1
|
Pokajewicz K, Lamaka D, Hudz N, Adamchuk L, Wieczorek PP. Volatile profile of bee bread. Sci Rep 2024; 14:6870. [PMID: 38519512 PMCID: PMC10959932 DOI: 10.1038/s41598-024-57159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Bee bread is one of the least studied bee products. In this study, ten bee bread samples were characterized using palynology and HS-SPME-GC-MS (headspace solid-phase microextraction gas chromatography-mass spectrometry). In total, over one hundred different volatile components were identified, belonging to different chemical groups. Only ten common components were detected in all the samples. These volatiles were ethanol, ethylene chloride, ethyl acetate, acetic acid, α-pinene, furfural, nonane, nonanal, n-hexane and isovaleric acid. Several other components were commonly shared among various bee bread samples. Over sixty detected compounds have not been previously reported in bee bread. The analysis required a mild extraction temperature of 40 °C, as higher temperatures resulted in the Maillard reaction, leading to the production of furfural. The profile of volatile compounds of the tested bee pollen samples was complex and varied. Some relationships have been shown between botanical origin and volatile organic compound profile.
Collapse
Affiliation(s)
| | - Darya Lamaka
- Department of Analytical Chemistry, University of Opole, 45-052, Opole, Poland
| | - Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Leonora Adamchuk
- Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Street 15, Kyiv, 03041, Ukraine
- Laboratory of Methods for Assessing the Quality and Safety of Beekeeping Products, National Science Center "PI Prokopovich Institute of Beekeeping", Akademika Zabolotnoho Street 19, Kyiv, 03680, Ukraine
| | | |
Collapse
|
2
|
Bahmani K, Robinson A, Majumder S, LaVardera A, Dowell JA, Goolsby EW, Mason CM. Broad diversity in monoterpene-sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions. AMERICAN JOURNAL OF BOTANY 2022; 109:2051-2067. [PMID: 36317693 DOI: 10.1002/ajb2.16093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
PREMISE As plant lineages diversify across environmental gradients, species are predicted to encounter divergent biotic pressures. This study investigated the evolution of volatile secondary metabolism across species of Helianthus. METHODS Leaves and petals of 40 species of wild Helianthus were analyzed via gas chromatography-mass spectrometry to determine volatile secondary metabolite profiles. RESULTS Across all species, 500 compounds were identified; 40% were sesquiterpenes, 18% monoterpenes, 3% diterpenes, 4% fatty acid derivatives, and 35% other compounds such as phenolics and small organic molecules. Qualitatively, annuals and species from more arid western climates had leaf compositions with a higher proportion of total monoterpenes, while erect perennials and species from more mesic eastern habitats contained a higher proportion of total sesquiterpenes. Among species, mass-based leaf monoterpene and sesquiterpene abundance were identified as largely orthogonal axes of variation by principal component analysis. Profiles for leaves were not strongly correlated with those of petals. CONCLUSIONS Volatile metabolites were highly diverse among wild Helianthus, indicating the value of this genus as a model system and rich genetic resource. The independence of leaf and petal volatile profiles indicates a low level of phenotypic integration between vegetative and reproductive structures, implying vegetative defense and reproductive defense or pollinator attraction functions mediated by terpene profiles in these two organs can evolve without major trade-offs. The major biosynthetic pathways for the major terpenes in wild Helianthus are already well described, providing a road map to deeper inquiry into the drivers of this diversity.
