1
|
Liu R, Tao Y. Occurrence, bioaccumulation, and partitioning of phthalate acid esters in the third largest freshwater lake (Lake Taihu) in China. ENVIRONMENTAL RESEARCH 2024; 263:120188. [PMID: 39427943 DOI: 10.1016/j.envres.2024.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Phthalate acid esters (PAEs) are a category of plasticizers that are ubiquitous in freshwater environments attributable to extensive utilization. We collected water, suspended particulate matter (SPM), surface sediments, phytoplankton, and zooplankton from 23 sampling sites to investigate and complement the occurrence, bioaccumulation, and partitioning of five PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), and di (2-ethylhexyl) phthalate (DEHP) in the third largest freshwater lake (Lake Taihu) of China. PAEs were extracted using Soxhlet extraction and solid phase extraction, and determined by gas chromatography-mass spectrometry. The average concentrations of the five PAEs in the water column, SPM, sediments, phytoplankton, and zooplankton of Lake Taihu were 1.93 ± 1.57 μg L-1, 765 ± 766 μg g-1, 1.68 ± 1.47 μg g-1, 1358 ± 1877 μg g-1, and 72.7 ± 134 μg g-1, respectively. DBP and DEHP were the dominant PAE congeners in the five environment compartments. The logarithmic concentrations of DBP, BBP, and DEHP in the SPM were negatively correlated with the logarithmic content of the SPM. Biodilution significantly impacted the occurrence of PAEs in the plankton. Bioaccumulation of PAEs was found in the plankton with log BCF (bioconcentration factor) in the phytoplankton ranging from 1.78 ± 0.86 to 4.13 ± 1.23 and log BAF (bioaccumulation factor) in the zooplankton varying from -0.10 ± 0.26 to 3.04 ± 0.64. Biomagnification of the PAEs from phytoplankton to zooplankton was not observed. DMP, DEP, and BBP migrated from sediments to water. DBP was in dynamic equilibrium in the sediment-water system. DEHP transferred from water to sediments. Our results provide crucial complementary knowledge on bioaccumulation and transfer of PAEs in planktonic food web, and their partitioning in different compartments of waters.
Collapse
Affiliation(s)
- Ruiling Liu
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
2
|
Gambardella C, Miroglio R, Prieto Amador M, Castelli F, Castellano L, Piazza V, Faimali M, Garaventa F. High concentrations of phthalates affect the early development of the sea urchin Paracentrotus lividus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116473. [PMID: 38781890 DOI: 10.1016/j.ecoenv.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact. Environmental concentrations never affected development, while high concentrations induced toxic effects in larvae exposed to BBP (EC50: 2.9 ×103 µg/L) and DEHP (EC50: 3.72 ×103 µg/L). High concentrations caused skeletal anomalies, with a slight to moderate impact for DEP/DEHP and BBP, respectively. PAE toxicity was: BBP>DEHP>DEP. In conclusion, the three PAEs at environmental concentrations do not pose a risk to sea urchins. However, PAE concentrations should be further monitored in order not to constitute a concern to marine species, especially at their early developmental stages.
Collapse
Affiliation(s)
- Chiara Gambardella
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy.
| | - Roberta Miroglio
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | | | | | - Laura Castellano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, Genoa 16128, Italy
| | | | - Marco Faimali
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Francesca Garaventa
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| |
Collapse
|
3
|
Devi T, Saleh NM, Kamarudin NHN, Roslan NJ, Jalil R, Hamid HA. Efficient adsorption of organic pollutants phthalates and bisphenol A (BPA) utilizing magnetite functionalized covalent organic frameworks (MCOFs): A promising future material for industrial applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115706. [PMID: 37992639 DOI: 10.1016/j.ecoenv.2023.115706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The utilization of phthalates and bisphenol A (BPA) as the major component in plastic and its derivative industry has raised concerns among the public due to the harmful effects caused by these organic pollutants. These pollutants are found to exhibit unique physicochemical properties that allow the pollutants to have prolonged existence in the environment, thus causing damage to the environment. Since phthalates and bisphenol A are used in a variety of industrial applications, the industry must recover these compounds from its water before releasing the pollutants into the environment. As a result, these materials have a promising future in industrial applications. Therefore, the discovery of new quick and reliable abatement technologies is important to ensure that these organic pollutants can be detected and removed from the water sources. This review highlights the use of the adsorption method to remove phthalates and BPA from water sources by employing novel modified adsorbent magnetite functionalized covalent organic frameworks (MCOFs). MCOFs is a new class of porous materials that have demonstrated promising features in a variety of applications due to their adaptable structures, significant surface areas, configurable porosity, and customizable chemistry. The structural attributes, functional design strategies, and specialized for environmental applications before offering some closing thoughts and suggestions for further research were discussed in this paper in addition to developing an innovative solution for the industry to the accessibility for clean water.
Collapse
Affiliation(s)
- Tanusha Devi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Noorashikin Md Saleh
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
| | - Nur Hidayatul Nazirah Kamarudin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Nursyafiqah Jori Roslan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Rafidah Jalil
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Husna Abdul Hamid
- Unison Nutraceuticals Sdn. Bhd., No.13, Jln. TU 52, Tasek Utama Industrial Estate, Ayer Keroh, 75450 Melaka, Malaysia
| |
Collapse
|
4
|
Songue Same O, Nobosse P, Ngolong Ngea GL, Piveteau C, Lemdani M, Kamga R, Deprez B. Migration study of phthalates from non-food plastic containers used in food preservation. Heliyon 2023; 9:e20002. [PMID: 37809712 PMCID: PMC10559742 DOI: 10.1016/j.heliyon.2023.e20002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Phthalate acid esters (PAE) are used as additives in the formulation of plastics, to increase their flexibility and transparency. They can migrate from plastic packaging to food, then cause endocrine disruption in consumers. This migration depends on the conditions of use defined for each plastic. Non-food plastics are likely to release more PAE than food-grade plastics. In Cameroon, non-food grade plastics such as old paint buckets are used by people to preserve liquid food. The present work aimed at studying the conditions and mechanism of migration of total PAE from paint buckets to pap. For this purpose, the effects of seven factors were determined through Plackett-Burman experimental design. The interactions of the most influential factors were determined through a full factorial design. The conditions of the migration of total PAE were obtained via face-centered composite design. Then experimental results of migration kinetics were modelled according to equations of pseudo-first order, pseudo-second order and intra-particle diffusion. The results revealed that the most influential factors were pH, temperature and contact time. The effects of these factors are non-linear, and their interactions have to be considered. When pap is preserved in paint buckets according to the conditions: temperature of pap >70 °C, pH of pap ≤4 or ≥10 and contact time > 2 h, as is the case in donut shops in Cameroon, the amount of total PAE released is greater than 50 μg/L. Migration of total PAE from paint buckets to pap is best described by the pseudo-second order model.
