1
|
Scheid C, Monteiro SA, Mello W, Velho MC, Dos Santos J, Beck RCR, Deon M, Merib J. A novel honeycomb-like 3D-printed device for rotating-disk sorptive extraction of organochlorine and organophosphorus pesticides from environmental water samples. J Chromatogr A 2024; 1722:464892. [PMID: 38608369 DOI: 10.1016/j.chroma.2024.464892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
In this study, 3D-printing based on fused-deposition modeling (FDM) was employed as simple and cost-effective strategy to fabricate a novel format of rotating-disk sorptive devices. As proof-of-concept, twenty organochlorine and organophosphorus pesticides were determined in water samples through rotating-disk sorptive extraction (RDSE) using honeycomb-like 3D-printed disks followed by gas chromatography coupled to mass spectrometry (GC-MS). The devices that exhibited the best performance were comprised of polyamide + 15 % carbon fiber (PA + 15 % C) with the morphology being evaluated through X-ray microtomography. The optimized extraction conditions consisted of 120 min of extraction using 20 mL of sample at stirring speed of 1100 rpm. Additionally, liquid desorption using 800 µL of acetonitrile for 25 min at stirring speed of 1100 rpm provided the best response. Importantly, the methodology also exhibited high throughput since an extraction/desorption platform that permitted up to fifteen simultaneous extractions was employed. The method was validated, providing coefficients of determination higher than 0.9706 for all analytes; limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.15 to 3.03 μg L-1 and from 0.5 to 10.0 μg L-1, respectively. Intraday precision ranged from 4.01 to 18.73 %, and interday precision varied from 4.83 to 20.00 %. Accuracy was examined through relative recoveries and ranged from 73.29 to 121.51 %. This method was successfully applied to analyze nine groundwater samples from monitoring wells of gas stations in São Paulo. Moreover, the greenness was assessed through AGREEprep metrics, and an overall score of 0.69 was obtained indicating that the method proposed can be considered sustainable.
Collapse
Affiliation(s)
- Camila Scheid
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Sofia Aquino Monteiro
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Wendell Mello
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Maiara Callegaro Velho
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Juliana Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Ruy Carlos Ruver Beck
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Josias Merib
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| |
Collapse
|
2
|
Su M, He Y, Zhang N, Lv M, Xu X. Microwave-Assisted Dispersive Liquid-Liquid Microextraction Combined with HPLC for the Determination of Three Biogenic Amines in Beverages. J Chromatogr Sci 2023; 61:790-798. [PMID: 36111432 DOI: 10.1093/chromsci/bmac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 10/01/2023]
Abstract
Microwave-assisted dispersive liquid-liquid microextraction (MADLLME) coupled with high-performance liquid chromatography (HPLC) with diode array detector was used for the extraction and determination of three biogenic amines (BAs), including tryptamine, histamine and phenylethylamine in beverages (beer, cherry juice and white spirit). Compared with solid-phase extraction, solid-phase microextraction and liquid-phase microextraction, which is more solvent use with lower extraction efficiency, this MADLLME method obviously shortened analytical time, the rapid heating of aqueous samples with non-ionizing electromagnetic radiation, a lower solvent use and enhanced extraction efficiency. Because of good extraction for three BAs, [3C6PC14][FeCl4] was used as an extraction solvent. We showed a tunable selectivity of magnetic ionic liquids (MILs) toward extracting BAs by changing anion or cation due to the modification of the interaction between the MIL and the BAs. Extraction conditions including the type and volume of extraction solvent, microwave power, microwave-assisted extraction time, sample pH, disperser and interference experiment were investigated. Under the optimal conditions, a good linear relationship was found in the concentration range of 100-2,000 ng mL-1 for three BAs with correlation coefficient (R2) of 0.995-0.999. The limit of detections (S/N = 3) and limit of quantitations (S/N = 10) were in the range of 3.46-4.96 ng mL-1 and 10.44-14.88 ng mL-1, respectively. The recoveries of three targets were in the range of 84.3-108.5%, and the relative standard deviations based on the peak areas for six replicate analyses of beverages spiked with 10, 50 and 100 ng mL-1 of each biogenic amine were lower than 7.9%. This method has also been successfully applied to analyze the real samples at three different spiked concentrations, and excellent results have been obtained.
