1
|
Feng Q, Zhang S, Lin J, Yang J, Zhang Y, Shen Q, Zhong F, Hou D, Zhou S. Valorization of barley (Hordeum vulgare L.) brans from the sustainable perspective: A comprehensive review of bioactive compounds and health benefits with emphasis on their potential applications. Food Chem 2024; 460:140772. [PMID: 39121780 DOI: 10.1016/j.foodchem.2024.140772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Barley is an important source of sustainable diets for humans, while its brans is commonly disposed as wastes. The recycling of barley brans has become a key for facilitating the valorization of barley as a whole to achieve its sustainable development. This review summarized the value of barley brans as an excellent source of multiple functional components (phenolic compounds, β-glucan, and arabinoxylan), which conferred extensive health benefits to barley brans mainly including antioxidant, anti-obesity and lipid-lowering, anti-diabetic, and hepatoprotective properties. The utilization of barley brans reflected a great potential for sustainable development. Exploiting of food products and edible films containing barley brans or their bioactive compounds and non-food applications (preparation of bioactive substances, laccase enzymes, and biosorbents) have been attempted for supporting the zero-waste concept and circular economy. Considering their diverse applications, effective extraction techniques of bioactive compounds from barley brans and their safety are the priority of future research.
Collapse
Affiliation(s)
- Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Siqi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinquan Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaqi Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhong Zhang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Food Science and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing 100083, China
| | - Fang Zhong
- School of Food Science and Technology, Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Chen X, Zhu L, Zhang H, Wu G, Cheng L, Zhang Y. Unraveling cereal physical barriers composed of cell walls and protein matrix: Insights from structural changes and starch digestion. Int J Biol Macromol 2024; 279:135513. [PMID: 39260655 DOI: 10.1016/j.ijbiomac.2024.135513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Physical barriers composed of cell walls and protein matrix in cereals, as well as their cooking changes, play important roles in starch digestion. In this study, the physical barriers of native and cooked highland barley (HB), brown rice (BR), and oats (OA) kernels and their contribution to starch digestion were investigated. The resistant starch content was similar in cereal flours, but varied among cooked kernels (HB > BR > OA: 45.05 %, 10.30 %, and 24.71 %). The water adsorption, gelatinization enthalpy, and decrease in hardness of HB kernels were lower than those of OA and BR kernels. Microstructural observations of native kernels showed that HB had the thickest cell walls. After cooking, the lowest cell wall deformation and a dense continuous network developed from the protein matrix were observed in HB kernels. During digestion, undigested starch granules encapsulated by the stable cell walls and strong protein network were observed in HB kernels, but not in BR or OA kernels. Furthermore, the heavily milled HB kernels still had more resistant starch than the intact OA and BR kernels. Therefore, the physical barriers of HB kernels exhibited stronger inhibition of starch gelatinization and digestion. Differences in cereal physical barriers led to various inhibitory effects.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
3
|
Chen X, Zhu L, Zhang H, Wu G, Cheng L, Zhang Y. A review of endogenous non-starch components in cereal matrix: spatial distribution and mechanisms for inhibiting starch digestion. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38920118 DOI: 10.1080/10408398.2024.2370487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
4
|
Qin M, Ren X, Zhang M, Chen Z, Shen J. Molecular mechanism of microRNA-mediated hypoglycemic effect of whole grain highland barley. Gene 2024; 895:148021. [PMID: 38007158 DOI: 10.1016/j.gene.2023.148021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
As a non-coding RNA, microRNA (miRNA) has been proven to play an important role in the development and progression of type 2 diabetes mellitus (T2DM). Highland barley is a whole grain from the Tibetan areas of China. Our previous studies have demonstrated its hypoglycemic effect. To further explore the underlining molecular mechanism, we investigated the effect of highland barley intervention on liver miRNA expression profiles in diabetic mice. Our results showed that ten differentially expressed miRNA among different groups were identified and their target genes were predicted. Remarkably, many glycometabolism-associated genes, including Foxo3, Nras, Rptor, Igf1r, Tsc2 and Braf, were negatively regulated by miR-122-5p, miR-503-5p, miR-455-5p and miR-210-3p, respectively. Pathway enrichment analysis revealed these target genes were mainly involved in AMPK, MAPK and FOXO signaling pathways. Thereby, these miRNA and mRNA were validated using qRT-PCR, and the results were consistent with the small RNA-seq and expectations. Highland barley could regulate the MAPK, AMPK, and FOXO signaling pathways by regulating critical miRNA-mRNA pairs, e.x. miR-210-3p-Tsc2/Braf, miR-122-5p-Foxo3, and miR-455-5p-Igf1r, thereby improving blood glucose metabolism in diabetic mice. The present study preliminarily explored the hypoglycaemic effects of highland barley based on transcriptomics, and more detailed and in-depth studies on this topic are needed in the future.
