1
|
Arellano K, Lim J, Bucheli JEV, Park H, Todorov SD, Holzapfel WH. Identification of safe putative probiotics from various food products. Folia Microbiol (Praha) 2024; 69:1053-1068. [PMID: 38376735 DOI: 10.1007/s12223-024-01142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The objective of this study was to isolate, identify, and assess the safety and functionality in vitro of putative probiotic bacterial strains. Isolation procedures were based on standard methods using elective and selective media. The isolates were identified by comparative 16S rRNA sequencing analysis while their safety was determined according to the safety tests recommended by the FAO/WHO such as antibiotic resistance, hemolysin, and biogenic amine production. Most of the isolates did not pass the in vitro safety tests; therefore, only Lactiplantibacillus plantarum (from ant intestine and cheese), Lacticaseibacillus paracasei (from goat milk and kimchi), Enterococcus faecium (from chili doenjang and vegetables with kimchi ingredients), Limosilactobacillus fermentum (from saliva), and Companilactobacillus alimentarius (from kimchi) were identified and selected for further studies. The isolates were further differentiated by rep-PCR and identified to the strain level by genotypic (16S rRNA) and phenotypic (Gen III) approaches. Subsequently, the strain tolerance to acid and bile was evaluated resulting in good viability after simulated gastrointestinal tract passage. Adhesion to mucin in vitro and the presence of mub, mapA, and ef-tu genes confirmed the adhesive potential of the strains and the results of features associated with adhesion such as hydrophobicity and zeta potential extended the insights. This study reflects the importance of fermented and non-fermented food products as a promising source of lactic acid bacteria with potential probiotic properties. Additionally, it aims to highlight the challenges associated with the selection of safe strains, which often fail in the in vitro tests, thus hindering the possibilities of "uncovering" novel and safe probiotic strains.
Collapse
Affiliation(s)
- Karina Arellano
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein, Schwanenweg 20, 24105 Kiel, Germany
| | - Juwhan Lim
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Jorge Enrique Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Haryung Park
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Food Research Center (FoRC), Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal.
| | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea.
| |
Collapse
|
2
|
Obisesan AO, Abiodun OO, Ayeni FA. Lactic acid bacteria isolated from women' breast milk and infants' faeces have appreciable immunogenic and probiotic potentials against diarrheagenic E. coli strains. BMC Microbiol 2024; 24:350. [PMID: 39289612 PMCID: PMC11406810 DOI: 10.1186/s12866-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Diarrheal diseases remain the leading cause of high mortality among the infants, particularly in the developing countries; Probiotic intervention for diarrhea has been an ongoing novel approach to diarrheal prevention and treatment. This study aims to characterize immunogenic and probiotic properties of lactic acid bacteria (LAB) isolated from human breast milk and neonates' faeces. The LAB isolates from 16 mothers' breast milk and 13 infants' faeces were screened and identified by 16 S rRNA gene partial sequencing. Their antimicrobial activities against 5 strains of diarrheagenic Escherichia coli were tested. Organic acids production was quantified by HPLC, and antibiotic resistance pattern were determined by VITEK®. Autoaggregation, co-aggregation and hydrophobicity properties were assessed by UV spectrophotometry and immunomodulatory effect was determined in mouse model. Ninety-three LAB of five genera were identified. The most abundant species was Lactiplantibacillus plantarum with inhibition zones ranged from 8.0 to 25.0 ± 1 mm. Lacticaseibacillus rhamnosus A012 had 76.8 mg/mL lactic acid, (the highest concentration), was susceptible to all antibiotics tested. L. plantarum A011 and L. rhamnosus A012 were highly resistance to gastrointestinal conditions. L. rhamnosus A012 produced hydrophobicity of 25.01% (n-hexadecane), 15.4% (xylene) and its autoaggregation was 32.52%. L. rhamnosus A012 and L. plantarum A011 exert immunomodulatory effects on the cyclophosphamide-treated mice by upregulating anti-inflammatory cytokine and downregulating proinflammatory cytokines. Lactobacillus sp. demonstrated good probiotic and immunomodulatory properties. Further works are ongoing on the practical use of the strains.