Collapse
Affiliation(s)
- Mingming Su
- Department of Chemistry, Liaoning University, Chongshan Middle Road No.60, Huanggu Dis., Shenyang, 110036, P. R. China
- Technology Center, Dalian Customs, 60 Changjiang East Road, Dalian, Liaoning, 110060, People's Republic of China
| | - Yongke He
- College of Science, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang 110142, P. R. China
| | - Ning Zhang
- Technology Center, Dalian Customs, 60 Changjiang East Road, Dalian, Liaoning, 110060, People's Republic of China
| | - Meiheng Lv
- College of Science, Shenyang University of Chemical Technology, 11th Street, Shenyang Economic and Technological Development Zone, Shenyang 110142, P. R. China
| | - Xu Xu
- Department of Chemistry, Liaoning University, Chongshan Middle Road No.60, Huanggu Dis., Shenyang, 110036, P. R. China
| |
Collapse
|
3
|
C FC, Kamalesh T, Senthil Kumar P, Rangasamy G. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122114. [PMID: 37379877 DOI: 10.1016/j.envpol.2023.122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Organochlorine pesticides (OCPs) have been used in agriculture, increasing crop yields and representing a serious and persistent global contaminant that is harmful to the environment and human health. OCPs are typically bioaccumulative and persistent chemicals that can spread over long distances. The challenge is to reduce the impacts caused by OCPs, which can be achieved by treating OCPs in an appropriate soil and water environment. Therefore, this report summarizes the process of bioremediation with commercially available OCPs, considering their types, impacts, and characteristics in soil and water sources. The methods explained in this report were considered to be an effective and environmentally friendly technique because they result in the complete transformation of OCPs into a non-toxic end product. This report suggests that the bioremediation process can overcome the challenges and limitations of physical and chemical treatment for OCP removal. Advanced methods such as biosurfactants and genetically modified strains can be used to promote bioremediation of OCPs.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - T Kamalesh
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
4
|
Chen D, Wang B, Yang X, Weng X, Chang Z. Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method. SENSORS (BASEL, SWITZERLAND) 2023; 23:3856. [PMID: 37112197 PMCID: PMC10143876 DOI: 10.3390/s23083856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Accurate and rapid prediction of pesticides in groundwater is important to protect human health. Thus, an electronic nose was used to recognize pesticides in groundwater. However, the e-nose response signals for pesticides are different in groundwater samples from various regions, so a prediction model built on one region's samples might be ineffective when tested in another. Moreover, the establishment of a new prediction model requires a large number of sample data, which will cost too much resources and time. To resolve this issue, this study introduced the TrAdaBoost transfer learning method to recognize the pesticide in groundwater using the e-nose. The main work was divided into two steps: (1) qualitatively checking the pesticide type and (2) semi-quantitatively predicting the pesticide concentration. The support vector machine integrated with the TrAdaBoost was adopted to complete these two steps, and the recognition rate can be 19.3% and 22.2% higher than that of methods without transfer learning. These results demonstrated the potential of the TrAdaBoost based on support vector machine approaches in recognizing the pesticide in groundwater when there were few samples in the target domain.
