1
|
Gokcimen SS, Ozen T, Demirtas I, Marah S, Gul F, Behcet L. Chemical profile, biological potential, molecular docking, molecular dynamics, and ADMET approaches of essential oils from extracted endemic Prangos aricakensis leaf and stem. Fitoterapia 2025; 181:106391. [PMID: 39826617 DOI: 10.1016/j.fitote.2025.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
This paper investigated essential oils (EOs) of the endemic Prangos aricakensis (PA) used as spice and aroma by the Turkish people. Using a Clevenger-type device, EOs were obtained for the first time by hydro-distillation from dried parts of PA (L:leaf, S:stem). The EOs of the PALEO and PASEO were analyzed by GC-MS/MS. The main components of both parts were limonene, bornyl acetate, cinnamic acid ethyl ester, and methyl trans-cinnamate. In this work, enzyme inhibition, antioxidant, antimicrobial, antifungal, and DNA protection activities were applied for PASEO and PALEO. The PALEO in DPPH• and PASEO in ABTS•+ scavenging activities were better than standard. In BChE inhibition activity, PALEO (6.69 ± 0.01 μg/mL) was more effective than galantamine (9.88 ± 2.42 μg/mL). It was active against pathogen bacteria and fungus, ranging between 32 and 128 μg/mL in terms of MIC, respectively. The results of molecular docking and ADMET of the four major components of EOs supported the effectiveness of the biological activity. Also, molecular dynamics (MD) simulations were performed for 100 ns, and MM-PBSA energies were calculated for the best-scored molecules in docking. In particular, radical scavenger, anti-BChE potential, and usability to develop different formulations against the disease were supported by in vitro, ADMET, and MD studies.
Collapse
Affiliation(s)
- Serbay Safak Gokcimen
- Faculty of Science, Department of Chemistry, Ondokuz Mayis University, 55200 Samsun, Türkiye
| | - Tevfik Ozen
- Faculty of Science, Department of Chemistry, Ondokuz Mayis University, 55200 Samsun, Türkiye.
| | - Ibrahim Demirtas
- Research Laboratories Application and Research Center, Igdir University, 76000 Igdir, Türkiye; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayis University, 55200 Samsun, Türkiye
| | - Sarmad Marah
- Faculty of Science, Department of Chemistry, Ondokuz Mayis University, 55200 Samsun, Türkiye
| | - Fatih Gul
- Research Laboratories Application and Research Center, Igdir University, 76000 Igdir, Türkiye
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000 Bingol, Türkiye
| |
Collapse
|
2
|
Onder A. Recent progress on Prangos (Apiaceae) species used in traditional herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118480. [PMID: 38909827 DOI: 10.1016/j.jep.2024.118480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants have been used for a long time in traditional medicine to treat many diseases. The genus Prangos belongs to the Apiaceae family and has various medicinal and aromatic species. Since ancient times, Prangos species have been employed extensively in traditional medicine for different purposes and are especially popular for their aphrodisiac effects. AIM OF THE REVIEW The goal of this paper is to represent a systematic review of the species in the genus Prangos, including their botanical characteristics, uses in traditional medicine, phytochemical constituents, the composition of the essential oils produced, and the biological properties. MATERIALS AND METHODS The articles regarding traditional uses and bioactivities of Prangos species were evaluated using electronic databases such as PubMed, Google Scholar, and ScienceDirect. Use of the World Flora Online (WFO) - The Plant List, The International Plant Names Index, the World Checklist of Vascular Plants (2024), and ChemDraw Professional helped complete this compilation. RESULTS Phytochemical investigations have indicated that coumarins are characteristic constituents of Prangos species, especially prenylated simple coumarins and furanocoumarins, and also flavonoids, terpenoids, and phytosterols occur in this genus. In addition, the essential oils of these plants have been examined. The biological properties of the Prangos species seem worthy of further investigation. Also, some information about the toxicity of these species and their use as ingredients in food products is presented. CONCLUSIONS This review highlights the evaluation of traditional knowledge, phytochemical profiles, biological activities, and potential uses of Prangos species as foods and spices. Many pharmacological activities have been performed related to their traditional uses, but frequently, the exact mechanism of action remains scientifically unproven. This review has compiled data on the phytochemistry, the active secondary metabolites, the biological properties, and recent advances in Prangos species.