Collapse
Affiliation(s)
- Abiola O Obisesan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Nigeria
| | - Oyindamola O Abiodun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Funmilola A Ayeni
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA.
| |
Collapse
|
3
|
Lugo-Zarate L, Delgado-Olivares L, Cruz-Cansino NDS, González-Olivares LG, Castrejón-Jiménez NS, Estrada-Luna D, Jiménez-Osorio AS. Blackberry Juice Fermented with Two Consortia of Lactic Acid Bacteria and Isolated Whey: Physicochemical and Antioxidant Properties during Storage. Int J Mol Sci 2024; 25:8882. [PMID: 39201566 PMCID: PMC11354321 DOI: 10.3390/ijms25168882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Fermenting fruit juices with lactic acid bacteria (LAB) is a sustainable method to enhance fruit harvests and extend shelf life. This study focused on blackberries, rich in antioxidants with proven health benefits. In this research, we examined the effects of fermentation (48 h at 37 °C) at 28 days on whey-supplemented (WH, 1:1) blackberry juice (BJ) inoculated with two LAB mixtures. Consortium 1 (BJWH/C1) included Levilactobacillus brevis, Lactiplantibacillus plantarum, and Pediococcus acidilactici, while consortium 2 (BJWH/C2) comprised Lacticaseibacillus casei and Lacticaseibacillus rhamnosus. All of the strains were previously isolated from aguamiel, pulque, and fermented milk. Throughout fermentation and storage, several parameters were evaluated, including pH, lactic acid production, viscosity, stability, reducing sugars, color, total phenolic content, anthocyanins, and antioxidant capacity. Both consortia showed a significant increase in LAB count (29-38%) after 16 h. Sample BJWH/C2 demonstrated the best kinetic characteristics, with high regression coefficients (R2 = 0.97), indicating a strong relationship between lactic acid, pH, and fermentation/storage time. Despite some fluctuations during storage, the minimum LAB count remained at 9.8 log CFU/mL, and lactic acid content increased by 95%, with good storage stability. Notably, sample BJWH/C2 increased the total phenolic content during storage. These findings suggest that adding whey enhances biomass and preserves physicochemical properties during storage.
Collapse
Affiliation(s)
- Liliana Lugo-Zarate
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan Tilcuautla s/n. Ex Hacienda La Concepción, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (L.L.-Z.); (D.E.-L.)
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan Tilcuautla s/n. Ex Hacienda La Concepción, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (L.D.-O.); (N.d.S.C.-C.)
| | - Luis Delgado-Olivares
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan Tilcuautla s/n. Ex Hacienda La Concepción, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (L.D.-O.); (N.d.S.C.-C.)
| | - Nelly del Socorro Cruz-Cansino
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan Tilcuautla s/n. Ex Hacienda La Concepción, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (L.D.-O.); (N.d.S.C.-C.)
| | - Luis Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico;
| | - Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Ex Hacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Hidalgo, Mexico;
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan Tilcuautla s/n. Ex Hacienda La Concepción, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (L.L.-Z.); (D.E.-L.)
| | - Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan Tilcuautla s/n. Ex Hacienda La Concepción, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (L.L.-Z.); (D.E.-L.)
| |
Collapse
|
4
|
Giles-Gómez M, Morales Huerta X, Pastelin-Palacios R, López-Macías C, Flores Montesinos MS, Astudillo-Melgar F, Escalante A. Analysis of the Probiotic Potential of Lactiplantibacillus plantarum LB1_P46 Isolated from the Mexican Fermented Pulque Beverage: A Functional and Genomic Analysis. Microorganisms 2024; 12:1652. [PMID: 39203494 PMCID: PMC11356911 DOI: 10.3390/microorganisms12081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The traditional Mexican fermented beverage pulque has been considered a healthy product for treating gastrointestinal disorders. Lactic acid bacteria (LAB) have been identified as one of the most abundant microbial groups during pulque fermentation. As traditional pulque is consumed directly from the fermentation vessel, the naturally associated LABs are ingested, reaching the consumer's small intestine alive, suggesting their potential probiotic capability. In this contribution, we assayed the probiotic potential of the strain of Lactiplantibacillus plantarum LB1_P46 isolated from pulque produced in Huitzilac, Morelos State, Mexico. The characterization included resistance to acid pH (3.5) and exposure to bile salts at 37 °C; the assay of the hemolytic activity and antibiotic resistance profiling; the functional traits of cholesterol reduction and β-galactosidase activity; and several cell surface properties, indicating that this LAB possesses probiotic properties comparable to other LAB. Additionally, this L. plantarum showed significance in in vitro antimicrobial activity against several Gram-negative and Gram-positive bacteria and in vivo preventive anti-infective capability against Salmonella in a BALB/c mouse model. Several functional traits and probiotic activities assayed were correlated with the corresponding enzymes encoded in the complete genome of the strain. The genome mining for bacteriocins led to the identification of several bacteriocins and a ribosomally synthesized and post-translationally modified peptide encoding for the plantaricin EF. Results indicated that L. plantarum LB1_P46 is a promising probiotic LAB for preparing functional non-dairy and dairy beverages.