Collapse
Affiliation(s)
- Mengyuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Grain Industry Highland Barley Deep Processing Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Grain Industry Highland Barley Deep Processing Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Grain Industry Highland Barley Deep Processing Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Shen
- Ningjin County Market Supervision Administration, Dezhou, Shandong 253400, China
| |
Collapse
|
5
|
Morales D. Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals (Basel) 2023; 16:460. [PMID: 36986559 PMCID: PMC10051131 DOI: 10.3390/ph16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Food and agro-industrial by-products provoke a great environmental and economic impact that must be minimized by adding value to these wastes within the framework of circular economy. The relevance of β-glucans obtained from natural sources (cereals, mushrooms, yeasts, algae, etc.), in terms of their interesting biological activities (hypocholesterolemic, hypoglycemic, immune-modulatory, antioxidant, etc.), has been validated by many scientific publications. Since most of these by-products contain high levels of these polysaccharides or can serve as a substrate of β-glucan-producing species, this work reviewed the scientific literature, searching for studies that utilized food and agro-industrial wastes to obtain β-glucan fractions, attending to the applied procedures for extraction and/or purification, the characterization of the glucans and the tested biological activities. Although the results related to β-glucan production or extraction using wastes are promising, it can be concluded that further research on the glucans' characterization, and particularly on the biological activities in vitro and in vivo (apart from antioxidant capacity), is required to reach the final goal of formulating novel nutraceuticals based on these molecules and these raw materials.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; or
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Chen H, Guo Z, Wang Z, Yang B, Chen X, Wen L, Yang Q, Kan J. Structural and physicochemical properties of the different ultrasound frequency modified Qingke protein. ULTRASONICS SONOCHEMISTRY 2023; 94:106338. [PMID: 36827902 PMCID: PMC9982045 DOI: 10.1016/j.ultsonch.2023.106338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
There is a burgeoning demand for modified plant-based proteins with desirable physicochemical and functional properties. The cereal Qingke is a promising alternative protein source, but its use has been limited by its imperfect functional characteristics. To investigate the effect of ultrasound treatment on Qingke protein, we applied single- (40 kHz), dual- (28/40 kHz), and tri- (28/40/50 kHz) frequency ultrasound on the isolated protein and measured subsequent physicochemical and structural changes. The results showed that the physicochemical properties of proteins were modified following ultrasound treatment, and many of these changes significantly increased with increasing frequency. Compared with the native Qingke protein (control), the solubility, foaming activity, stability, and water or oil holding capacity of tri-frequency ultrasound modified Qingke protein increased by 43.54%, 20.83%, 20.51%, 28.9%, and 45.2%, respectively. Furthermore, ultrasound treatment altered the secondary and tertiary structures of the protein resulting in more exposed chromophoric groups and inner hydrophobic groups, as well as reduced β-sheets and increasedrandom coils, relative to the control. Rheological and texture characterization indicated that the values of G' and G'', hardness, gumminess, and chewiness decreased after ultrasound treatment. This study could provide a theoretical basis for the application of multi-frequency ultrasonic technology for modification of Qingke protein to expand its potential use as an alternative protein source.