Collapse
Affiliation(s)
- Olivier Songue Same
- Centre Pasteur du Cameroun, Physicochemical Section of Hygiene and Environment Department, PO Box 1274, Yaounde, Cameroon
- University of Ngaoundere, National School of Agro-Industrial Sciences, Department of Applied Chemistry, P.O. Box 455, Ngaoundere, Cameroon
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Pierre Nobosse
- University of Ngaoundere, National School of Agro-Industrial Sciences, Department of Food Science and Nutrition, P.O. Box 455, Ngaoundere, Cameroon
| | - Guillaume Legrand Ngolong Ngea
- Université de Douala à Yabassi, Institut des Sciences Halieutiques, Département de Trasformation et Contrôle de Qualité des Produits Halieutiques, P.O. Box 7236, Douala-Bassa, Cameroon
| | - Catherine Piveteau
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Mohamed Lemdani
- University of Lille, Faculty of Pharmacy, Lab. Biomaths Metrics, 59006, Lille, France
| | - Richard Kamga
- University of Ngaoundere, National School of Agro-Industrial Sciences, Department of Applied Chemistry, P.O. Box 455, Ngaoundere, Cameroon
| | - Benoit Deprez
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000, Lille, France
| |
Collapse
|
5
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
6
|
Khishdost M, Dobaradaran S, Goudarzi G, Takdastan A, Babaei AA. Contaminant occurrence, distribution and ecological risk assessment of phthalate esters in the Persian Gulf. PLoS One 2023; 18:e0287504. [PMID: 37418450 PMCID: PMC10328224 DOI: 10.1371/journal.pone.0287504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023] Open
Abstract
Due to the increasing population of the world, the presence of harmful compounds, especially phthalate esters (PAEs), are one of the important problems of environmental pollution. These compounds are known as carcinogenic compounds and Endocrine-disrupting chemicals (EDCs) for humans. In this study, the occurrence of PAEs and the evaluation of its ecological risks were carried out in the Persian Gulf. Water samples were collected from two industrial sites, a rural site and an urban site. Samples were analyzed using magnetic solid phase extraction (MSPE) and gas chromatography-mass spectrometry (GC/MS) technique to measure seven PAEs including Di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), Dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP), and Di-iso-butyl phthalate (DIBP). The BBP was not detected in any of the samples. The total concentration of six PAEs (Σ6PAEs) ranged from 7.23 to 23.7 μg/L, with a mean concentration of 13.7μg/L. The potential ecological risk of each target PAEs was evaluated by using the risk quotient (RQ) method in seawater samples, and the relative results declined in the sequence of DEHP >DIBP > DBP > DEP > DMP in examined water samples. DEHP had a high risk to algae, crustaceans and fish at all sites. While DMP and DEP showed lower risk for all mentioned trophic levels. The results of this study will be helpful for the implementation of effective control measures and remedial strategies for PAEs pollution in the Persian Gulf.
Collapse
Affiliation(s)
- Maria Khishdost
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Tumu K, Vorst K, Curtzwiler G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr Rev Food Sci Food Saf 2023; 22:1337-1359. [PMID: 36789797 DOI: 10.1111/1541-4337.13113] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Phthalates and bisphenol chemicals have been widely used globally in packaging materials and consumer products for several decades. These highly functional chemicals have become a concern due to their toxicity (i.e., endocrine/hormone modulators) and ability to migrate from food contact materials (FCMs) into food matrices and the environment resulting in human and environmental health risks. FCMs, composed of postconsumer materials, are particularly high risk for containing these compounds. The evaluation of postconsumer recycled feedstocks in FCMs is compulsory and selection of an appropriate detection method to comply with applicable regulations is necessary to evaluate human and environmental safety. Numerous regulations have been proposed and passed globally for both compound classes that are recognized as priority pollutants by the United States Environmental Protection Agency and the European Union. Several brand owners and retailers have also released their own "restricted substance lists" due to the mounting consumer and regulatory concerns. This review article has two goals: (1) discuss the utilization, toxicology, human exposure routes, and occurrence levels of phthalates and bisphenols in FCMs and associated legislation in various countries and (2) discuss critical understanding and updates for detection/quantification techniques. Current techniques discussed include extraction and sample preparation methods (solid-phase microextraction [SPME], headspace SPME, Soxhlet procedure, ultrasound-assisted extraction), chromatographic techniques (gas, liquid, detectors), and environmental/blank considerations for quantification. This review complements a previous review of phthalates in foods from 2009 by discussing phthalate and bisphenol characteristics, analytical methods of determining concentrations in packaging materials, and their influence on the migration potential into food.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Santana-Mayor Á, Rodríguez-Ramos R, Herrera-Herrera AV, Socas-Rodríguez B, Rodríguez-Delgado MÁ. Monitoring of the presence of plasticizers and effect of temperature and storage time in bottled water using a green liquid-liquid microextraction method. Food Res Int 2023; 164:112424. [PMID: 36737999 DOI: 10.1016/j.foodres.2022.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
In this work, a natural deep eutectic solvent was used for the liquid-liquid microextraction of fourteen phthalates and one adipate from bottled waters. The methodology was validated in terms of matrix effect, linearity, recovery, and limits of quantification (LOQs). Optimum extraction conditions (10 mL of water at pH 8.0 with 100 μL of thymol: menthol 2:1 (n/n) as solvent) provided satisfactory determination coefficients (≥ 0.9977), recovery values (82-127%), and LOQs (0.018-0.523 μg/L). The effects of temperature and storage time on plasticizer presence were studied for 36 different brands stored at 4 °C, room temperature, and 45 °C, and analyzed at 0, 24, 48, 72 h, and 1 week. Only diethyl-, dibutyl-, bis-(2-ethylhexyl) phthalates, and bis-(2-ethylhexyl) adipate were detected. The results showed that there is no relationship between the storage conditions, the bottle material or water carbonation, and the occurrence of these plasticizers, suggesting that residues are introduced during production or by the water supply. The estimated daily intake was lower than the total daily intake set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Álvaro Santana-Mayor
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ruth Rodríguez-Ramos
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Antonio V Herrera-Herrera
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206 San Cristóbal de La Laguna, Spain
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain.