Collapse
Affiliation(s)
- Martha Giles-Gómez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.G.-G.); (X.M.H.)
| | - Ximena Morales Huerta
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.G.-G.); (X.M.H.)
| | - Rodolfo Pastelin-Palacios
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.G.-G.); (X.M.H.)
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Mayrene Sarai Flores Montesinos
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (M.S.F.M.)
| | - Fernando Astudillo-Melgar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (M.S.F.M.)
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (M.S.F.M.)
| |
Collapse
|
5
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
6
|
Onur M, Önlü H. Isolation, characterization of Weissella confusa and Lactococcus lactis from different milk sources and determination of probiotic features. Braz J Microbiol 2024; 55:663-679. [PMID: 38158467 PMCID: PMC10920558 DOI: 10.1007/s42770-023-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
This study aimed to investigate the probiotic properties of Lactic Acid Bacteria (LAB) isolates derived from various milk sources. These isolates identified based on their morphological characteristics and 16S rRNA gene sequencing. Four strains of Lactococcus lactis and two strains of Weissella confusa were identified with over 96% 16S rRNA gene similarity according to the NCBI-BLAST results. The survival of the isolates was determined in low pH, pepsin, bile salts, and pancreatin, and their adhesion ability was assessed by in vitro cell adhesion assay, hydrophobicity, auto- and co-aggregation, and safety criteria were determined by hemolytic, gelatinase activities, and DNAse production ability tests. The results showed that the LAB isolates had different levels of resistance to various stress factors. L. lactis subsp. cremoris MH31 showed the highest resistance to bile salt, while the highest pH resistance was observed in L. lactis MH31 at pH 3.0. All the isolates survived in pepsin exposure at pH 3.0 for 3 h. The auto-aggregation test results showed that all strains exhibited auto-aggregation ranging from 84.9 to 91.4%. Co-aggregation percentage ranged from 19 - 54% and 17 - 57% against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. The hydrophobicity capacity of the LAB isolated ranged from 35-61%. These isolates showed different adhesion abilities to Caco-2 cells (81.5% to 92.6%). None of the isolates exhibited DNase, gelatinase and hemolytic activity (γ-hemolysis). All results indicate that these LAB strains have the potential to be used as probiotics.
Collapse
Affiliation(s)
- Melda Onur
- Ministry of Agriculture and Forestry, Istanbul, Türkiye
| | - Harun Önlü
- Department of Food Processing, Vocational School of Technical Sciences, Muş Alparslan University, Muş, Türkiye.
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Türkiye.