Collapse
Affiliation(s)
- Huijing Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Zehang Guo
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Bing Yang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei Province 071001, PR China
| | - Xuhui Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Leyan Wen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Qingqing Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Li A, Guo Z, Wang Z, Yang Q, Wen L, Xiang X, Kan J. Effect of multiple-frequency ultrasound-assisted transglutaminase dual modification on the structural, functional characteristics and application of Qingke protein. ULTRASONICS SONOCHEMISTRY 2023; 94:106317. [PMID: 36738695 PMCID: PMC9932472 DOI: 10.1016/j.ultsonch.2023.106317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Qingke protein rich in restricted amino acids such as lysine, while the uncoordination of ratio of glutenin and gliadin in Qingke protein has a negative impact on its processing properties. In this study, the effect of multiple-frequency ultrasound combined with transglutaminase treatment on the functional and structural properties of Qingke protein and its application in noodle manufacture were investigated. The results showed that compared with the control, ultrasound-assisted transglutaminase dual modification significantly increased the water and oil holding capacity, apparent viscosity, foaming ability, and emulsifying activity index of Qingke protein, which exhibited a higher storage modulus G' (P < 0.05). Meanwhile, ultrasound combined with transglutaminase treatment enhanced the cross-linking degree of Qingke protein (P < 0.05), as shown by decreased free amino group and free sulfhydryl group contents, and increased disulfide bond content. Moreover, after the ultrasound-assisted transglutaminase dual modification treatment, the fluorescence intensity, the contents of α-helix and random coil in the secondary structure of Qingke protein significantly decreased, while the β-sheet content increased (P < 0.05) compared with control. SDS-PAGE results showed that the bands of Qingke protein treated by ultrasound combined with transglutaminase became unclear. Furthermore, the quality of Qingke noodles made with Qingke powder (140 g/kg dual modified Qingke protein mixed with 860 g/kg extracted Qingke starch) and wheat gluten 60-70 g/kg was similar to that of wheat noodles. In summary, multiple-frequency ultrasound combined with transglutaminase dual modification can significantly improve the physicochemical properties of Qingke protein and the modified Qingke proteins can be used as novel ingredients for Qingke noodles.
Collapse
Affiliation(s)
- Aijun Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Zehang Guo
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Qingqing Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Leyan Wen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xuwen Xiang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Chen X, Zhang H, Zhu L, Wu G, Cheng L, Li J. Effects of structural barriers on digestive properties of highland barley as compared with unpolished rice and oats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Characterization of synbiotic films based on carboxymethyl cellulose/β-glucan and development of a shelf life prediction model. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Dang B, Zhang WG, Zhang J, Yang XJ, Xu HD. Evaluation of Nutritional Components, Phenolic Composition, and Antioxidant Capacity of Highland Barley with Different Grain Colors on the Qinghai Tibet Plateau. Foods 2022; 11:foods11142025. [PMID: 35885267 PMCID: PMC9322942 DOI: 10.3390/foods11142025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
The nutritional composition, polyphenol and anthocyanin composition, and antioxidant capacity of 52 colored highland barley were evaluated. The results showed that the protein content of highland barley in the black group was the highest, the total starch and fat contents in the blue group were the highest, the amylose content in the purple group was quite high, the fiber content in the yellow group was quite high, and the β-glucan content of the dark highland barley (purple, blue and black) was quite high. The polyphenol content and its antioxidant capacity in the black group were the highest, while the anthocyanin content and its antioxidant capacity in the purple highland barley were the highest. Ten types of monomeric phenolic substances were the main contributors to DPPH, ABTS, and FRAP antioxidant capacity. All varieties could be divided into four categories according to nutrition or function. The grain color could not be used as an absolute index to evaluate the quality of highland barley, and the important influence of variety on the quality of highland barley also needed to be considered. In actual production, suitable raw materials must be selected according to the processing purpose and variety characteristics of highland barley.
Collapse
Affiliation(s)
- Bin Dang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining 810016, China; (W.-G.Z.); (J.Z.)
| | - Wen-Gang Zhang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining 810016, China; (W.-G.Z.); (J.Z.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Jie Zhang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining 810016, China; (W.-G.Z.); (J.Z.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Xi-Juan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining 810016, China; (W.-G.Z.); (J.Z.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Correspondence: (X.-J.Y.); (H.-D.X.); Tel.: +86-13519786535 (X.-J.Y.); +86-13772119216 (H.-D.X.)
| | - Huai-De Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
- Correspondence: (X.-J.Y.); (H.-D.X.); Tel.: +86-13519786535 (X.-J.Y.); +86-13772119216 (H.-D.X.)