| |
Collapse
|
9
|
Dehdashti B, Nikaeen M, Amin MM, Mohammadi F. Health Risk Assessment of Exposure to Bisphenol A in Polymeric Baby Bottles. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231151531. [PMID: 36726789 PMCID: PMC9885033 DOI: 10.1177/11786302231151531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, paying attention to bisphenol A (BPA), as one of the endocrine disruptor compounds, has increased due to its harmful effects. Although, scattered studies have been conducted in order to measure BPA concentration migrated into polymeric baby bottles in different countries of the world, there are no review studies and evaluation with a global perspective in the field of BPA risk. Some of these studies indicated the potential risks and estrogenic effects associated with BPA in babies' daily intake. For this purpose, we reviewed the information on the migration levels of BPA into baby bottles has been reported in 10 countries. The potential risks associated with BPA through the daily intake as well as the estrogenic effect on 3 age groups of babies which include 0 to 6, 6 to 12, and 12 to 24 months were analyzed using the Monte Carlo simulation. Also, kinetic models were applied to predict the kinetics of the migration process of BPA. The median daily intake for 3 age groups was obtained as 191.1, 161.37, and 153.76 µg/kg/day, respectively; which indicated Hazard Index (HI) > 1. The median estrogenic effect for the 3 groups was estimated to be 0.021 ngE2/L. The kinetics of contaminant transfer with Polynomial model at 2 temperatures of 24°C and 40°C showed a better fit with R 2 = 0.99 and 0.91, respectively. Based on the risk assessment analysis conducted in the present study, the BPA migration in baby bottles appeared to be a health concern for babies. Therefore, it is needed to increase the safety level of bottles for babies as they are sensitive and vulnerable members of every society. Furthermore, in this study, only the investigation of the global situation of BPA in polymeric baby bottles was stated; therefore, more investigation about another potential sources of BPA in food chain is needed.
Collapse
Affiliation(s)
- Bahare Dehdashti
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
- Student Research Committee, School of
Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research
Institute for Primordial Prevention of Non-communicable Disease, Isfahan University
of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
- Environment Research Center, Research
Institute for Primordial Prevention of Non-communicable Disease, Isfahan University
of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
| |
Collapse
|
10
|
Dueñas-Moreno J, Mora A, Cervantes-Avilés P, Mahlknecht J. Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate - A review. ENVIRONMENT INTERNATIONAL 2022; 170:107550. [PMID: 36219908 DOI: 10.1016/j.envint.2022.107550] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Phthalic acid esters (PAEs) or phthalates and bisphenol A (BPA) are emerging organic contaminants (EOCs) that may harm biota and human health. Humans can be exposed to these contaminants by drinking water consumption from water sources such as groundwater. Before their presence in aquifer systems, phthalates and BPA can be found in many matrices due to anthropogenic activities, which result in long-term transport to groundwater reservoirs by different mechanisms and reaction processes. The worldwide occurrence of phthalates and BPA concentrations in groundwater have ranged from 0.1 × 10-3 to 3 203.33 µg L-1 and from 0.09 × 10-3 to 228.04 µg L-1, respectively. Therefore, the aim of this review is to describe the groundwater contamination pathways of phthalates and BPA from the main environmental sources to groundwater. Overall, this article provides an overview that integrates phthalate and BPA environmental cycling, from their origin to human reception via groundwater consumption. Additionally, in this review, the readers can use the information provided as a principal basis for existing policy ratification and for governments to develop legislation that may incorporate these endocrine disrupting compounds (EDCs) as priority contaminants. Indeed, this may trigger the enactment of regulatory guidelines and public policies that help to reduce the exposure of these EDCs in humans by drinking water consumption.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64149, Nuevo León, Mexico.
| |
Collapse
|
11
|
Olivier SONGUESAME, Catherine PIVETEAU, Alexandre BIELA, Richard KAMGA, Benoit DEPREZ. Occurrence of bisphenols and contribution of edibles liquids conditioned in plastic packaging to the dietary exposure in Cameroon. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Wang Z, Zhang X, Yang Q, Zhang S, Chang G, Zang X, Wang C, Wang Z. Covalent triazine-based frameworks for efficient solid-phase microextraction of phthalic acid esters from food-contacted plastics. J Chromatogr A 2022; 1681:463474. [PMID: 36088777 DOI: 10.1016/j.chroma.2022.463474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Owing to various health threats associated with phthalic acid esters (PAEs), this category of endocrine-disrupting compounds has attracted more and more public scrutiny. However, the efficient preconcentration of PAEs from complex food-contacted plastics still remains challenging. Herein, three covalent triazine-based frameworks (CTFs) were constructed by facile Friedel-Crafts reactions of cyanuric chloride (CC), with triptycene (TPC), fluorene (FL) and 1,3,5-triphenylbenzene (TPB), respectively. Three CTFs were then employed as solid-phase microextraction (SPME) coatings for the extraction of PAEs. Benefiting from the large surface area and high pore volume, the newly-synthesized CC-TPC based SPME method exhibited large enrichment factors (978-2210), low limits of detection (0.027-0.10 ng g - 1), satisfactory linear ranges (0.09-20 ng g - 1), acceptable repeatabilities (4.3-9.6%) and high relative recoveries (92.0-104.6%).
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Xinyue Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Qian Yang
- College of Public Health, Hebei University, Baoding 071002 Hebei, PR. China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China.
| | - Guifen Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China.