Collapse
Affiliation(s)
- Keivan Bahmani
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Sambadi Majumder
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Jordan A Dowell
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
3
|
He Y, Liu K, Han L, Han W. Clustering Analysis, Structure Fingerprint Analysis, and Quantum Chemical Calculations of Compounds from Essential Oils of Sunflower (Helianthus annuus L.) Receptacles. Int J Mol Sci 2022; 23:ijms231710169. [PMID: 36077567 PMCID: PMC9456235 DOI: 10.3390/ijms231710169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Sunflower (Helianthus annuus L.) is an appropriate crop for current new patterns of green agriculture, so it is important to change sunflower receptacles from waste to useful resource. However, there is limited knowledge on the functions of compounds from the essential oils of sunflower receptacles. In this study, a new method was created for chemical space network analysis and classification of small samples, and applied to 104 compounds. Here, t-SNE (t-Distributed Stochastic Neighbor Embedding) dimensions were used to reduce coordinates as node locations and edge connections of chemical space networks, respectively, and molecules were grouped according to whether the edges were connected and the proximity of the node coordinates. Through detailed analysis of the structural characteristics and fingerprints of each classified group, our classification method attained good accuracy. Targets were then identified using reverse docking methods, and the active centers of the same types of compounds were determined by quantum chemical calculation. The results indicated that these compounds can be divided into nine groups, according to their mean within-group similarity (MWGS) values. The three families with the most members, i.e., the d-limonene group (18), α-pinene group (10), and γ-maaliene group (nine members) determined the protein targets, using PharmMapper. Structure fingerprint analysis was employed to predict the binding mode of the ligands of four families of the protein targets. Thence, quantum chemical calculations were applied to the active group of the representative compounds of the four families. This study provides further scientific information to support the use of sunflower receptacles.
Collapse
Affiliation(s)
| | | | - Lu Han
- Correspondence: (L.H.); (W.H.)
| | | |
Collapse
|
4
|
Liu XS, Gao B, Dong ZD, Qiao ZA, Yan M, Han WW, Li WN, Han L. Chemical Compounds, Antioxidant Activities, and Inhibitory Activities Against Xanthine Oxidase of the Essential Oils From the Three Varieties of Sunflower ( Helianthus annuus L.) Receptacles. Front Nutr 2021; 8:737157. [PMID: 34869517 PMCID: PMC8641733 DOI: 10.3389/fnut.2021.737157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Essential oils of sunflower receptacles (SEOs) have antibacterial and antioxidant potential. However, the differences of biological activities from the different varieties of sunflowers have not been studied till now. The purpose of this study was to compare the differences of chemical compounds, antioxidant activities, and inhibitory activities against xanthine oxidase (XO) of SEOs from the three varieties of sunflowers including LD5009, SH363, and S606. Methods: SEOs were extracted by using the optimal extraction conditions selected by response surface methodology (RSM). Chemical compounds of SEOs were identified from the three varieties of sunflowers by gas chromatography-mass spectrometry (GC-MS). Antioxidant activities of SEOs were detected by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and iron ion reduction ability. Inhibitory activities of SEOs against XO were measured by using UV spectrophotometer. XO inhibitors were selected from the main chemical compounds of SEOs by the high-throughput selections and molecular simulation docking. Results: The extraction yields of SEOs from LD5009, SH363, and S606 were 0.176, 0.319, and 0.580%, respectively. A total of 101 chemical compounds of SEOs were identified from the three varieties of sunflowers. In addition, the results of inhibitory activities against XO showed that SEOs can reduce uric acid significantly. Eupatoriochromene may be the most important chemical compounds of SEOs for reducing uric acid. The results of antioxidant activities and inhibitory activities against XO showed that SEOs of LD5009 had the strongest antioxidant and XO inhibitory activities. The Pearson correlation coefficient (r > 0.95) showed that γ-terpinene, (E)-citral, and L-Bornyl acetate were highly correlated with the antioxidant activities and XO inhibitory ability. Conclusion: SEOs had antioxidant activities and XO inhibitory ability. It would provide more scientific information for utilization and selection of varieties of sunflowers, which would increase the food quality of sunflowers and incomes of farmers.