Collapse
Affiliation(s)
- Donghui Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264401, China
| | - Bingyang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264401, China
| | - Xiao Yang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264401, China
| | - Xiaohui Weng
- Weihai Institute for Bionics, Jilin University, Weihai 264401, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264401, China
| |
Collapse
|
5
|
Phosiri P, Pongpinyo P, Santaladchaiyakit Y, Burakham R. A ternary deep eutectic solvent-modified magnetic mixed iron hydroxide@MIL-101(Cr)-NH 2 composite as a sorbent in magnetic solid phase extraction of organochlorine pesticides prior to GC-MS. RSC Adv 2023; 13:8863-8872. [PMID: 36936839 PMCID: PMC10018794 DOI: 10.1039/d2ra07704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
A green solvent of ternary deep eutectic solvent (menthol-thymol-dodecanoic acid) was prepared and used as a functional reagent to modify a magnetic mixed iron hydroxide@MIL-101(Cr)-NH2 composite. The proposed sorbent (MIH@MIL-101(Cr)-NH2-TDES) was applied in magnetic solid phase extraction (MSPE) for the enrichment of organochlorine pesticides. The analytes were quantitively analyzed by GC-MS. The relationships of experimental parameters for preparing the proposed sorbent and the MSPE method were studied through a Box-Behnken design and a central composite design, respectively. Their optimized conditions were investigated using response surface methodology. Application of the MIH@MIL-101(Cr)-NH2-TDES sorbent in MSPE successfully enhanced the sensitivity of GC-MS analysis, giving enrichment factors in the range of 56-168. The MSPE/GC-MS method was developed using MIH@MIL-101(Cr)-NH2-TDES as a sorbent and was successfully employed for the preconcentration/determination of organochlorine residues in honey and tea samples. The satisfactory detection limits were in the ranges of 0.07-0.80 ng g-1 and 0.7-8.5 ng g-1 for honey and tea samples, respectively. Acceptable recoveries were obtained in the ranges of 81.7-107.3% and 85.4-109.3% for the spiked honey and tea samples, respectively, with RSDs lower than 10.0%.
Collapse
Affiliation(s)
- Preeyaporn Phosiri
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 4320 2373 +66 4300 9700 ext. 42174
| | - Prachathipat Pongpinyo
- Agricultural Production Sciences Research and Development Office, Department of Agriculture Bangkok 10900 Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus Khon Kaen 40000 Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 4320 2373 +66 4300 9700 ext. 42174
| |
Collapse
|
6
|
Monolithic capsule phase microextraction prior to gas chromatography-mass spectrometry for the determination of organochlorine pesticides in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal-Organic Frameworks in Agriculture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16983-17007. [PMID: 35393858 PMCID: PMC9026272 DOI: 10.1021/acsami.2c00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Agrochemicals, which are crucial to meet the world food qualitative and quantitative demand, are compounds used to kill pests (insects, fungi, rodents, or unwanted plants). Regrettably, there are some important issues associated with their widespread and extensive use (e.g., contamination, bioaccumulation, and development of pest resistance); thus, a reduced and more controlled use of agrochemicals and thorough detection in food, water, soil, and fields are necessary. In this regard, the development of new functional materials for the efficient application, detection, and removal of agrochemicals is a priority. Metal-organic frameworks (MOFs) with exceptional sorptive, recognition capabilities, and catalytical properties have very recently shown their potential in agriculture. This Review emphasizes the recent advances in the use of MOFs in agriculture through three main views: environmental remediation, controlled agrochemical release, and detection of agrochemicals.
Collapse
Affiliation(s)
- Sara Rojas
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit (APMU), IMDEA Energy, Av. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
9
|
Villa CC, Valencia GA, Córdoba AL, Ortega-Toro R, Ahmed S, Gutiérrez TJ. Zeolites for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Metal organic framework-based magnetic solid phase extraction of pesticides in complex matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Mustofa DA, Gamonchuang J, Burakham R. Magnetic Solid-Phase Extraction Based on Amino-functionalized Magnetic Starch for Analysis of Organochlorine Pesticides. ANAL SCI 2021; 37:1547-1552. [PMID: 33952865 DOI: 10.2116/analsci.21p034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A magnetic starch modified with 3,5-diaminobenzoic acid and 3-aminopropyltriethoxysilane (Fe-starch@DABA-APTES) was synthesized and applied as adsorbent for the extraction of organochlorine pesticides (OCPs). Magnetic solid-phase extraction was developed using 75 mg of the sorbent and 15 mL of a sample solution. Extraction was conducted on a vortex mixer for 40 s. The adsorbent was collected using an external magnet before eluting the analytes using 0.5 mL of methanol. Quantification of the analytes was performed using gas chromatography with a micro-electron capture detector. The linearity was obtained for the studied OCPs in the range between 0.01 - 2.00 μg L-1. The detection and quantification limits were obtained in ranges of 0.5 - 4.0 and 1.5 - 15.0 ng L-1, respectively, with enrichment factors of up to 39. The precision in terms of the intra- and inter-day relative standard deviations (RSDs) were below 4.75, and 9.25%, respectively. The developed method has been applied in natural water and agricultural product samples. The recoveries ranged between 59.83 - 132.67% (RSDs < 10.73%).