| |
Collapse
|
13
|
Cao Y, Xu S, Zhang K, Lin H, Wu R, Lao JY, Tao D, Liu M, Leung KMY, Lam PKS. Spatiotemporal occurrence of phthalate esters in stormwater drains of Hong Kong, China: Mass loading and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119683. [PMID: 35772618 DOI: 10.1016/j.envpol.2022.119683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Urban stormwater is an important pathway for transporting anthropogenic pollutants to water bodies. Phthalate esters (PAEs) are endocrine disruptors owing to their estrogenic activity and potential carcinogenicity and their ubiquitous presence has garnered global interest. However, their transportation by urban stormwater has been largely overlooked. This study, for the first time, investigated 15 PAEs in stormwater from six major stormwater drains in the highly urbanized Hong Kong, a major metropolitan city in China. The results showed that PAEs were ubiquitous in the stormwater of Hong Kong, with total concentrations (∑15PAEs) spanning from 195 to 80,500 ng/L. Bis(2-n-butoxyethyl) phthalate (DBEP), diisopentyl phthalate (DiPP), dicyclohexyl phthalate (DCHP) and di-n-pentyl phthalate (DnPP) were detected in stormwater for the first time. Spatial variations in PAEs were observed among different stormwater drains, possibly due to the different land use patterns and intensities of human activities in their respective catchments. The highest and lowest levels of ∑15PAEs were found in Kwai Chung (3860 ± 1960 ng/L) and the Ng Tung River (672 ± 557 ng/L), respectively. Additionally, significantly higher concentrations of ∑15PAEs in stormwater were found in the wet season (2520 ± 2050 ng/L) than in the dry season (947 ± 904 ng/L). Principal component analysis classified domestic and industrial origins as two important sources of PAEs in the stormwater of Hong Kong. Stormwater played a crucial role in transporting PAEs, with an estimated annual flux of 0.705-29.4 kg. Thus, possible stormwater management measures were proposed to protect the receiving environment and local ecosystems from stormwater.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR, 999078, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Hong Kong Metropolitan University, Hong Kong SAR, China
| |
Collapse
|
14
|
Cao Y, Lin H, Zhang K, Xu S, Yan M, Leung KMY, Lam PKS. Microplastics: A major source of phthalate esters in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128731. [PMID: 35334264 DOI: 10.1016/j.jhazmat.2022.128731] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 05/25/2023]
Abstract
Phthalate esters (PAEs) are predominant additives in plastics, their widespread contamination in aquatic environments has raised global concern. Here, twelve plastic products were prepared as microplastics to investigate their release behaviors of PAEs. Six out of 15 PAEs were quantified after 14 days of incubation in water. The leaching potentials were plastic type-specific, where the pencil case (polyvinyl chloride, PVC) represented the highest migrations with total ∑15 PAEs concentration of 6660 ± 513 ng/g, followed by the cleaning brush-1 (polyamide, PA, ~1830 ng/g) and rubber glove (1390 ± 57.5 ng/g). Conversely, the straw (polypropylene, PP), cleaning brush-2 (polyethylene terephthalate, PET) and shampoo bottle (PET) released the lowest amounts of PAEs, with 50.3 ± 8.21, 93.9 ± 91.8 and 104.35 ng/g, respectively. The release patterns of PAE congeners were polymer type-related, where di-n-butyl phthalate (DBP) dominated the leaching from PA, PP and PET microplastics (47-84%), diethyl phthalate leached the most from PVC and rubber microplastics (45-92%), while diisobutyl phthalate and DBP dominated the leaching from PE microplastics (68-94%). Water chemical properties could affect PAEs migration and the kinetic leaching process was well fitted with the pseudo-first-order model. Approximately 57.8-16,100 kg/year of PAEs were estimated to be released into oceans from microplastics.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Office of the President, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China
| |
Collapse
|
15
|
A CRITICAL REVIEW ON EXTRACTION AND ANALYTICAL METHODS OF PHTHALATES IN WATER AND BEVERAGES. J Chromatogr A 2022; 1675:463175. [DOI: 10.1016/j.chroma.2022.463175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
|
16
|
Wang H, Tang Z, Liu ZH, Zeng F, Zhang J, Dang Z. Occurrence, spatial distribution, and main source identification of ten bisphenol analogues in the dry season of the Pearl River, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27352-27365. [PMID: 34978033 DOI: 10.1007/s11356-021-17647-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol analogues (BPs) including bisphenol a (BPA) have been broadly utilized as industrial feedstocks and unavoidably discharged into water bodies. However, there is little published data on the occurrence, distribution, and environmental risks of other BPs in surface water. In this study, ten BPs besides BPA were analyzed in surface water from the Pearl River, South China. Among these detected BPs, BPA, bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol S (BPS) were the most frequently detected compounds. The median concentrations of the measured BPs were ranked in the order of BPA (34.9 ng/L) > BPS (24.8 ng/L) > BPAF (10.1 ng/L) > bisphenol F (BPF) (9.0 ng/L) > bisphenol B (BPB) (7.6 ng/L) > bisphenol C (BPC) (1.2 ng/L). Among them, BPA and BPS were predominant BPs, contributing 68% of the total ten BPs in surface water of the Pearl River. These results demonstrated that BPA and BPS were the most extensively utilized and manufactured BPs in this region. The source analysis of BPs suggested that the BPs may be originated from domestic wastewater, wastewater treatment plant (WWTP) effluent, and the leaching of microplastic in surface water of the Pearl River. The calculated BP-derived estrogenic activity exhibited low to medium risks in surface water, but their combined estrogenic effects with other endocrine disrupting compounds should not be ignored.
Collapse
Affiliation(s)
- Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Feng Zeng
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
17
|
Cao Y, Li J, Wu R, Lin H, Lao JY, Ruan Y, Zhang K, Wu J, Leung KMY, Lam PKS. Phthalate esters in seawater and sediment of the northern South China Sea: Occurrence, distribution, and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151412. [PMID: 34742950 DOI: 10.1016/j.scitotenv.2021.151412] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence and distribution of 15 phthalate esters (PAEs) in seawater and sediment from the northern South China Sea (NSCS) were investigated for the first time to improve understanding on the contamination status of PAEs in this region. The concentrations of total PAEs (∑15 PAEs) were found to range from 68.8 to 1500 ng/L, 46.0 to 7800 ng/L, and 49.2 to 440 ng/g dry weight in surface seawater, bottom seawater, and sediment, respectively. Among the 15 PAEs, dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the predominant PAE congeners, with mean contributions of 44.7% and 24.0% in surface water, and 42.7% and 25.8% in bottom water, respectively. Moreover, diisobutyl phthalate (DiBP) constituted the majority of ∑15 PAEs in the sediment (61.3%). Comparatively high concentrations of Σ15 PAEs were observed in seawater at the sites within the western NSCS, whereas relatively higher concentrations of Σ15 PAEs were detected in sediments at the eastern NSCS. River input and atmospheric deposition could be the main sources of PAEs in the NSCS. Preliminary risk assessment implied that DBP, DiBP, and DEHP posed low to high potential risks for marine organisms at different trophic levels. These results would be valuable for implementing effective control measures and remediation strategies for PAEs contamination in the region.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Jiaxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Office of the President, Hong Kong Metropolitan University, Hong Kong, SAR, China.
| |
Collapse
|
18
|
Miao M, Zhao G, Cheng P, Li J, Zhang J, Pan H. Rapid Analysis of Trace Phthalates by Spray-Inlet Microwave Plasma Torch Ionization-Tandem Mass Spectrometry in Commercial Perfumes. J AOAC Int 2021; 105:54-61. [PMID: 34636904 DOI: 10.1093/jaoacint/qsab133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND The less volatile fraction of perfumes can be easily contaminated by phthalates esters (PAEs) which are endocrine-disrupting chemicals during the production, bottling and transportation processes. It is necessary to establish an innovative and rapid method to determine the trace PAEs in commercial perfumes. OBJECTIVE Hence, self-built spray-inlet microwave plasma torch ionization coupled with a quadrupole time-of-flight tandem mass spectrometer (QTOF-MS) was developed for direct analysis of PAEs in perfumes with no sample pretreatment. METHODS Perfumes were sprayed to the MPT's flame directly by sampling pump in 10 µL/min and the ions produced by MPT were introduced into QTOF-MS, the MPT worked at 2450 MHz and 40 W in the 800 ml/min flow rate of argon. RESULTS For the developed method, excellent linearities were obtained and the correlation coefficient of Di-n-pentyl Phthalate was 0.9799 and the rest were larger than 0.99. The LODs and LOQs were obtained in the ranges of 1.452-18.96 ng/g and 4.839-63.19 ng/g, respectively. The spiked recoveries of PAEs were in the range of 100.1-105.2% with satisfied intra-day RSDs and inter-day RSDs ranging from 1.51-4.34% and 3.45-5.65%, respectively. PAEs in commercial perfumes were successfully detected by spray-inlet MPT-MS2 with low concentrations from 0.036-1.352 µg/g. CONCLUSIONS The method is a promising tool in field analysis of PAEs in cosmetic solutions where rapid qualitative and quantitative analysis in needed. HIGHLIGHTS The method was satisfactorily applied to the analysis of commercial perfume samples within 30 s, and earned merits such as simplicity, sensitivity, environmental friendliness and ease operation.