Collapse
Affiliation(s)
- Alev Onder
- Ankara University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Tandogan-Ankara, Türkiye.
| |
Collapse
|
3
|
Peer LA, Bhat MY, Lone AA, Dar ZA, Mir BA. Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zea mays): pathways to resilient agriculture. PLANTA 2024; 260:81. [PMID: 39196449 DOI: 10.1007/s00425-024-04517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
MAIN CONCLUSION This review comprehensively elucidates maize drought tolerance mechanisms, vital for global food security. It highlights genetic networks, key genes, CRISPR-Cas applications, and physiological responses, guiding resilient variety development. Maize, a globally significant crop, confronts the pervasive challenge of drought stress, impacting its growth and yield significantly. Drought, an important abiotic stress, triggers a spectrum of alterations encompassing maize's morphological, biochemical, and physiological dimensions. Unraveling and understanding these mechanisms assumes paramount importance for ensuring global food security. Approaches like developing drought-tolerant varieties and harnessing genomic and molecular applications emerge as effective measures to mitigate the negative effects of drought. The multifaceted nature of drought tolerance in maize has been unfolded through complex genetic networks. Additionally, quantitative trait loci mapping and genome-wide association studies pinpoint key genes associated with drought tolerance, influencing morphophysiological traits and yield. Furthermore, transcription factors like ZmHsf28, ZmNAC20, and ZmNF-YA1 play pivotal roles in drought response through hormone signaling, stomatal regulation, and gene expression. Genes, such as ZmSAG39, ZmRAFS, and ZmBSK1, have been reported to be pivotal in enhancing drought tolerance through diverse mechanisms. Integration of CRISPR-Cas9 technology, targeting genes like gl2 and ZmHDT103, emerges as crucial for precise genetic enhancement, highlighting its role in safeguarding global food security amid pervasive drought challenges. Thus, decoding the genetic and molecular underpinnings of drought tolerance in maize sheds light on its resilience and paves the way for cultivating robust and climate-smart varieties, thus safeguarding global food security amid climate challenges. This comprehensive review covers quantitative trait loci mapping, genome-wide association studies, key genes and functions, CRISPR-Cas applications, transcription factors, physiological responses, signaling pathways, offering a nuanced understanding of intricate mechanisms involved in maize drought tolerance.
Collapse
Affiliation(s)
- Latif A Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mohd Y Bhat
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ajaz A Lone
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Zahoor A Dar
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Bilal A Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Srinagar, Jammu and Kashmir, 193201, India
| |
Collapse
|
4
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
5
|
Jabbar AA, Mothana RA, Ameen Abdulla M, Othman Abdullah F, Abdul-Aziz Ahmed K, Rizgar Hussen R, Hawwal MF, Fantoukh OI, Hasson S. Mechanisms of anti-ulcer actions of Prangos pabularia (L.) in ethanol-induced gastric ulcer in rats. Saudi Pharm J 2023; 31:101850. [PMID: 37965491 PMCID: PMC10641563 DOI: 10.1016/j.jsps.2023.101850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Peptic ulcer disease is the greatest digestive disorder that has increased incidence and recurrence rates across all nations. Prangos pabularia (L.) has been well documented as a folkloric medicinal herb utilized for multiple disease conditions including gastric ulcers. Hence, the target study was investigation the gastro-protection effects of root extracts of Prangos pabularia (REPP) on ethanol-mediated stomach injury in rats. Sprague Dawley rats were clustered in 5 cages: A and B, normal and ulcer control rats pre-ingested with 1 % carboxymethyl cellulose (CMC)); C, reference rats had 20 mg/kg omeprazole; D and E, rats pre-supplemented with 250 and 500 mg/kg of REPP, respectively. After one hour, group A was given orally 1 % CMC, and groups B-E were given 100 % ethanol. The ulcer area, gastric acidity, and gastric wall mucus of all stomachs were determined. The gastric tissue homogenates were examined for antioxidant and MDA contents. Moreover, the gastric tissues were analyzed by histopathological and immunohistochemically assays. Acute toxicity results showed lack of any toxic effects or histological changes in rats exposed to 2 and 5 g/kg of REPP ingestion. The ulcer controls had extensive gastric mucosal damage with lower gastric juice and a reduced gastric pH. REPP treatment caused a significant reduction of the ethanol-induced gastric lacerations represented by an upsurge in gastric mucus and gastric wall glycoproteins (increased PAS), a decrease in the gastric acidity, leukocyte infiltration, positively modulated Bax and HSP 70 proteins, consequently lowered ulcer areas. REPP supplementation positively modulated oxidative stress (increased SOD, CAT, PGE2, and reduced MDA) and inflammatory cytokines (decreased serum TNF-α, IL-6, and increased IL-10) levels. The outcomes could be scientific evidence to back-up the folkloric use of A. Judaica as a medicinal remedy for oxidative stress-related disorders (gastric ulcer).