| |
Collapse
|
7
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
8
|
Zhao M, Liu K, Zhang Y, Li Y, Zhou N, Li G. Probiotic characteristics and whole-genome sequence analysis of Pediococcus acidilactici isolated from the feces of adult beagles. Front Microbiol 2023; 14:1179953. [PMID: 37256049 PMCID: PMC10225567 DOI: 10.3389/fmicb.2023.1179953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The beneficial effects of lactic acid bacteria are well known and recognized as functional foods that are health benefits for companion animals. This study, for the first time, reports the probiotic properties, safety, and whole-genome sequence of Pediococcus acidilactici GLP06 isolated from feces of beagles. In this study, candidate probiotic bacteria P. acidilactici GLP02 and GLP06 were morphologically characterized and tested for their antimicrobial capacity, tolerance to different conditions (low pH, bile salts, an artificial gastrointestinal model, and high temperature), antibiotic sensitivity, hemolytic activity, cell surface hydrophobicity, autoaggregation activity, and adhesion to Caco-2 cells. P. acidilactici GLP06 showed better probiotic potential. Therefore, P. acidilactici GLP06 was evaluated for in vivo safety in mice and whole-genome sequencing. The results showed, that the supplemented MG06 group (1010 cfu/mL), GLP06 was not only nontoxic to mice, but also promoted the development of the immune system, improved resistance to oxidative stress, and increased the diversity of intestinal microorganisms and the abundance of Lactobacillus. Whole-genome sequencing showed that P. acidilactici GLP06 was 2,014,515 bp and contained 1,976 coding sequences, accounting for 86.12% of the genome, with no drug resistance genes and eight CRISPR sequences. In conclusion, the newly isolated canine-derived P. acidilactici GLP06 had good probiotic potential, was nontoxic to mice and promoted the development of immune organs, improved the biodiversity of the intestinal flora, and had no risk of drug-resistant gene transfer, indicating that P. acidilactici GLP06 can be used as a potential probiotic for the prevention and treatment of gastrointestinal diseases in companion animals.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhou
- Shandong Chongzhiyoupin Pet Food Co., Ltd., Weifang, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Benítez-Serrano JC, Hernández-Castro R, Martínez-Pérez L, Palomares-Resendiz G, Díaz-Aparicio E, Suárez-Güemes F, Arellano-Reynoso B. Effect of the Lacticaseibacillus paracasei JLM Strain Against Brucella abortus Strains in Ripened Cheese. Foodborne Pathog Dis 2023; 20:169-176. [PMID: 37172300 DOI: 10.1089/fpd.2022.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
This study evaluated the antagonistic effect of the Lacticaseibacillus paracasei JLM strain isolated from aguamiel, against Brucella abortus RB51, S19, and 2308 strains, during the manufacture of soft-ripened cheese. First, the tolerance of Lc. paracasei JLM was tested with pH values and bile salt concentrations for 3 h to simulate digestive tract conditions. The antagonistic effect against B. abortus strains was evaluated through double-layer diffusion and agar well diffusion assays. In addition, the stability of the cell-free supernatant (CFS) was tested with the agar well diffusion method under different conditions of temperature, pH, and treatment with digestive enzymes. Finally, the antagonistic effect against B. abortus strains was observed during the manufacture of ripened cheese for 31 days at 4°C and 25°C using the Lc. paracasei JLM strain as starter culture. The results showed that the Lc. paracasei JLM strain remains viable after exposure to different pH values (from 3.00 to 7.00) and concentrations of bile salts (from 0.5% to 7%). Moreover, the results demonstrate that the growth of the three B. abortus strains was inhibited in both antagonism tests and that CFS maintained 86% activity after heat treatment at 100°C, 121°C, or enzymatic digestion (proteinase K, trypsin, chymotrypsin), but it was inactivated at pH levels above 6. Finally, Lc. paracasei JLM completely inhibited the growth of B. abortus in ripened cheese at 25°C from day 17 and showed greater inhibition on the B. abortus RB51 strain in the ripened cheese at 4°C, showing statistical differences for the B. abortus S19 and B. abortus 2308 strains. The current research concluded that the Lc. paracasei JLM strain has an antagonistic effect on B. abortus, enhancing the potential of its use in the future as a probiotic.
