1
|
Guo F, Luo S, Wang L, Wang M, Wu F, Wang Y, Jiao Y, Du Y, Yang Q, Yang X, Yang G. Protein corona, influence on drug delivery system and its improvement strategy: A review. Int J Biol Macromol 2024; 256:128513. [PMID: 38040159 DOI: 10.1016/j.ijbiomac.2023.128513] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Nano drug delivery systems offer several benefits, including enhancing drug solubility, regulating drug release, prolonging drug circulation time, and minimized toxicity and side effects. However, upon entering the bloodstream, nanoparticles (NPs) encounter a complex biological environment and get absorbed by various biological components, primarily proteins, leading to the formation of a 'Protein Corona'. The formation of the protein corona is affected by the characteristics of NPs, the physiological environment, and experimental design, which in turn affects of the immunotoxicity, specific recognition, cell uptake, and drug release of NPs. To improve the abundance of a specific protein on NPs, researchers have explored pre-coating, modifying, or wrapping NPs with the cell membrane to reduce protein adsorption. This paper, we have reviewed studies of the protein corona in recent years, summarized the formation and detection methods of the protein corona, the effect of the protein corona composition on the fate of NPs, and the design of new drug delivery systems based on the optimization of protein corona to provide a reference for further study of the protein corona and a theoretical basis for the clinical transformation of NPs.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fang Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujia Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunlong Jiao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Yang
- Zhejiang Provincial People's Hospital, Hangzhou 314408, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Epanchintseva AV, Poletaeva JE, Bakhno IA, Belov VV, Grigor’eva AE, Baranova SV, Ryabchikova EI, Dovydenko IS. Fixation and Visualization of Full Protein Corona on Lipid Surface of Composite Nanoconstruction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3094. [PMID: 38132992 PMCID: PMC10745710 DOI: 10.3390/nano13243094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Spontaneous sorption of proteins on the nanoparticles' surface leads to the fact that nanoparticles in biological media are always enveloped by a layer of proteins-the protein corona. Corona proteins affect the properties of nanoparticles and their behavior in a biological environment. In this regard, knowledge about the composition of the corona is a necessary element for the development of nanomedicine. Because proteins have different sorption efficacy, isolating particles with a full corona and characterizing the full corona is challenging. In this study, we propose a photo-activated cross-linker for full protein corona fixation. We believe that the application of our proposed approach will make it possible to capture and visualize the full corona on nanoparticles coated with a lipid shell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena I. Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.V.E.); (J.E.P.); (I.A.B.); (V.V.B.); (A.E.G.); (S.V.B.)
| | - Ilya S. Dovydenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.V.E.); (J.E.P.); (I.A.B.); (V.V.B.); (A.E.G.); (S.V.B.)
| |
Collapse
|
3
|
“Soft Protein Corona” as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction. Int J Mol Sci 2022; 23:ijms23168985. [PMID: 36012248 PMCID: PMC9409063 DOI: 10.3390/ijms23168985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The study of the interactions between nanoparticles (NPs) and proteins has had a pivotal role in facilitating the understanding of biological effects and safe application of NPs after exposure to the physiological environment. Herein, for the first time, the interaction between L-methionine capped silver nanoparticles (AgMet), and bovine serum albumin (BSA) is investigated in order to predict the fate of AgMet after its contact with the most abundant blood transport protein. The detailed insights into the mechanism of interaction were achieved using different physicochemical techniques. The UV/Vis, TEM, and DLS were used for the characterization of the newly formed “entity”, while the kinetic and thermodynamic parameters were utilized to describe the adsorption process. Additionally, the fluorescence quenching and synchronous fluorescence studies enabled the prediction of the binding affinity and gave us insight into the influence of the adsorption on the conformation state of the BSA. According to the best of our knowledge, for the first time, we show that BSA can be used as an external stabilizer agent which is able to induce the peptization of previously agglomerated AgMet. We believe that the obtained results could contribute to further improvement of AgNPs’ performances as well as to the understanding of their in vivo behavior, which could contribute to their potential use in preclinical research studies.
Collapse
|
4
|
Song D, Xu Q. Engineering a Nano/Biointerface for Cell and Organ-Selective Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9092-9098. [PMID: 35852946 DOI: 10.1021/acs.langmuir.2c01609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The field of nanomedicine has rapidly grown in the past decades. Although a few nanomedicines are available in the market for clinical use, it is still challenging to develop nanomedicine targeting tissues beyond the liver. It has been recognized that even though the nanoparticles are modified with targeting ligands, the formation of a protein corona on the surface of nanoparticles in the biological fluids results in limited progress in nanoparticle-based drug delivery to specific cells or tissues. In this Perspective, we will discuss the role of surface properties in determining the formation of the protein corona and summarize the recent progress in engineering the nano/bio interface for protein-corona-mediated cell- and organ-selective drug delivery. Moreover, current challenges in the field and insights into designing new strategies for targeting drug delivery with a better understanding of the protein corona will be discussed.