Collapse
Affiliation(s)
- Dana Ayu Mustofa
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University
| | - Jirasak Gamonchuang
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University
| |
Collapse
|
12
|
Phosiri P, Burakham R. Deep eutectic solvent-modified mixed iron hydroxide-silica: Application in magnetic solid-phase extraction for enrichment of organochlorine pesticides prior to GC-MS analysis. J Sep Sci 2021; 44:3636-3645. [PMID: 34355518 DOI: 10.1002/jssc.202100329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023]
Abstract
A new type of magnetic material based on silica-coated mixed iron hydroxides functionalized with deep eutectic solvent was utilized for the magnetic solid-phase extraction of organochlorine pesticides prior to gas chromatography-mass spectrometry analysis. Choline chloride and phenol were selected as the hydrogen bond acceptor and donor, respectively, for preparing the deep eutectic solvent-modified magnetic surface. The modified surface possessed superior enrichment capability for organochlorine pesticides. Under optimal extraction conditions, viz., 10 mg sorbent, 5 mL sample solution, and 200 μL acetone (desorption solvent), linearity was obtained in the range 0.005-200 μg/L, with coefficients of determination greater than 0.997. The limits of detection and quantification were as low as 0.6-10 and 5-60 ng/L, respectively, whereas the enrichment factors were in the range of 31-100. The precisions evaluated in terms of the relative standard deviations of the intra- and inter-day experiments were <4.9 and 7.6%, respectively. The developed method was successfully applied for determining the organochlorine residues in agricultural products. Satisfactory recoveries in the range of 71.2-110.3% were obtained, with a relative standard deviation of <8.0%. The proposed material is a promising sorbent for the preconcentration of organochlorine residues.
Collapse
Affiliation(s)
- Preeyaporn Phosiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Rodjana Burakham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
FENG J, JI X, LI C, SUN M, HAN S, FENG J, SUN H, FENG Y, SUN M. [Recent advance of new sample preparation materials in the analysis and detection of environmental pollutants]. Se Pu 2021; 39:781-801. [PMID: 34212580 PMCID: PMC9404022 DOI: 10.3724/sp.j.1123.2021.02030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 11/25/2022] Open
Abstract
To successfully analyze complex samples and detect trace targets, sample pretreatment is essential. Efficient sample pretreatment techniques can remove or reduce interference from the sample matrix. It can also enrich analytes, thereby improving analytical accuracy and sensitivity. In recent years, various sample preparation techniques, including SPE, magnetic dispersion SPE, pipette tip SPE, stir bar extraction, fiber SPME, and in-tube SPME, have received increasing attention in environmental analysis and monitoring. The extraction efficiency mainly depends on the type of adsorbent material. Therefore, the development of efficient adsorbents is a crucial step toward sample preparation. This review summarizes and discusses the research advances in extraction materials over recent years. These extraction materials contain inorganic adsorbents, organic adsorbents, and inorganic-organic hybrid materials such as graphene, graphene oxide, carbon nanotubes, inorganic aerogels, organic aerogels, triazinyl-functionalized materials, triazine-based polymers, molecularly imprinted polymers, covalent organic frameworks, metal-organic frameworks, and their derivatives. These materials have been applied to extract different types of pollutants, including metal ions, polycyclic aromatic hydrocarbons, plasticizers, alkanes, phenols, chlorophenols, chlorobenzenes, polybrominated diphenyl ethers, perfluorosulfonic acids, perfluorocarboxylic acids, estrogens, drug residues, and pesticide residues, from environmental samples (such as water and soil samples). These sample preparation materials possess high surface areas, numerous adsorption sites, and allow extraction via various mechanisms, such as π-π, electrostatic, hydrophobic, and hydrophilic interactions, as well as hydrogen and halogen