very special place. Thanks to their hollow spherical structure, they are used as modular nanocages for the delivery of anticancer drugs. More recently, the possibility of encapsulating even small proteins with enzymatic or cytotoxic activity is emerging. Among all ferritins, particular interest is paid to the Archaeoglobus fulgidus one, due to its peculiar ability to associate/dissociate in physiological conditions. This protein has also been engineered to allow recognition of human receptors and used in vitro for the delivery of cytotoxic proteins with extremely promising results.
Collapse
Affiliation(s)
| | | | | | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| | - Alessandra Bonamore
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| |
Collapse
|