Collapse
Affiliation(s)
- Juan Carlos Benítez-Serrano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Ciudad de México, México
| | - Laura Martínez-Pérez
- Laboratorio de Microbiología Aplicada, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Gabriela Palomares-Resendiz
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Efrén Díaz-Aparicio
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Francisco Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
10
|
Zarali M, Sadeghi A, Jafari SM, Ebrahimi M, Sadeghi Mahoonak A. Enhanced viability and improved in situ antibacterial activity of the probiotic LAB microencapsulated layer-by-layer in alginate beads coated with nisin. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Ruíz-Ramírez Y, Guadarrama-Mendoza PC, Escalante A, Giles-Gómez M, Valadez-Blanco R. Probiotic activity traits in vitro and production of antimicrobial peptides by Lactobacillaceae isolates from pulque using Lactobacillus acidophilus NCFM as control. Braz J Microbiol 2022; 53:921-933. [PMID: 35094300 PMCID: PMC9151957 DOI: 10.1007/s42770-022-00684-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this work was to determine in vitro probiotic activity traits of 11 lactic acid bacteria (LAB) strains isolated from pulque obtained from three different locations in the Mexican states of Oaxaca and Puebla using the probiotic strain Lactobacillus acidophilus NCFM as a positive control, and to detect their production of antimicrobial peptides, including bacteriocins and peptidoglycan hydrolases (PGH). The LAB isolates were identified by sequencing of their 16S rRNA as belonging to four different genera of the Lactobacillaceae family: Lactiplantibacillus, Levilactobacillus, Lacticaseibacillus and Liquorilactobacillus, corresponding to the species plantarum, brevis, paracasei and ghanensis, respectively. Most of the strains showed resistance to high acidity (pH 2) and bile salts (0.5%), with survival rates up to 87 and 92%, respectively. In addition, most of the strains presented good antimicrobial activity against the foodborne pathogens Listeria monocytogenes, ECEC and Salmonella Typhi. The strain Liquorilactobacillus ghanensis RVG6, newly reported in pulque, presented an outstanding overall performance on the probiotic activity tests. In terms of their probiotic activity traits assessed in this work, the strains compared positively with the control L. acidophilus NCFM, which is a very-well documented probiotic strain. For the antimicrobial peptide studies, four strains presented bacteriocin-like mediated antibiosis and six had significant PGH activity, with two strains presenting outstanding overall antimicrobial peptide production: Lacticaseibacillus paracasei RVG3 and Levilactobacillus brevis UTMB2. The probiotic performance of the isolates was mainly dependent on strain specificity. The results obtained in this work can foster the revalorization of pulque as a functional natural product.
Collapse
Affiliation(s)
- Yesica Ruíz-Ramírez
- Instituto de Agroindustrias, Universidad Tecnológica de La Mixteca, Carretera a Acatlima km 2.5, 69000, Huajuapan de León, Oaxaca, México
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, 09340, Ciudad de México, México
| | - Paula Cecilia Guadarrama-Mendoza
- Instituto de Agroindustrias, Universidad Tecnológica de La Mixteca, Carretera a Acatlima km 2.5, 69000, Huajuapan de León, Oaxaca, México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, 62210, Cuernavaca, Morelos, México
| | - Martha Giles-Gómez
- Departamento de Biología, Facultad de Química, UNAM, Circuito Exterior S/N, Cd. Universitaria, 04510, Ciudad de México, México
| | - Rogelio Valadez-Blanco
- Instituto de Agroindustrias, Universidad Tecnológica de La Mixteca, Carretera a Acatlima km 2.5, 69000, Huajuapan de León, Oaxaca, México.
| |
Collapse
|
12
|
Bacteriocin-Producing Lactic Acid Bacteria Strains with Antimicrobial Activity Screened from Bamei Pig Feces. Foods 2022; 11:foods11050709. [PMID: 35267342 PMCID: PMC8909009 DOI: 10.3390/foods11050709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Lactic acid bacteria (LAB), which are characterized by producing various functional metabolites, including antioxidants, organic acids, and antimicrobial compounds, are widely used in the food industry to improve gut health and prevent the growth of spoilage microorganisms. With the continual incidence of foodborne disease and advocacy of consumers for gut health, LAB have been designated as vital biopreservative agents in recent years. Therefore, LAB with excellent antimicrobial properties and environmental tolerance should be explored further. In this study, we focus on screening the LAB strains from a specialty pig (Bamei pig) feces of the Tibetan plateau region and determine their antimicrobial properties and environmental tolerance to evaluate their potential probiotic values. A total of 116 LAB strains were isolated, from which the LAB strain Qinghai (QP)28-1 was identified as Lactiplantibacillus (L.) plantarum subsp. plantarum using 16S rDNA sequencing and recA amplification, showing the best growth capacity, acid production capacities, environmental tolerance, hydrophobicity, antibiotic susceptibility, and bacteriocin production capacity. Furthermore, this strain inhibited the growth of multiple pathogens by producing organic acids and bacteriocin. These bacteriocin-encoding genes were identified using PCR amplification, including plnS, plnN, and plnW. In conclusion, bacteriocin-producing L. plantarum subsp. plantarum QP28-1 stands out among these 116 LAB strains, and was considered to be a promising strain used for LAB-related food fermentation. Moreover, this study provides a convenient, comprehensive, and shareable profile for screening of superior functional and bacteriocin-producing LAB strains, which can be used in the food industry.