bond formation. Various sample pretreatment techniques based on these extraction materials have been combined with various detection methods, including chromatography, mass spectrometry, atomic absorption spectroscopy, fluorescence spectroscopy, and ion mobility spectroscopy, and have been extensively used for the determination of environmental pollutants. The existing challenges associated with the development of sample preparation techniques are proposed, and prospects for such extraction materials in environmental analysis and monitoring are discussed. Major trends in the field, including the development of efficient extraction materials with high enrichment ability, good selectivity, excellent thermal stability, and chemical stability, are discussed. Green sample pretreatment materials, environmentally friendly synthesis methods, and green sample pretreatment methods are also explored. Rapid sample pretreatment methods that can be conducted within minutes or seconds are of significant interest. Further, online sample pretreatment and automatic analysis methods have attracted increasing attention. Besides, real-time analysis and in situ detection have been important development directions, and are expected to be widely applicable in environmental analysis, biological detection, and other fields. Modern synthesis technology should be introduced to synthesize specific extraction materials. Controllable preparation methods for extraction materials, such as the in situ growth or in situ preparation of extraction coatings, will acquire importance in coming years. It will also be important to adopt high-performance materials from other fields for sample pretreatment. Organic-inorganic hybrid extraction materials can combine the advantages both organic materials and inorganic materials, and mutually compensate for any disadvantages. Extraction materials doped with nanomaterials are also promising. Although existing sample pretreatment techniques are relatively efficient, it is still imperative to develop novel sample preparation methods.
Collapse
Affiliation(s)
- Juanjuan FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangping JI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunying LI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingxia SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Sen HAN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiaqing FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haili SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yang FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Min SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
14
|
Li T, Lu M, Gao Y, Huang X, Liu G, Xu D. Double layer MOFs M-ZIF-8@ZIF-67: The adsorption capacity and removal mechanism of fipronil and its metabolites from environmental water and cucumber samples. J Adv Res 2020; 24:159-166. [PMID: 32337089 PMCID: PMC7176987 DOI: 10.1016/j.jare.2020.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, a novel metal-organic framework (M-ZIF-8@ZIF-67) was successfully prepared using the single layer Fe3O4-ZIF-8 as magnetic core and wrapped a layer of ZIF-67 outer. This M-ZIF-8@ZIF-67 was employed as an adsorbent for the adsorption and removal of fipronil and its metabolites from environmental water and cucumber samples. The characterization results suggested that M-ZIF-8@ZIF-67 has the double layer structure a polyhedral structure with uniform pores, while ZIF-67 was successfully coated on the surface of Fe3O4-ZIF-8. The unique structure endowed M-ZIF-8@ZIF-67 a high surface area (219 m2/g) and high adsorption capacity for fipronil, fipronil desulfinyl, fipronil sulfide and fipronil sulfone. To our knowledge, this is the first report detailing the adsorption properties of M-ZIF-8@ZIF-67 with double layer structure relating to the adsorption and removal of pesticides. Furthermore, the adsorption model analysis demonstrated that the static adsorption data fitted the Freundlich bimolecular layer adsorption model better than the Langmuir monolayer adsorption model. This study indicates that M-ZIF-8@ZIF-67 has significant potential in the adsorption and removal of fipronil and its metabolites in water and vegetable samples.