Collapse
Affiliation(s)
- Meng Miao
- Shanghai University of Medicine & Health Sciences, School of Medical Technology, Shanghai, 201318 China
| | - Gaosheng Zhao
- Zhejiang University, College of Control Science and Engineering, Hangzhou, 310000 China
| | - Ping Cheng
- Shanghai University, School of Environmental and Chemical Engineering, Shanghai, 200444 China
| | - Jia Li
- Shanghai University of Medicine & Health Sciences, School of Medical Technology, Shanghai, 201318 China
| | - Jingyi Zhang
- Shanghai University of Medicine & Health Sciences, School of Medical Technology, Shanghai, 201318 China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Collaborative Research Center, Shanghai, 200120 China
| |
Collapse
|
19
|
Elfadil D, Lamaoui A, Della Pelle F, Amine A, Compagnone D. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021; 26:4607. [PMID: 34361757 PMCID: PMC8347609 DOI: 10.3390/molecules26154607] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.
Collapse
Affiliation(s)
- Dounia Elfadil
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (D.E.); (F.D.P.)
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia 28810, Morocco;
| | - Abderrahman Lamaoui
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia 28810, Morocco;
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (D.E.); (F.D.P.)
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia 28810, Morocco;
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (D.E.); (F.D.P.)
| |
Collapse
|
20
|
Gu YY, Wei Q, Wang LY, Zhang ZM, Zhang XQ, Sun AL, Chen J, Shi XZ. A comprehensive study of the effects of phthalates on marine mussels: Bioconcentration, enzymatic activities and metabolomics. MARINE POLLUTION BULLETIN 2021; 168:112393. [PMID: 33932843 DOI: 10.1016/j.marpolbul.2021.112393] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, marine mussels (Mytilus coruscus) were exposed to three typical PAEs (dimethyl phthalate [DMP], dibutyl phthalate [DBP] and di(2-ethylhexyl) phthalate [DEHP]) at a range of doses for different times to investigate the ecotoxicological effects. The accumulation of the three PAE congeners in M. coruscus exhibited the following trend: DEHP > DBP > DMP. The antioxidant response of mussel gonadal tissue was enhanced with increasing concentrations of PAEs. For the DBP and DEHP treatment groups, glutathione (GSH) worked in concert with antioxidant enzymes to protect cells against reactive oxygen species (ROS), while GSH played a prominent antioxidant role in the DMP-treated group. The metabolomics results revealed that PAE exposure disrupted the metabolic balance of mussels. Overall, PAEs affect the amino acid metabolism, lipid metabolism, energy metabolism, osmoregulation and nerve activities of mussels. Our results provide further insight into the toxicological effects of PAEs on marine organisms.
Collapse
Affiliation(s)
- Yan-Yu Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Qiang Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Liu-Yong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xiao-Qian Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
21
|
Luís C, Algarra M, Câmara JS, Perestrelo R. Comprehensive Insight from Phthalates Occurrence: From Health Outcomes to Emerging Analytical Approaches. TOXICS 2021; 9:toxics9070157. [PMID: 34357900 PMCID: PMC8309855 DOI: 10.3390/toxics9070157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Phthalates are a group of chemicals used in a multitude of important industrial products (e.g., medical devices, children's toys, and food packages), mainly as plasticizers to improve mechanical properties such as flexibility, transparency, durability, and longevity of polyvinyl chloride (PVC). The wide occurrence of phthalates in many consumer products, including foods (e.g., bottled water, soft drinks, wine, milk, and meat) brings that most people are exposed to phthalates every day, which raises some concerns. Adverse health outcomes from phthalates exposure have been associated with endocrine disruption, deformities in the human reproductive system, increased risk of preterm birth, carcinogen exposure, among others. Apprehension related to the health risks and ubiquitous incidence of phthalates in foods inspires the development of reliable analytical approaches that allow their detection and quantification at trace levels. The purpose of the current review is to provide information related to the presence of phthalates in the food chain, highlighting the health risks associated with their exposure. Moreover, an overview of emerging extraction procedures and high-resolution analytical approaches for a comprehensive quantification of phthalates is presented.
Collapse
Affiliation(s)
- Catarina Luís
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Faculdade de Ciências da Vida, Unidade de Ciências Médicas, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Science, Campus de Teatinos s/n, University of Málaga, 29071 Malaga, Spain;
| | - José S. Câmara
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Departamento de Química, Faculdade de Ciências e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Correspondence: ; Tel.: +351-291-705-224
| |
Collapse
|
22
|
Birarda G, Buosi C, Caridi F, Casu MA, De Giudici G, Di Bella L, Medas D, Meneghini C, Pierdomenico M, Sabbatini A, Surowka A, Vaccari L. Plastics, (bio)polymers and their apparent biogeochemical cycle: An infrared spectroscopy study on foraminifera. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116912. [PMID: 33751941 DOI: 10.1016/j.envpol.2021.116912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
To understand the fate of plastic in oceans and the interaction with marine organisms, we investigated the incorporation of (bio)polymers and microplastics in selected benthic foraminiferal species by applying FTIR (Fourier Transform Infrared) microscopy. This experimental methodology has been applied to cultured benthic foraminifera Rosalina globularis, and to in situ foraminifera collected in a plastic remain found buried into superficial sediment in the Mediterranean seafloor, Rosalina bradyi, Textularia bocki and Cibicidoides lobatulus. In vitro foraminifera were treated with bis-(2-ethylhexyl) phthalate (DEHP) molecule to explore its internalization in the cytoplasm. Benthic foraminifera are marine microbial eukaryotes, sediment-dwelling, commonly short-lived and with reproductive cycles which play a central role in global biogeochemical cycles of inorganic and organic compounds. Despite the recent advances and investigations into the occurrence, distribution, and abundance of plastics, including microplastics, in marine environments, there remain relevant knowledge gaps, particularly on their effects on the benthic protists. No study, to our knowledge, has documented the molecular scale effect of plastics on foraminifera. Our analyses revealed three possible ways through which plastic-related molecules and plastic debris can enter a biogeochemical cycle and may affect the ecosystems: 1) foraminifera in situ can grow on plastic remains, namely C. lobatulus, R. bradyi and T. bocki, showing signals of oxidative stress and protein aggregation in comparison with R. globularis cultured in negative control; 2) DEHP can be incorporated in the cytoplasm of calcareous foraminifera, as observed in R. globularis; 3) microplastic debris, identified as epoxy resin, can be found in the cytoplasm and the agglutinated shell of T. bocki. We hypothesize that plastic waste and their associated additives may produce modifications related to the biomineralization process in foraminifera. This effect would be added to those induced by ocean acidification with negative consequences on the foraminiferal biogenic carbon (C) storage capacity.