| |
Collapse
|
11
|
Effect of Highland Barley on Rheological Properties, Textural Properties and Starch Digestibility of Chinese Steamed Bread. Foods 2022; 11:foods11081091. [PMID: 35454677 PMCID: PMC9025642 DOI: 10.3390/foods11081091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Highland barley has a different composition and structure to other crops. It has higher contents of total polyphenol (TPC), total flavonoid (TFC) and β-glucan, which can be supplemented to improve the nutrition of wheat-flour-based food. In this study, the flours of three different grain-colored highland barley varieties Beiqing 6 (BQ), Dulihuang (DLH), and Heilaoya (HLY), were added to Jimai60 (JM, a wheat variety with medium gluten) wheat flour at different substitution levels to investigate their effects on the unextractable polymeric protein (UPP) content, micro-structure, rheological properties and mixing properties of dough, and the color, texture, flavor, and in vitro digestion of Chinese steam bread (CSB). The results showed that the moderate substitution of highland barley (20%) increased the UPP%, optimized the micro-structure of gluten, and improved its rheological properties by increasing dough viscoelasticity. The CSBs made from the composite flours exhibited a similar specific volume, cohesiveness, springiness and resilience to wheat CSB, while the firmness of composite CSBs (particularly JM-HLY-20) was delayed during storage. Importantly, the addition of highland barley increased the contents of TPC, TFC and β-glucan, but decreased the in vitro starch digestibility of CSBs. A sensory evaluation showed that JM-HLY CSB was the most preferable. Taken together, highland barley can be used as a fine supplement to food products, with health-promoting properties.
Collapse
|
12
|
|
13
|
Li Y, You M, Liu H, Liu X. Comparison of distribution and physicochemical properties of β-glucan extracted from different fractions of highland barley grains. Int J Biol Macromol 2021; 189:91-99. [PMID: 34418418 DOI: 10.1016/j.ijbiomac.2021.08.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022]
Abstract
Highland barley grains were roller-milled to produce five different fractions (B-1, B-2, B-3, B-4, and B-5). The distribution and physicochemical properties of β-glucans from five roller-milled fractions were investigated. The B-4 fraction contained the highest concentration of β-glucan (4.40%), and the outermost bran (B-1) had the lowest β-glucan content (1.01%). Besides, β-glucans from inner core B-5 (BG-5) had higher Mw (6.482 × 105 g/mol), whereas β-glucans from outer bran B-1 (BG-1) showed lower Mw (5.859 × 104 g/mol) than those from other fractions. Accordingly, the viscosity of BG-5 was highest (0.038-0.365 Pa·s), and the water solubility index of BG-1 was highest (50.43-90.71%). BG-5 showed stronger foam stability and emulsifying properties but weaker foaming capability, while BG-1 exhibited stronger foaming capability. The foaming capability and emulsifying properties of β-glucan samples were better under the neutral condition (pH = 7). The foam capabilities of all β-glucan samples displayed higher values at 65 °C, and emulsifying properties exhibited higher values at 45 °C. This study is expected to promote the application of highland barley β-glucans in food industry.
Collapse
Affiliation(s)
- Yao Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Maolan You
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Haibo Liu
- College of Food Science, Southwest University, Chongqing 400715, China; College of Food, XinYang Agriculture and Forestry University, XinYang 464000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Highland barley starch (Qingke): Structures, properties, modifications, and applications. Int J Biol Macromol 2021; 185:725-738. [PMID: 34224757 DOI: 10.1016/j.ijbiomac.2021.06.204] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023]
Abstract
Highland barley (HB) is mainly composed of starch, which may account for up to 65% of the dry weight to the kernel. HB possesses unique physical and chemical properties and has good industrial application potential. It has also been identified as a minor grain crop with excellent nutritional and health functions. Highland barley starch (HBS) features a number of structural and functional properties that render it a useful material for numerous food and non-food applications. This review summarizes the current status of research on the extraction processes, chemical composition, molecular fine structures, granular morphology, physicochemical properties, digestibility, chemical and physical modifications, and potential uses of HBS. The findings provide a comprehensive reference for further research on HBS and its applications in various food and non-food industries.
Collapse
|
15
|
Liu H, Li Y, You M, Liu X. Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. Int J Biol Macromol 2021; 182:1192-1199. [PMID: 33989685 DOI: 10.1016/j.ijbiomac.2021.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
In this study, four extraction methods, including ultrasonic extraction (UE), hot water extraction (HWE), microwave extraction (ME), and microwave-assisted ultrasonic extraction (MUE) were utilized to extract β-glucan from hull-less barley bran. Extraction yields and physicochemical properties of β-glucans extracted by different methods were investigated. The MUE displayed a highest extraction yield (2.16%) within shorter extraction time. Besides, β-glucans extracted by MUE (MUE-G) had higher number-average molecular weight (Mn) (3.415 × 105), whereas β-glucans extracted by UE (UE-G) showed lower Mn (2.257 × 105) as compared to other methods. Accordingly, apparent viscosity of MUE-G was highest, while water solubility index of UE-G was highest (34.18-88.81%) at tested temperature ranges (25-95 °C). The MUE-G shower stronger foam stability and emulsifying properties and weaker foaming capability, while UE-G exhibited stronger foaming capability. The foaming capability and emulsifying properties of β-glucan products were better in neutral solutions (pH = 7) than in the acidic (pH = 4) and alkaline (pH = 9).