Collapse
Affiliation(s)
- Ahmed A.J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rawaz Rizgar Hussen
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
6
|
Ullah O, Shah M, Rehman NU, Ullah S, Al-Sabahi JN, Alam T, Khan A, Khan NA, Rafiq N, Bilal S, Al-Harrasi A. Aroma Profile and Biological Effects of Ochradenus arabicus Essential Oils: A Comparative Study of Stem, Flowers, and Leaves. Molecules 2022; 27:molecules27165197. [PMID: 36014440 PMCID: PMC9414473 DOI: 10.3390/molecules27165197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022] Open
Abstract
The present analysis explores the chemical constituents and determines the in vitro antimicrobial, antidiabetic, and antioxidant significance of the essential oils (EOs) of the stem, leaves, and flowers of Ochradenus arabicus for the first time. The EOs of the flowers presented seventy-four constituents contributing to 81.46% of the total EOs, with the major compounds being 24-norursa-3,12-diene (13.06%), 24-norursa-3,12-dien-11-one (6.61%), and 24-noroleana-3,12-diene (6.25%). The stem EOs with sixty-one compounds contributed 95.95% of the total oil, whose main bioactive compounds were (+)-camphene (21.50%), eremophilene (5.87%), and δ-selinene (5.03%), while a minimum of fifty-one compounds in the leaves’ EOs (98.75%) were found, with the main constituents being n-hexadecanoic acid (12.32%), octacosane (8.62%), tetradecanoic acid (8.54%), and prehydro fersenyl acetone (7.27%). The antimicrobial activity of the EOs of O. arabicus stem, leaves, and flowers was assessed against two bacterial strains (Escherichia coli and Streptococcus aureus) and two fungal strains (Penicillium simplicissimum and Rhizoctonia solani) via the disc diffusion assay. However, the EOs extracted from the stem were found effective against one bacterial strain, E. coli, and one fungal strain, R. Solani, among the examined microbes in comparison to the standard and negative control. The tested EOs samples of the O. arabicus stem displayed a maximum potential to cure diabetes with an IC50 = 0.40 ± 0.10 µg/mL, followed by leaves and flowers with an IC50 = 0.71 ± 0.11 µg/mL and IC50 = 10.57 ± 0.18 µg/mL, respectively, as compared to the standard acarbose (IC50 = 377.26 ± 1.20 µg/mL). In addition, the EOs of O. arabicus flowers had the highest antioxidant activity (IC50 = 106.40 ± 0.19 µg/mL) as compared to the standard ascorbic acid (IC50 = 73.20 ± 0.17 µg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In the ABTS assay, the EOs of the same sample (flower) depicted the utmost potential to scavenge the free radicals with an IC50 = 178.0 ± 0.14 µg/mL as compared with the ascorbic acid, having an IC50 of 87.34 ± 0.10 µg/mL the using 2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic acid (ABTS) assay. The EOs of all parts of O. arabicus have useful bioactive components due to which they present antidiabetic and antioxidant significance. Furthermore, additional investigations are considered necessary to expose the responsible components of the examined biological capabilities, which would be effective in the production of innovative drugs.