Collapse
Affiliation(s)
- Xin-Sheng Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Zhan-De Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Zi-An Qiao
- School of Life Sciences, Jilin University, Changchun, China
| | - Min Yan
- School of Life Sciences, Jilin University, Changchun, China
| | - Wei-Wei Han
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Wan-Nan Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Lu Han
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China.,Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun, China
| |
Collapse
|
5
|
Lawson SK, Satyal P, Setzer WN. Phytochemical Analysis of the Essential Oils From Aerial Parts of Four Scutellaria “Skullcap” Species Cultivated in South Alabama: Scutellaria baicalensis Georgi , S. Barbata D. Don , S. Incana Biehler , and S. Lateriflora L. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211025930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Scutellaria (skullcap) are important medicinal plants. Scutellaria baicalensis and S.barbata have been used in Chinese traditional medicine, while S. incana and S. lateriflora were used as herbal medicines by Native Americans. In this work, the essential oils of Scutellaria baicalensis Georgi, Scutellaria barbata D. Don , Scutellaria incana Biehler, and Scutellaria lateriflora L. were obtained from plants cultivated in south Alabama and analyzed by gas chromatographic techniques, including chiral gas chromatography. The most abundant components in the Scutellaria essential oils were 1-octen-3-ol (31.2% in S. incana), linalool (6.8% in S. incana), thymol (7.7% in S. barbata), carvacrol (9.3% in S. baicalensis), ( E)-β caryophyllene (11.6% in S. baicalensis), germacrene D (39.3% in S. baicalensis), ( E)-nerolidol (10.5% in S. incana), palmitic acid (15.6% in S. barbata), phytol (19.7% in S. incana), and linolenic acid (8.0% in S. barbata). These analyses of the essential oil compositions and enantiomeric ratios of predominant aromatic molecules add to our understanding of the medicinal phytochemistry of the genus Scutellaria.
Collapse
Affiliation(s)
- Sims K. Lawson
- Department of Ecosystem Science and Management, Penn State College of Agricultural Sciences, University Park, PA, USA
| | | | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
6
|
Lawson SK, Sharp LG, Powers CN, McFeeters RL, Satyal P, Setzer WN. Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae. PLANTS 2020; 9:plants9010126. [PMID: 31963839 PMCID: PMC7020142 DOI: 10.3390/plants9010126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 02/04/2023]
Abstract
In the past, Native Americans of North America had an abundant traditional herbal legacy for treating illnesses, disorders, and wounds. Unfortunately, much of the ethnopharmacological knowledge of North American Indians has been lost due to population destruction and displacement from their native lands by European-based settlers. However, there are some sources of Native American ethnobotany remaining. In this work, we have consulted the ethnobotanical literature for members of the Asteraceae used in Cherokee and other Native American traditional medicines that are native to the southeastern United States. The aerial parts of Eupatorium serotinum, Eurybia macrophylla, Eutrochium purpureum, Polymnia canadensis, Rudbeckia laciniata, Silphium integrifolium, Smallanthus uvedalia, Solidago altissima, and Xanthium strumarium were collected from wild-growing plants in north Alabama. The plants were hydrodistilled to obtain the essential oils and the chemical compositions of the essential oils were determined by gas chromatography-mass spectrometry. The essential oils were tested for in-vitro antifungal activity against Aspergillus niger, Candida albicans, and Cryptococcus neoformans. The essential oil of E. serotinum showed noteworthy activity against C. neoformans with a minimum inhibitory concentration (MIC) value of 78 μg/mL, which can be attributed to the high concentration of cyclocolorenone in the essential oil.
Collapse
Affiliation(s)
- Sims K. Lawson
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.K.L.); (L.G.S.); (C.N.P.); (R.L.M.)
| | - Layla G. Sharp
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.K.L.); (L.G.S.); (C.N.P.); (R.L.M.)
| | - Chelsea N. Powers
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.K.L.); (L.G.S.); (C.N.P.); (R.L.M.)
| | - Robert L. McFeeters
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.K.L.); (L.G.S.); (C.N.P.); (R.L.M.)
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.K.L.); (L.G.S.); (C.N.P.); (R.L.M.)
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
- Correspondence: ; Tel.: +1-256-824-6519
| |
Collapse
|