Collapse
Affiliation(s)
- Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Characterization of protein corona formation on nanoparticles via the analysis of dynamic interfacial properties: Bovine serum albumin - silica particle interaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Latreille PL, Le Goas M, Salimi S, Robert J, De Crescenzo G, Boffito DC, Martinez VA, Hildgen P, Banquy X. Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS NANO 2022; 16:1689-1707. [PMID: 35138808 DOI: 10.1021/acsnano.1c05901] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP-protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement (in situ or ex situ) do not impact the results, unlike commonly assumed. Regarding the binding reversibility, the experimental design (either dilution or competition experiments) is also shown to be a key factor, probably due to nontrivial protein binding mechanisms, which could explain the paradoxical phenomena reported in the literature. Overall, we suggest that to truly predict and control the protein corona, future efforts should be directed toward the mechanistic aspects of protein adsorption.
Collapse
Affiliation(s)
- Pierre-Luc Latreille
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Marine Le Goas
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Sina Salimi
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jordan Robert
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Daria C Boffito
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Vincent A Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, U.K
| | - Patrice Hildgen
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
7
|
Tomak A, Cesmeli S, Hanoglu BD, Winkler D, Oksel Karakus C. Nanoparticle-protein corona complex: understanding multiple interactions between environmental factors, corona formation, and biological activity. Nanotoxicology 2022; 15:1331-1357. [PMID: 35061957 DOI: 10.1080/17435390.2022.2025467] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The surfaces of pristine nanoparticles become rapidly coated by proteins in biological fluids, forming the so-called protein corona. The corona modifies key physicochemical characteristics of nanoparticle surfaces that modulate its biological and pharmacokinetic activity, biodistribution, and safety. In the two decades since the protein corona was identified, the importance of nanoparticles surface properties in regulating biological responses have been recognized. However, there is still a lack of clarity about the relationships between physiological conditions and corona composition over time, and how this controls biological activities/interactions. Here we review recent progress in characterizing the structure and composition of protein corona as a function of biological fluid and time. We summarize the influence of nanoparticle characteristics on protein corona composition and discuss the relevance of protein corona to the biological activity and fate of nanoparticles. The aim is to provide a critical summary of the key factors that affect protein corona formation (e.g. characteristics of nanoparticles and biological environment) and how the corona modulates biological activity, cellular uptake, biodistribution, and drug delivery. In addition to a discussion on the importance of the characterization of protein corona adsorbed on nanoparticle surfaces under conditions that mimic relevant physiological environment, we discuss the unresolved technical issues related to the characterization of nanoparticle-protein corona complexes during their journey in the body. Lastly, the paper offers a perspective on how the existing nanomaterial toxicity data obtained from in vitro studies should be reconsidered in the light of the presence of a protein corona, and how recent advances in fields, such as proteomics and machine learning can be integrated into the quantitative analysis of protein corona components.
Collapse
Affiliation(s)
- Aysel Tomak
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Selin Cesmeli
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Bercem D Hanoglu
- Vocational School of Health Services, Ardahan University, Ardahan, Turkey
| | - David Winkler
- School of Biochemistry & Genetics, La Trobe University, Bundoora, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
8
|
Dar AI, Abidi SMS, Randhawa S, Joshi R, Kumar R, Acharya A. Protein-Cloaked Nanoparticles for Enhanced Cellular Association and Controlled Pathophysiology via Immunosurveillance Escape. ACS APPLIED MATERIALS & INTERFACES 2022; 14:337-349. [PMID: 34969244 DOI: 10.1021/acsami.1c20719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Weak interactions play an important role in soft corona (SC) formation and thus help in evaluating the biological fate of the nanoparticles (NPs). Preadsorption of specific proteins on the NP surface, leading to SC formation, has been found to help NPs in evading immunosurveillance. However, the role of different preadsorbed biomolecules in determining the NP pathophysiology and cellular association, upon their re-exposure to in vivo conditions, still remains elusive. Here, differently charged gold NPs were precoated with two different blood components, viz. red blood cells and human serum albumin protein, and these were then re-exposed to human serum. Cloaking NPs with protein improved the NP colloidal stability and other physico-chemical properties along with increased cellular association. Detailed proteomic analysis suggested that protein-camouflaged NPs showed a decrease in immune-responsive proteins compared to their bare counterparts. Further, it was also observed that the secondary protein signature on the NP surface was governed by primary protein coating; however, the event was more or less NP charge-independent. This study will pave the path for future strategies to make NPs invincible to the immunosurveillance system of the body.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19:159. [PMID: 34051806 PMCID: PMC8164776 DOI: 10.1186/s12951-021-00896-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.