Collapse
Affiliation(s)
- Tengfei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056000, China
| | - Meng Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056000, China
| | - Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| |
Collapse
|
15
|
|
16
|
Gao Y, Liu G, Gao M, Huang X, Xu D. Recent Advances and Applications of Magnetic Metal-Organic Frameworks in Adsorption and Enrichment Removal of Food and Environmental Pollutants. Crit Rev Anal Chem 2019; 50:472-484. [DOI: 10.1080/10408347.2019.1653166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| |
Collapse
|
17
|
Huang X, Liu Y, Liu H, Liu G, Xu X, Li L, Lv J, Liu Z, Zhou W, Xu D. Magnetic Solid-Phase Extraction of Dichlorodiphenyltrichloroethane and Its Metabolites from Environmental Water Samples Using Ionic Liquid Modified Magnetic Multiwalled Carbon Nanotube/Zeolitic Imidazolate Framework-8 as Sorbent. Molecules 2019; 24:E2758. [PMID: 31362458 PMCID: PMC6696061 DOI: 10.3390/molecules24152758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
As persistent organic pollutants, dichlorodiphenyltrichloroethanes (DDTs) and their metabolites pose considerable risks to human health and the environment. Therefore, monitoring DDTs in the environment is essential. Here, we developed a green, simple, and effective magnetic solid-phase extraction (MSPE) method coupled with gas chromatography tandem triple-quadrupole mass spectrometry to determine the DDT content of environmental water samples. A magnetic ionic liquid (IL) adsorbent was developed based on a modified magnetic multiwalled carbon nanotube/zeolitic imidazolate framework-8 (MM/ZIF-8/IL), synthesized by immobilizing the IL on the surface of MM/ZIF-8. We confirmed successful synthesis of MM/ZIF-8/IL by material characterization, and our results suggested that the MM/ZIF-8/IL had a high Brunauer-Emmett-Teller surface area (159.9 m2 g-1), good thermostability (<800 °C), and a high degree of superparamagnetism (52.9 emu g-1). Several experimental conditions affecting the MSPE efficiency were optimized. Under the best conditions, good detection linearity was achieved (0.5-500 µg L-1) with determination coefficients ranging from 0.9927 to 0.9971. The lower limits of detection (0.0016-0.0072 µg L-1) also had good precision, having an intraday relative standard deviation (RSD) ≤ 6.5% and an interday RSD ≤ 8.9%. Finally, we used the as-developed method to determine DDT levels in environmental water samples.
Collapse
Affiliation(s)
- Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Huifang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- School of Life Science and Food Engineering, Hebei Engineering University, Handan 056000, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jun Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhongxiao Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| |
Collapse
|
18
|
Abstract
Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention because of their unique electrical, optical, physical, chemical, and mechanical properties [...]
Collapse
|
19
|
Huang X, Qiao K, Li L, Liu G, Xu X, Lu R, Gao H, Xu D. Preparation of a magnetic graphene/polydopamine nanocomposite for magnetic dispersive solid-phase extraction of benzoylurea insecticides in environmental water samples. Sci Rep 2019; 9:8919. [PMID: 31222032 PMCID: PMC6586854 DOI: 10.1038/s41598-019-45186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
A magnetic graphene/polydopamine (MG/PDA) nanocomposite has been prepared and used as sorbent for magnetic dispersive solid-phase extraction (MDSPE) of four benzoylurea insecticides in environmental water samples. The obtained nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometry, powder X-ray diffraction, fourier transform infrared spectroscopy, surface area and porosity analysis and thermogravimetric analysis. To investigate the adsorption performance of MG/PDA for target analytes, various parameters affecting the MG/PDA-based MDSPE procedure were optimized. Under the optimal conditions, the established method exhibits good linearity (R2 ≥ 0.9988) in the concentration range 2.5-500 µg L-1. A low limit of detection (0.75 µg L-1, signal/noise = 3:1), a low limit of quantification (2.50 µg L-1, signal/noise = 10:1), and good precision (intraday relative standard deviation ≤3.6%, interday relative standard deviation ≤4.5%) are also achieved. Finally, the simple, fast, and sensitive sample preparation technique was successfully used to determine benzoylurea insecticides in environmental water samples.
Collapse
Affiliation(s)
- Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Kexin Qiao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| |
Collapse
|
20
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Recent Applications of Magnetic Solid-phase Extraction for Sample Preparation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03721-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Abstract
Sunflower stalks could be an alternative raw material for use in the particleboard industry since the requirements of P1 general purpose boards for use in dry conditions and P2 boards for interior fitment for use in dry conditions are easily satisfied. Acetylation of sunflower stalks is found to greatly improve the thickness swelling (TS) value, with acetylated boards showing 19.7% weight gain, meeting the TS requirements of P3 Non-Load-Bearing—Humid and P4 Load Bearing—Dry criteria; however, acetylation adversely affects the internal bond strength (IBS). It is suggested that combinations of industrial wood chips with sunflower raw material may be used for the overall improvement performance of the particleboards.
Collapse
|