Collapse
|
13
|
Therapeutic Potential of Metabolites from Lactobacillus rhamnosus and Mare’s Milk in the Treatment of Dysbiosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3851478. [PMID: 35132375 PMCID: PMC8817857 DOI: 10.1155/2022/3851478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/08/2022] [Indexed: 12/02/2022]
Abstract
Ulcerative colitis is an inflammatory bowel disease that forms ulcerations in the mucous membrane of the colon and rectum, in which gut microbiota plays a pivotal role in its pathogenesis. Agents modulating microbial dysbiosis caused by colitis can help in the remission of this disease. The current study describes the potential therapeutic effects of active metabolites from Lactobacillus rhamnosus and mare's milk which have potential therapeutic values on the intestinal microbiota and proinflammatory cytokines. The analysis of the V1-V3 16S rDNA site revealed significant changes in the intestinal microbiome composition before and after treatment in the treated group compared to the positive control group that was treated with 5-aminosalicylic acid (5-ASA). So the effect of the study product on dextran sulfate sodium-induced dysbiosis was shown to be more potent than the positive control, 5-ASA. The level of proinflammatory cytokines also decreased under the influence of a biological product.
Collapse
|
14
|
Jampílek J, Kráľová K, Bella V. Probiotics and prebiotics in the prevention and management of human cancers (colon cancer, stomach cancer, breast cancer, and cervix cancer ). PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:187-212. [DOI: 10.1016/b978-0-12-823733-5.00009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Abstract
Exopolysaccharides (EPS) are biopolymers produced by many microorganisms, including some species of the genus Acetobacter, Bacillus, Fructobacillus, Leuconostoc, Lactobacillus, Lactiplantibacillus, Pediococcus, Pichia, Rhodotorula, Saccharomycodes, Schizosaccharomyces, and Sphingomonas, which have been reported in the microbiota of traditional fermented beverages. Dextran, levan, glucan, gellan, and cellulose, among others, are EPS produced by these genera. Extracellular biopolymers are responsible for contributing to specific characteristics to fermented products, such as modifying their organoleptic properties or contributing to biological activities. However, EPS can be easily found in the dairy industry, where they affect rheological properties in products such as yogurt or cheese, among others. Over the years, LAB has been recognized as good starter strains in spontaneous fermentation, as they can contribute beneficial properties to the final product in conjunction with yeasts. To the best our knowledge, several articles have reported that the EPS produced by LAB and yeasts possess many both biological and technological properties that can be influenced by many factors in which fermentation occurs. Therefore, this review presents traditional Mexican fermented beverages (tavern, tuba, sotol, and aguamiel) and relates them to the microbial EPS, which affect biological and techno-functional activities.
Collapse
|
16
|
Screening of potential probiotics with anti-Helicobacter pylori activity from infant feces through principal component analysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Pimentel TC, Gomes de Oliveira LI, de Lourdes Chaves Macedo E, Costa GN, Dias DR, Schwan RF, Magnani M. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Valdivieso Solís DG, Vargas Escamilla CA, Mondragón Contreras N, Galván Valle GA, Gilés-Gómez M, Bolívar F, Escalante A. Sustainable Production of Pulque and Maguey in Mexico: Current Situation and Perspectives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.678168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulque is a traditional Mexican fermented, non-distilled alcoholic beverage produced by fermenting the fresh sap (aguamiel) extracted from several Agave (maguey) species cultivated for pulque production (mainly A. salmiana). This beverage was produced and consumed since Pre-Hispanic times by Mesoamerican civilizations, mainly in the Mexican Central Plateau, and is one of the essential alcoholic beverages produced and consumed during several centuries in Mexico. By 2019, annual pulque production was reported in 171,482 billion liters. Nevertheless, traditional pulque production faces several significant limitations, including the disappearance of large agave plantations and the extent of time required (at least 5 years) to complete the plant maturation for aguamiel extraction; traditional production practices; and the lack of an efficient stabilization process of the fermented product resulting in low shelf life. In opposition, successful examples of sustainable cultivation of maguey species for aguamiel extraction and the fermentation process's industrialization resulted in high-quality pulque production, with international exportation certification. In this contribution, we present a review of the most relevant aspects of the history and commercial relevance of pulque, the causes that resulted in its production debacle during the first half of the twentieth century, the current situation of its traditional production, and the successful efforts of industrial production of the beverage. We describe recent results on the analysis of the physicochemical characteristics of aguamiel and on the microbiology of the beverage explored by metagenomic techniques that can be proposed as a baseline to redefine the quality criteria of the beverage and to define for the first time a microbiological core to optimize its production. We describe the relevance of maguey species for aguamiel production as a fundamental element of agroforestry and the relevance of its sustainable production, in four sustainable plantation models to maintain a stable plant population to ensure the continuous extraction of aguamiel and pulque production. Finally, we describe some successful examples of beverage industrialization and potential applications of several microorganisms isolated from aguamiel, pulque, aguamiel concentrates, and the maguey to produce high-value bioactive products.