Collapse
Affiliation(s)
- Giovanni Birarda
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14, Km 163,5, Basovizza, Trieste, TS, 34149, Italy
| | - Carla Buosi
- Department of Chemical and Geological Sciences - University of Cagliari, Cittadella Universitaria, S.S. 554 Bivio per Sestu, 09042, Monserrato, CA, Italy
| | - Francesca Caridi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Facoltà di Scienze, Università Politecnica Delle Marche Via Brecce Bianche, 60131, Ancona, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences - University of Cagliari, Cittadella Universitaria, S.S. 554 Bivio per Sestu, 09042, Monserrato, CA, Italy.
| | - Letizia Di Bella
- Department of Earth Science, Rome University "Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Daniela Medas
- Department of Chemical and Geological Sciences - University of Cagliari, Cittadella Universitaria, S.S. 554 Bivio per Sestu, 09042, Monserrato, CA, Italy
| | - Carlo Meneghini
- University of Rome Tre, Department of Sciences, Viale G. Marconi 446, 00146, Roma, Italy
| | - Martina Pierdomenico
- Istituto per Lo Studio Degli Impatti Antropici e Sostenibilità in Ambiente Marino (CNR-IAS), Roma, Via Della Vasca Navale 79, 00146, Rome, Italy
| | - Anna Sabbatini
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Facoltà di Scienze, Università Politecnica Delle Marche Via Brecce Bianche, 60131, Ancona, Italy
| | - Artur Surowka
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14, Km 163,5, Basovizza, Trieste, TS, 34149, Italy; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14, Km 163,5, Basovizza, Trieste, TS, 34149, Italy
| |
Collapse
|
23
|
Shi Y, Liu P, Wu X, Shi H, Huang H, Wang H, Gao S. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics. WATER RESEARCH 2021; 195:116980. [PMID: 33684678 DOI: 10.1016/j.watres.2021.116980] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 05/27/2023]
Abstract
Bisphenol A polycarbonate (BPA-PC) is a kind of widely used engineering plastics. However, excessive usage causes the production of plastic wastes, following property changes of polymers and high risks of released chemicals during outdoor weathering. In this study, we systematically investigated the photoaging behavior of PC microplastics (MPs) in aquatic environment and evaluated the potential risk of released intermediates. Light irradiation along with mechanical abrasion facilitated the fragmentation of PC MPs and stimulated photooxidative modification during 640 h of ultraviolet (UV) exposure. Continuous degradation of the polymer was accompanied with dramatic decline of molecular weight. Also, BPA was released from irradiated PC MPs with a trend of an initial rapid increase followed by a decrease versus the irradiation time, and the maximum concentration of dropped BPA was detected up to 652.80 ± 72.89 μg/g (43.39% and 56.61% respectively in particles and leachates). However, the releasing amount of BPA in the leachate merely occupied 2.7% of the total organic carbon (TOC) leached out, suggesting that a great number of unknown organic products were produced other than BPA. Liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis showed that these organic compounds forming MPs-derived dissolved organic matter (MPs DOM) were partly composed of 4,4'-dihydroxybenzophenone (DHB), p-hydroxybenzoic acid (p-HBA) and methyparaben (MeP), which would also contribute to the estrogenic activity. The degradation pathway of PC MPs was elaborated with the photolysis process of PC dimer and BPA, and the remarkable photoaging of PC MPs was mainly dominated by the generated reactive oxygen species (ROS). The findings of this study indicated that understanding the photoaging process of PC MPs was vital to evaluate their integral cumulative estrogenic activity in aquatic environment, and further highlighted the notable possible risks of plastic leachates to exposed biota.
Collapse
Affiliation(s)
- Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| |
Collapse
|
24
|
Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phthalates are multifunctional synthetic chemicals found in a wide array of consumer and industrial products, mainly used to improve the mechanical properties of plastics, giving them flexibility and softness. In the European Union, phthalates are prohibited at levels greater than 0.1% by weight in most food packaging. In the current study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was optimized, through the multivariate optimization process, and validated to evaluate the occurrence of four common phthalates, di-iso-butyl phthalate (DIBP), butyl-benzyl phthalate (BBP), di-n-octyl phthalate (DOP), and 2,2,4,4-tetrabromodiphenyl (BDE), in different food packaging. The best extraction efficiency was achieved using the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber at 80 °C for 30 min. The validated method showed good linearity, precision (RSD < 13%), and recoveries (90.2 to 111%). The limit of detection (LOD) and of quantification (LOQ) ranged from 0.03 to 0.08 µg/L and from 0.10 to 0.24 µg/L, respectively. On average, the phthalates concentration varied largely among the assayed food packaging. DIBP was the most predominant phthalate in terms of occurrence (71.4% of analyzed simples) and concentration (from 3.61 to 10.7 μg/L). BBP was quantified in only one sample and BDE was detected in trace amounts (<LOQ) in only two samples.
Collapse
|
25
|
Sadutto D, Andreu V, Ilo T, Akkanen J, Picó Y. Pharmaceuticals and personal care products in a Mediterranean coastal wetland: Impact of anthropogenic and spatial factors and environmental risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116353. [PMID: 33385890 DOI: 10.1016/j.envpol.2020.116353] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 05/08/2023]
Abstract
The present study focused on the occurrence, distribution and risk assessment of 32 pharmaceuticals and personal care products (PPCPs) in water and sediment, as well as the surrounding soil of the irrigation channels and lake of a Mediterranean coastal wetland, the Albufera Natural Park (Valencia, Spain). Moreover, the influent and effluent of ten wastewater treatment plants (WWTPs) that treat wastewater from Valencia and the surrounding areas were also studied. BPA, caffeine, diclofenac, ethyl paraben, methyl paraben, metformin, tramadol and salicylic acid were the predominant PPCPs detected in the channels and the lake, and are in good agreement with those detected in the effluent. Furthermore, 22 PPCPs were detected in >47% of the sediment samples. Of them, BPA, ethyl paraben, furosemide, ibuprofen and salicylic acid were at higher concentrations. In contrast, only seven PPCPs were detected in >44% of the soil samples. Spatial variation showed that the concentration of many PPCPs was higher in the northern area of the park, whereas the ibuprofen concentrations were higher in the south. Differences were also observed according to the type of water used for irrigation and the land uses of the area. A risk assessment based on the hazardous quotient (HQ) indicated that caffeine is a compound of concern, and tramadol at the highest concentration showed a moderate risk for the organisms assessed. Considering the mixture of the PPCPs found at each sampling point, the green algae are at risk, particularly in those points located near the city of Valencia (the most important nearby human settlement). These results indicate the need for further studies.