Collapse
Affiliation(s)
- Obaid Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Chemistry, University of Malakand, Chakdara Dir Lower 18800, Pakistan
| | - Muddaser Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Jamal Nasser Al-Sabahi
- Central Instrumentation Laboratory, Medical Research Center, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| |
Collapse
|
7
|
Zengin G, Mahomoodally MF, Yıldıztugay E, Jugreet S, Khan SU, Dall’Acqua S, Mollica A, Bouyahya A, Montesano D. Chemical Composition, Biological Activities and In Silico Analysis of Essential Oils of Three Endemic Prangos Species from Turkey. Molecules 2022; 27:1676. [PMID: 35268777 PMCID: PMC8911840 DOI: 10.3390/molecules27051676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, the essential oils (EOs) obtained from three endemic Prangos species from Turkey (P. heyniae, P. meliocarpoides var. meliocarpoides, and P. uechtritzii) were studied for their chemical composition and biological activities. β-Bisabolenal (12.2%) and caryophyllene oxide (7.9%) were the principal components of P. heyniae EO, while P. meliocarpoides EO contained sabinene (16.7%) and p-cymene (13.2%), and P. uechtritzii EO contained p-cymene (24.6%) and caryophyllene oxide (19.6%), as the most abundant components. With regard to their antioxidant activity, all the EOs were found to possess free radical scavenging potential demonstrated in both DPPH and ABTS assays (0.43-1.74 mg TE/g and 24.18-92.99 mg TE/g, respectively). Additionally, while no inhibitory activity was displayed by P. meliocarpoides and P. uechtritzii EOs against both cholinesterases (acetyl- and butyryl-cholinesterases). Moreover, all the EOs were found to act as inhibitors of tyrosinase (46.34-69.56 mg KAE/g). Molecular docking revealed elemol and α-bisabolol to have the most effective binding affinity with tyrosinase and amylase. Altogether, this study unveiled some interesting biological activities of these EOs, especially as natural antioxidants and tyrosinase inhibitors and hence offers stimulating prospects of them in the development of anti-hyperpigmentation topical formulations.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (M.F.M.); (S.J.)
| | - Evren Yıldıztugay
- Deparment of Biotechnology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (M.F.M.); (S.J.)
| | - Shafi Ullah Khan
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan;
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
8
|
Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F, Taheri Y, Docea AO, Calina D, Cho WC. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6492346. [PMID: 34531939 PMCID: PMC8440074 DOI: 10.1155/2021/6492346] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Pía López-Jornet
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Eduardo Pons-Fuster Lopez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Nidaa Harun
- Lahore College for Women University, Lahore, Pakistan
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty 050040, Kazakhstan
| | - Ahmet Beyatli
- University of Health Sciences, Department of Medicinal and Aromatic Plants, Istanbul 34668, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | | | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe 734063, Tajikistan
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
9
|
The Ursolic Acid-Rich Extract of Dracocephalum heterophyllum Benth. with Potent Antidiabetic and Cytotoxic Activities. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pentacyclic triterpenoids are one of the main functional components in Dracocephalum heterophyllum. In this study the optimal process, the fairly simple and accessible extraction and purification of triterpenoids of D. heterophyllum, was developed by a remaceration method. Remaceration is characterized by minimal loss of biologically active compounds on diffusion, which contributes to the largest depletion of raw materials. The triterpenoid yield was 2.4% under optimal conditions which was enhanced to 98.03% after purification. The triterpenoid profiles and their anticancer and antidiabetic activities were further analyzed. GC-MS analysis of triterpenoidal extract of D. heterophyllum resulted ursolic acid (71.9%) and oleanolic acid (18.1%) as the major components. Additionally, total purified triterpenoid contents of D. heterophyllum and its main components were shown to possess significant cytotoxic activity against three human breast cancer cell lines (SK-Br-3, T47D, and MCF-7). The purification of triterpenoids influenced their biological activity. The antidiabetic effect, as measured by inhibition of protein-tyrosine phosphatase (PTP-1B), of the purified fraction of triterpenoids of D. heterophyllum increased by five-fold against the enzyme. The results provide important guidance for the industrial application of D. heterophyllum confirming the prospect of developing plant extracts into effective drugs and health foods for human applications.
Collapse
|