Collapse
|
19
|
Probiotic Potential and Wide-spectrum Antimicrobial Activity of Lactic Acid Bacteria Isolated from Infant Feces. Probiotics Antimicrob Proteins 2021; 13:90-101. [PMID: 32405962 DOI: 10.1007/s12602-020-09658-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we aimed to characterize lactic acid bacteria strains derived from infants' feces, to evaluate the probiotic potential and explore the wide-spectrum antimicrobial activity. Of 800 isolates, 20 inhibited the growth of enterotoxigenic Escherichia coli K88 and Salmonella enterica ATCC 13076. On the basis of 16S rRNA sequence analysis, the 20 isolates were assigned to Lactobacillus casei (7), Lactobacillus paracasei (2), Lactobacillus plantarum (4), Lactobacillus rhamnosus (2), Enterococcus avium (3), Enterococcus faecium (1), and Enterococcus lactis (1) species. In addition, 12 strains with high antimicrobial activity were investigated for the presence of probiotic properties such as physiological-biochemical characteristics, antimicrobial susceptibility, hemolytic activity, hydrophobicity, and aggregation activity. Wide-spectrum antimicrobial activity analysis revealed that approximately all tested strains inhibited the ten pathogens, and four strains (ZX221, ZX633, ZX3131, and ZX3875) had good probiotic properties and survived after being exposed to simulated gastrointestinal tract conditions. Moreover, we investigated the influence of pH on the wide-spectrum antimicrobial activity and found that four strains inhibited most pathogens at pH 4.5 and pH 5, whereas only ZX633 had an inhibitory effect on Bacillus subtilis ATCC 6633 and Micrococcus luteus ATCC 4698 at pH 5.5. Overall, Lact. casei ZX633 had wide-spectrum antimicrobial activity and could be considered a potential probiotic.
Collapse
|
20
|
Song MW, Kim KT, Paik HD. Probiotics as a Functional Health Supplement in Infant Formulas for the Improvement of Intestinal Microflora and Immunity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Szutowska J, Gwiazdowska D. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch Microbiol 2020; 203:975-988. [PMID: 33104821 PMCID: PMC7965858 DOI: 10.1007/s00203-020-02095-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
The aim of the paper was to analyse changes in lactic acid bacteria (LAB) populations during spontaneous fermentation of green curly kale juice (Brasicca oleracea L. var. acephala L.) and to determine the probiotic potential of LAB isolates. The analyses revealed that changes in LAB populations were specific for spontaneously fermented vegetable juices. The initial microbiota, composed mostly of Leuconostoc mesenteroides bacteria, was gradually replaced by Lactobacillus species, mainly Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus coryniformis. Screening tests for the antimicrobial properties and antibiotic susceptibility of isolates allowed for the selection of 12 strains with desirable characteristics. L. plantarum isolates were characterized by the widest spectrum of antimicrobial interactions, both towards Gram-positive and Gram-negative bacteria. Also, L. plantarum strains exhibited the best growth abilities under low pH conditions, and at different NaCl and bile salt concentrations. All strains showed different levels of antibiotic sensitivity, although they were resistant to vancomycin and kanamycin. The present study has shown that bacterial isolates obtained from spontaneously fermented kale juice could constitute valuable probiotic starter cultures, which may be used in fermentation industry.