Collapse
Affiliation(s)
- Haibo Liu
- College of Food Science, Southwest University, Chongqing 400715, China; College of Food, XinYang Agriculture and Forestry University, XinYang 464000, China
| | - Yao Li
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Maolan You
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Obadi M, Sun J, Xu B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res Int 2021; 140:110065. [DOI: 10.1016/j.foodres.2020.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
|
17
|
Purification, Preliminary Structural Characterization, and In Vitro Inhibitory Effect on Digestive Enzymes by β-Glucan from Qingke (Tibetan Hulless Barley). ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/2709536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background and Objective. Qingke (Tibetan hulless barley, Hordeum vulgare L.) contains a high content of β-glucan among all the cereal varieties. Although β-glucan has multiple physiological functions, the physiological function of qingke β-glucan was few studied. In this study, the β-glucan was isolated, purified, determined the structural characterization, and measured the inhibitory activity to enzymes correlating blood sugar and lipid. Methods. β-Glucan was isolated from enzymatic aqueous extract of qingke by using deproteinization, decolorization, DEAE-52 column chromatography, and sepharose CL-4B agarose gel column chromatography. The structure of the β-glucan was determined using FT-IR and 13C-NMR spectra analysis, and molecular mass by use of HPSEC-dRI-LS. The kinematic viscosity was measured. The inhibitory effects of this β-glucan on four enzymes were investigated. Results. This β-glucan had a uniform molecular weight of 201,000 Da with β-(1⟶4) as the main chain and β-(1⟶3) as a side chain. The β-glucan presented a relatively strong inhibitory activity on α-glucosidase, moderate inhibition on invertase, and a weak inhibition on α-amylase, whereas it did not inhibit lipase. Conclusion. The study indicates that the enzymatic β-glucan from qingke has the potential as natural auxiliary hypoglycemic additives in functional medicine or foods.
Collapse
|
18
|
Li L, Zhang W, Peng J, Xue B, Liu Z, Luo Z, Lu D, Zhao X. A Novel Shell Material-Highland Barley Starch for Microencapsulation of Cinnamon Essential Oil with Different Preparation Methods. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1192. [PMID: 32155895 PMCID: PMC7085060 DOI: 10.3390/ma13051192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 01/17/2023]
Abstract
Highland barley starch (HBS), as a carbohydrate shell material with excellent performance in microcapsule applications, has rarely been reported. In the present study, three different microcapsules (CEO-SWSM, CEO-PM, and CEO-UM) were synthesized successfully via saturated aqueous solution method, molecular inclusion method and ultrasonic method, respectively, using HBS as shell material coupled with cinnamon essential oil (CEO) as the core material. The potential of HBS as a new shell material and the influence of synthetic methods on the performance of microcapsules, encapsulation efficiency (EE), yield, and release rate of CEO-SWSM, CEO-PM, and CEO-UM were determined, respectively. The results confirmed that CEO-PM had the most excellent EE (88.2%), yield (79.1%), as well as lowest release rate (11.5%, after 25 days of storage). Moreover, different kinetic models were applied to fit the release process of these three kinds of microcapsules: CEO-SWSM, CEO-PM, and CEO-UM had the uppermost R-squared value in the Higuchi model, the zero-order model, and the first-level model, respectively. Over all, this work put forward a novel perspective for the improved encapsulation effect of perishable core materials (e.g., essential oil) for the food industry.
Collapse
Affiliation(s)
- Liang Li
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Wenhui Zhang
- Institute of Agriculture Products Development and Food Science Research, Tibet Academy of Agriculture and Animal Science, Lhasa 850032, China;
| | - Jian Peng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China;
| | - Bei Xue
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Zhendong Liu
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Zhang Luo
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Deze Lu
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Xiaorui Zhao
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| |
Collapse
|
19
|
Chiffon Cakes Made Using Wheat Flour With/Without Substitution by Highland Barley Powder or Mung Bean Flour: Correlations Among Ingredient Heat Absorption Enthalpy, Batter Rheology, and Cake Porosity. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02290-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|