Collapse
Affiliation(s)
- Ehsan Kianfar
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
10
|
Hataminia F, Ghanbari H. Predicting the effect of phototherapy method on breast cancer cells by mathematical modeling: UV-IR non-ionization radiation with gold nanoparticles. Nanotoxicology 2020; 14:1127-1136. [PMID: 33063591 DOI: 10.1080/17435390.2020.1814441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phototherapy is a minimally invasive oncological treatment strategy in which photon energy is delivered to the tumor tissue. Gold nanoparticles (GNPs) can enhance photothermal or photodynamic phenomena when excited by a wavelength beam in the range of UV-IR. GNPs are used in phototherapy for cancer cell treatment by controlling the physical and chemical conditions. Given the growing application of GNPs for the treatment of breast cancer, predicting the behavior of cancer cells during exposure to GNPs is of prime importance. However, the prediction might be far from reality due to the inherent complexities associated with the conditions of the treatment methods and the mechanisms involved in cell toxicity. This study provides general information by collecting data on the cytotoxicity of GNPs along with this process. Data mining was performed using a mathematical modeling method called SA-LOOCV-GRBF. In this study, eight parameters including particle size, zeta potential, concentration of GNPs in the cell culture medium, incubation time, light exposure time, maximum wavelength absorbance (MAW) of GNPs, irradiation beam wavelength (IW) and light source power density (PD) were measured. In this modeling, these parameters were considered as model inputs, and the cell viability of breast cancer cells after treatment was treated as the model output. As a result, the physical and chemical properties of GNPs as well as their application conditions wield influence on cytotoxicity. The results help select the desired condition for these nanoparticles in the phototherapy of breast cancer cells.
Collapse
Affiliation(s)
- Fatemeh Hataminia
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ovais M, Nethi SK, Ullah S, Ahmad I, Mukherjee S, Chen C. Recent advances in the analysis of nanoparticle-protein coronas. Nanomedicine (Lond) 2020; 15:1037-1061. [DOI: 10.2217/nnm-2019-0381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In spite of radical advances in nanobiotechnology, the clinical translation of nanoparticle (NP)-based agents is still a major challenge due to various physiological factors that influence their interactions with biological systems. Recent decade witnessed meticulous investigation on protein corona (PC) that is the first surrounds NPs once administered into the body. Formation of PC around NP surface exhibits resilient effects on their circulation, distribution, therapeutic activity, toxicity and other factors. Although enormous literature is available on the role of PC in altering pharmacokinetics and pharmacodynamics of NPs, understanding on its analytical characterization methods still remains shallow. Therefore, the current review summarizes the impact of PC on biological fate of NPs and stressing on analytical methods employed for studying the NP-PC.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Susheel Kumar Nethi
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Saleem Ullah
- Department of Environmental Science & Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
12
|
Adewale OB, Davids H, Cairncross L, Roux S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int J Toxicol 2019; 38:357-384. [PMID: 31462100 DOI: 10.1177/1091581819863130] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Potential applications of gold nanoparticles in biomedicine have increasingly been reported on account of the ease of synthesis, bioinert characteristics, optical properties, chemical stability, high biocompatibility, and specificity. The safety of these particles remains a great concern, as there are differences among toxicity study protocols used. This article focuses on integrating results of research on the toxicological behavior of gold nanoparticles. This can be influenced by the physicochemical properties, including size, shape, surface charge, and other factors, such as methods used in the synthesis of gold nanoparticles, models used, dose, in vivo route of administration, and interference of gold nanoparticles with in vitro toxicity assay systems. Several researchers have reported toxicological studies with regard to gold nanoparticles, using various in vitro, in vivo, and in ovo models. The conflicting results concerning the toxicity of gold nanoparticles should thus be addressed to justify the safe use of gold nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Olusola B Adewale
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa.,Department of Chemical Sciences, Biochemistry program, Afe Babalola University, Ado Ekiti, Nigeria
| | - Hajierah Davids
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Lynn Cairncross
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
13
|
Musa M, Ayoko GA, Ward A, Rösch C, Brown RJ, Rainey TJ. Factors Affecting Microalgae Production for Biofuels and the Potentials of Chemometric Methods in Assessing and Optimizing Productivity. Cells 2019; 8:E851. [PMID: 31394865 PMCID: PMC6721732 DOI: 10.3390/cells8080851] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
Microalgae are swift replicating photosynthetic microorganisms with several applications for food, chemicals, medicine and fuel. Microalgae have been identified to be suitable for biofuels production, due to their high lipid contents. Microalgae-based biofuels have the potential to meet the increasing energy demands and reduce greenhouse gas (GHG) emissions. However, the present state of technology does not economically support sustainable large-scale production. The biofuel production process comprises the upstream and downstream processing phases, with several uncertainties involved. This review examines the various production and processing stages, and considers the use of chemometric methods in identifying and understanding relationships from measured study parameters via statistical methods, across microalgae production stages. This approach enables collection of relevant information for system performance assessment. The principal benefit of such analysis is the identification of the key contributing factors, useful for decision makers to improve system design, operation and process economics. Chemometrics proffers options for time saving in data analysis, as well as efficient process optimization, which could be relevant for the continuous growth of the microalgae industry.
Collapse
Affiliation(s)
- Mutah Musa
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| | - Godwin A Ayoko
- Environmental Technologies Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia
| | - Andrew Ward
- Queensland Urban Utilities (QUU), Innovation Centre, Main Beach Road Myrtletown QLD 4008, Australia
- Advanced Water Management Centre (AWMC), University of Queensland (UQ), St Lucia, Brisbane, Queensland 4072, Australia
| | - Christine Rösch
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Richard J Brown
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia
| | - Thomas J Rainey
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| |
Collapse
|