Collapse
Affiliation(s)
- Julia Szutowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland.
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland
| |
Collapse
|
22
|
Pérez-Armendáriz B, Cardoso-Ugarte GA. Traditional fermented beverages in Mexico: Biotechnological, nutritional, and functional approaches. Food Res Int 2020; 136:109307. [PMID: 32846517 DOI: 10.1016/j.foodres.2020.109307] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 05/08/2020] [Indexed: 02/01/2023]
Abstract
Preservation of food through fermentation is an ancient practice that, besides extending produce shelf-life, has represented a significant source of nutrients and health-promoting compounds in the human diet throughout history. Traditional fermented beverages are an essential element of the cultural and culinary heritage of many countries. In Mexico, several indigenous fermented beverages have been consumed since prehispanic times, and are still used for ceremonial purposes. The production of these beverages is generally from fruits, plants, maize, and maize dough, which are utilized as a substrate by microorganisms during spontaneous fermentation. This review compiles information from the most relevant studies concerning Mexican fermented beverages. These have generally focused on three principal aspects: (1) the identification and isolation of the endogenous microorganisms involved in the fermentation process, including the addition of specific molds, yeasts, and bacteria under controlled conditions aiming to standardize the fermentation process, (2) an exploration of the functionality of the microorganisms and the subproducts generated during their metabolic process, and (3) an analysis of the nutritional value of the fermented beverages. Hence, this review aims at contributing to the dissemination of biotechnological knowledge of Mexican fermented beverages, towards the identification and advancement of alternative research pathways.
Collapse
Affiliation(s)
- B Pérez-Armendáriz
- Universidad Popular Autónoma del Estado de Puebla, 21 Sur No. 1103, Barrio Santiago, 72410 Puebla, PUE, Mexico.
| | - G A Cardoso-Ugarte
- Universidad Popular Autónoma del Estado de Puebla, 21 Sur No. 1103, Barrio Santiago, 72410 Puebla, PUE, Mexico.
| |
Collapse
|
23
|
Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruíz HA, Loredo-Treviño A, Texeira JA, Belmares R. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Crit Rev Food Sci Nutr 2020; 61:2984-3006. [PMID: 32662286 DOI: 10.1080/10408398.2020.1791050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.
Collapse
Affiliation(s)
- R B Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Saltillo, Coahuila, Mexico
| | - Rosa M Rodriguez-Jasso
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Héctor A Ruíz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - J A Texeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
24
|
D. Álvarez-Ríos G, Figueredo-Urbina CJ, Casas A. Physical, Chemical, and Microbiological Characteristics of Pulque: Management of a Fermented Beverage in Michoacán, Mexico. Foods 2020; 9:E361. [PMID: 32244861 PMCID: PMC7143500 DOI: 10.3390/foods9030361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/29/2022] Open
Abstract
Pulque is a beverage that has been prepared in Mexico since pre-Hispanic times from the fermented sap of more than 30 species of wild and domesticated agaves. We conducted studies in two communities of the state of Michoacán, in central-western Mexico, where we documented its traditional preparation and analyzed the relationship between preparation conditions and the composition and dynamics of microbiological communities, as well as the physical and chemical characteristics of the beverage. In one of the communities, Santiago Undameo (SU), people boil the sap before inoculating it with pulque inoculum; this action causes this local pulque to be sweeter, less acidic, and poorer in bacteria and yeast diversity than in the other community, Tarimbaro (T), where the agave sap is not boiled and where the pulque has more diversity of microorganisms than in SU. Fermentation management, particularly boiling of the agave sap, influences the dynamics and diversity of microbial communities in the beverage.
Collapse
Affiliation(s)
- Gonzalo D. Álvarez-Ríos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, 58190 Michoacán, Mexico;
| | - Carmen Julia Figueredo-Urbina
- Cátedras CONACYT-Laboratorio de Genética, Área Académica de Biología Instituto de Ciencias Básicas e Ingeniería. Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, 78557 Hidalgo, Mexico;
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, 58190 Michoacán, Mexico;
| |
Collapse
|