Collapse
Affiliation(s)
- Daniele Sadutto
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road Km 4.5, 46113, Moncada, Valencia, Spain.
| | - Vicente Andreu
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road Km 4.5, 46113, Moncada, Valencia, Spain
| | - Timo Ilo
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80100, Joensuu, Finland
| | - Jarkko Akkanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80100, Joensuu, Finland
| | - Yolanda Picó
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road Km 4.5, 46113, Moncada, Valencia, Spain
| |
Collapse
|
26
|
Naing NN, Goh EXY, Lee HK. Enhanced microextraction of endocrine disrupting chemicals adsorbed on airborne fine particulate matter with gas chromatography-tandem mass spectrometric analysis. J Chromatogr A 2020; 1637:461828. [PMID: 33373795 DOI: 10.1016/j.chroma.2020.461828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
A novel double-microextraction approach, combining dispersive liquid-liquid microextraction (DLLME) and vortex-assisted micro-solid-phase extraction (VA-µ-SPE) was developed. The procedure was applied to extract endocrine disrupting chemicals (EDCs) consisting of three phthalate esters (PEs) and bisphenol A (BPA) associated with PM2.5 (airborne particulate matter with aerodynamic diameter ≤ 2.5 µm). Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used for determination of the analytes. These analytes were first ultrasonically desorbed from PM2.5 in a 10% acetone aqueous solution. DLLME was used to first preconcentrate the analytes; the sample solution, still in the same vial, was then subjected to VA-µ-SPE. The synergistic effects provided by the combination of the microextraction techniques provided advantages such as high enrichment factors and good cleanup performance. Various extraction parameters such as type and volume of extractant solvent (for DLLME), and type of sorbent, extraction time, desorption solvent, volume of desorption solvent and desorption time (for µ-SPE) were evaluated. Multi-walled carbon nanotubes were found to be the most suitable sorbent. This procedure achieved good precision with intra- and inter-day relative standard deviations of between 1.93 and 9.95%. Good linearity ranges (0.3-100 ng/mL and 0.5-100 ng/mL, depending on analytes), and limits of detection (LODs) of between 0.07 and 0.15 ng/mL were obtained. The method was used to determine the levels of PEs and BPA in ambient air, with concentrations ranging between below the limits of quantification and 0.48 ng/m3. DLLME-VA-µ-SPE-GC-MS/MS was demonstrated to be suitable for the determination of these EDCs present in PM2.5.
Collapse
Affiliation(s)
- Nyi Nyi Naing
- National University of Singapore Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Esther Xue Yi Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hian Kee Lee
- National University of Singapore Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Tropical Marine Science Institute, National University of Singapore, S2S Building, 18 Kent Ridge Road, Singapore 119227, Singapore.
| |
Collapse
|
27
|
Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5655. [PMID: 32764471 PMCID: PMC7460375 DOI: 10.3390/ijerph17165655] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Phthalates are a huge class of chemicals with a wide spectrum of industrial uses, from the manufacture of plastics to food contact applications, children's toys, and medical devices. People and animals can be exposed through different routes (i.e., ingestion, inhalation, dermal, or iatrogenic exposure), as these compounds can be easily released from plastics to water, food, soil, air, making them ubiquitous environmental contaminants. In the last decades, phthalates and their metabolites have proven to be of concern, particularly in products for pregnant women or children. Moreover, many authors reported high concentrations of phthalates in soft drinks, mineral waters, wine, oil, ready-to-eat meals, and other products, as a possible consequence of their accumulation along the food production chain and their accidental release from packaging materials. However, due to their different physical and chemical properties, phthalates do not have the same human and environmental impacts and their association to several human diseases is still under debate. In this review we provide an overview of phthalate toxicity, pointing out the health and legal issues related to their occurrence in several types of food and beverage.
Collapse
Affiliation(s)
- Angela Giuliani
- "G.d'Annunzio" School of Advanced Studies, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Aging Research Center, Ce.S.I., "G. d'Annunzio" University Foundation, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Interuniversity Center on Interactions between Electromagnetic Fields and Biosystems, National Research Council-Institute for Electromagnetic Detection of The Environment, (ICEMB-CNR-IREA), 80124 Naples, Italy
| |
Collapse
|
28
|
Analytical Scheme for Simultaneous Determination of Phthalates and Bisphenol A in Honey Samples Based on Dispersive Liquid-Liquid Microextraction Followed by GC-IT/MS. Effect of the Thermal Stress on PAE/BP-A Levels. Methods Protoc 2020; 3:mps3010023. [PMID: 32213842 PMCID: PMC7189663 DOI: 10.3390/mps3010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/26/2022] Open
Abstract
In this paper, an analytical protocol was developed for the simultaneous determination of phthalates (di-methyl phthalate DMP, di-ethyl phthalate DEP, di-isobutyl phthalate DiBP, di-n-butyl phthalate DBP, bis-(2-ethylhexyl) phthalate DEHP, di-n-octyl phthalate DNOP) and bisphenol A (BPA). The extraction technique used was the ultrasound vortex assisted dispersive liquid–liquid microextraction (UVA-DLLME). The method involves analyte extraction using 75 µL of benzene and subsequent analysis by gas chromatography combined with ion trap mass spectrometry (GC-IT/MS). The method is sensitive, reliable, and reproducible with a limit of detection (LOD) below 13 ng g−1 and limit of quantification (LOQ) below 22 ng g−1 and the intra- and inter-day errors below 7.2 and 9.3, respectively. The method developed and validated was applied to six honey samples (i.e., four single-use commercial ones and two home-made ones. Some phthalates were found in the samples at concentrations below the specific migration limits (SMLs). Furthermore, the commercial samples were subjected to two different thermal stresses (24 h and 48 h at 40 °C) for evidence of the release of plastic from the containers. An increase in the phthalate concentrations was observed, especially during the first phase of the shock, but the levels were still within the limits of the regulations.
Collapse
|
29
|
Notardonato I, Passarella S, Ianiri G, Di Fiore C, Russo MV, Avino P. Analytical Method Development and Chemometric Approach for Evidencing Presence of Plasticizer Residues in Nectar Honey Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1692. [PMID: 32150918 PMCID: PMC7084514 DOI: 10.3390/ijerph17051692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Over the years, anthropogenic sources have increasingly affected food quality. One of the most sensitive and nutritional matrices affected by chemical contamination is honey, due to the use of acaricides. Recently, the attention has moved to the presence of phthalates (PAEs) and bisphenol A (BP-A), molecules present in plastic materials used both in the production phase and in the conservation of honey. In this study, an analytical method for the simultaneous determination of PAEs (dimethyl phthalate DMP, diethyl phthalate DEP, diisobutyl phthalate DiBP, dibutyl phthalate DBP, bis(2-ethylhexyl) phthalate DEHP, and di-n-octyl-phthalate DnOP) and BP-A was developed. The extraction technique is the ultrasound-vortex-assisted dispersive liquid-liquid microextraction (UVA-DLLME), using 150 µL of toluene as an extraction solvent, followed by the gas chromatography coupled with ion trap mass spectrometry analysis (GC-IT/MS). The developed method is sensitive, reliable, and reproducible: it shows high correlation coefficients (R > 0.999); limits of detection (LODs) less than 11 ng·g-1; limits of quantification (LOQs) less than 16 ng·g-1; repeatability below 3.6%, except BP-A (11.6%); and accuracy below 4.8%, except BP-A (17.6%). The method was applied to 47 nectar honey samples for evidencing similarities among them. The chemometric approach based on Hierarchical Cluster Analysis and Principal Component Analysis evidenced some similitudes about sample origin as well as marked differences between PAE and BP-A sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Pasquale Avino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, via De Sanctis, I-86100 Campobasso, Italy; (I.N.); (S.P.); (G.I.); (C.D.F.); (M.V.R.)
| |
Collapse
|
30
|
Ye Z, Ma M, Guo Y, Zong M, Ding M, Fan L. Determination of Phthalate and Metabolites in Human Urine by Lithium Bis(trifluoromethanesulfonyl)imide-Enhanced Dual Microextraction Method Optimized by Central Composite Design. Chromatographia 2020. [DOI: 10.1007/s10337-020-03858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Carstens L, Cowan AR, Seiwert B, Schlosser D. Biotransformation of Phthalate Plasticizers and Bisphenol A by Marine-Derived, Freshwater, and Terrestrial Fungi. Front Microbiol 2020; 11:317. [PMID: 32180766 PMCID: PMC7059612 DOI: 10.3389/fmicb.2020.00317] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
Phthalate esters (PEs, Phthalates) are environmentally ubiquitous as a result of their extensive use as plasticizers and additives in diverse consumer products. Considerable concern relates to their reported xenoestrogenicity and consequently, microbial-based attenuation of environmental PE concentrations is of interest to combat harmful downstream effects. Fungal PE catabolism has received less attention than that by bacteria, and particularly fungi dwelling within aquatic environments remain largely overlooked in this respect. We have compared the biocatalytic and biosorptive removal rates of di-n-butyl phthalate (DBP) and diethyl phthalate (DEP), chosen to represent two environmentally prominent PEs of differing structure and hydrophobicity, by marine-, freshwater-, and terrestrial-derived fungal strains. Bisphenol A, both an extensively used plastic additive and prominent environmental xenoestrogen, was included as a reference compound due to its well-documented fungal degradation. Partial pathways of DBP metabolization by the ecophysiologically diverse asco- and basidiomycete strains tested were proposed with the help of UPLC-QTOF-MS analysis. Species specific biochemical reaction steps contributing to DBP metabolism were also observed. The involved reactions include initial cytochrome P450-dependent monohydroxylations of DBP with subsequent further oxidation of related metabolites, de-esterification via either hydrolytic cleavage or cytochrome P450-dependent oxidative O-dealkylation, transesterification, and demethylation steps - finally yielding phthalic acid as a central intermediate in all pathways. Due to the involvement of ecophysiologically and phylogenetically diverse filamentous and yeast-like fungi native to marine, freshwater, and terrestrial habitats the results of this study outline an environmentally ubiquitous pathway for the biocatalytic breakdown of plastic additives. Beyond previous research into fungal PE metabolism which emphasizes hydrolytic de-esterification as the primary catabolic step, a prominent role of cytochrome P450 monooxygenase-catalyzed reactions is established.
Collapse
Affiliation(s)
- Lena Carstens
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute for Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrew R. Cowan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
32
|
Caporossi L, Alteri A, Campo G, Paci E, Tranfo G, Capanna S, Papaleo E, Pigini D, Viganò P, Papaleo B. Cross Sectional Study on Exposure to BPA and Phthalates and Semen Parameters in Men Attending a Fertility Center. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020489. [PMID: 31940982 PMCID: PMC7013870 DOI: 10.3390/ijerph17020489] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Among the possible risk factors for male reproduction, exposure to phthalates and alkylphenols is widely documented. This study evaluated the possible association between chemical exposure and the quality of the seminal fluid of 105 subjects in a fertility clinic. The urinary levels of seven phthalate metabolites (monoethylphthalate, MEP; monobenzylphthalate, MBzP; mono n-butylphthalate, MnBP; mono-(2-ethylhexyl) phthalate, MEHP; mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHHP; mono-n-octylphthalate, MnOP; mono-isononylphthalate, MiNP) and bisphenol A (BPA), were analysed by high performance liquid chromatography/tandem mass spectrometry HPLC/MS/MS. The regression analysis showed that the semen volume was positively associated with MnBP, MnOP and BPA levels while was negatively associated with MiNP levels. The sperm concentration had a significant inverse relationship with MEP levels. A negative association was found between the use of plastic containers for food storage (p = 0.037) and semen volume (3.06 vs. 2.30 mL as average values, never vs daily). A significant positive correlation emerged (p < 0.005) between the consumption of canned food and the levels of BPA (2.81 vs. 0.14 µg/g creat as average values, daily vs. never) and between the use of perfumes and levels of MEP (389.86 vs. 48.68 µg/g creat, as average values, daily vs. never). No further statistically significant associations were found, even considering the working activity. Some evidence emerged about the possible link between exposure and seminal fluid quality: further case/control or prospective studies will allow us to confirm this causality hypothesis.
Collapse
Affiliation(s)
- Lidia Caporossi
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
- Correspondence:
| | - Alessandra Alteri
- Unit of Obstetrics and Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy; (A.A.); (G.C.); (E.P.)
| | - Giovanni Campo
- Unit of Obstetrics and Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy; (A.A.); (G.C.); (E.P.)
| | - Enrico Paci
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Giovanna Tranfo
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Silvia Capanna
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Enrico Papaleo
- Unit of Obstetrics and Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy; (A.A.); (G.C.); (E.P.)
| | - Daniela Pigini
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Bruno Papaleo
- National Institute of Insurance against Accidents at Work-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy; (E.P.); (G.T.); (S.C.); (D.P.); (B.P.)
| |
Collapse
|