1
|
Li S, Sun L, Jin X, Feng G, Zhang L, Bai H, Wang Z. Research on variety identification of common bean seeds based on hyperspectral and deep learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125212. [PMID: 39348737 DOI: 10.1016/j.saa.2024.125212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Accurate, fast and non-destructive identification of varieties of common bean seeds is important for the cultivation and efficient utilization of common beans. This study is based on hyperspectral and deep learning to identify the varieties of common bean seeds non-destructively. In this study, the average spectrum of 3078 hyperspectral images from 500 varieties was obtained after image segmentation and sensitive region extraction, and the Synthetic Minority Over-sampling Technique (SMOTE) was used to achieve the equilibrium of the samples of various varieties. A one-dimensional convolutional neural network model (IResCNN) incorporating Inception module and residual structure was proposed to identify seed varieties, and Support Vector Machine (SVM), K-Nearest Neighbor (KNN), VGG19, AlexNet, ResNet50 were established to compare the identification effect. After analyzing the effects of multiple spectral preprocessing methods on the model, the study selected Savitzky-Golay smoothing correction (SG) for spectral preprocessing and extracted 66 characteristic wavelengths using Successive Projections Algorithm (SPA) as inputs to the discriminative model. Ultimately, the IResCNN model achieved the highest accuracy of 93.06 % on the test set, indicating that hyperspectral technology can accurately identify bean varieties, and the study provides a correct method of thinking for the non-destructive classification of multi-species small-sample bean varieties.
Collapse
Affiliation(s)
- Shujia Li
- College of Electronics Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| | - Laijun Sun
- College of Electronics Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| | - Xiuliang Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guojun Feng
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| | - Lingyu Zhang
- College of Electronics Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| | - Hongyi Bai
- College of Electronics Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| | - Ziyue Wang
- College of Electronics Engineering, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| |
Collapse
|
2
|
Sun J, Nirere A, Dusabe KD, Yuhao Z, Adrien G. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. J Food Sci 2024; 89:4403-4418. [PMID: 38957090 DOI: 10.1111/1750-3841.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 07/04/2024]
Abstract
The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.
Collapse
Affiliation(s)
- Jun Sun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Adria Nirere
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keza Dominique Dusabe
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhong Yuhao
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guverinoma Adrien
- School of Food Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
3
|
Liu X, Guo P, Xu Q, Du W. Cotton seed cultivar identification based on the fusion of spectral and textural features. PLoS One 2024; 19:e0303219. [PMID: 38805455 PMCID: PMC11132500 DOI: 10.1371/journal.pone.0303219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
The mixing of cotton seeds of different cultivars and qualities can lead to differences in growth conditions and make field management difficult. In particular, except for yield loss, it can also lead to inconsistent cotton quality and poor textile product quality, causing huge economic losses to farmers and the cotton processing industry. However, traditional cultivar identification methods for cotton seeds are time-consuming, labor-intensive, and cumbersome, which cannot meet the needs of modern agriculture and modern cotton processing industry. Therefore, there is an urgent need for a fast, accurate, and non-destructive method for identifying cotton seed cultivars. In this study, hyperspectral images (397.32 nm-1003.58 nm) of five cotton cultivars, namely Jinke 20, Jinke 21, Xinluzao 64, Xinluzao 74, and Zhongmiansuo 5, were captured using a Specim IQ camera, and then the average spectral information of seeds of each cultivar was used for spectral analysis, aiming to estab-lish a cotton seed cultivar identification model. Due to the presence of many obvious noises in the < 400 nm and > 1000 nm regions of the collected spectral data, spectra from 400 nm to 1000 nm were selected as the representative spectra of the seed samples. Then, various denoising techniques, including Savitzky-Golay (SG), Standard Normal Variate (SNV), and First Derivative (FD), were applied individually and in combination to improve the quality of the spectra. Additionally, a successive projections algorithm (SPA) was employed for spectral feature selection. Based on the full-band spectra, a Partial Least Squares-Discriminant Analysis (PLS-DA) model was established. Furthermore, spectral features and textural features were fused to create Random Forest (RF), Convolutional Neural Network (CNN), and Extreme Learning Machine (ELM) identification models. The results showed that: (1) The SNV-FD preprocessing method showed the optimal denoising performance. (2) SPA highlighted the near-infrared region (800-1000 nm), red region (620-700 nm), and blue-green region (420-570 nm) for identifying cotton cultivar. (3) The fusion of spectral features and textural features did not consistently improve the accuracy of all modeling strategies, suggesting the need for further research on appropriate modeling strategies. (4) The ELM model had the highest cotton cultivar identification accuracy, with an accuracy of 100% for the training set and 98.89% for the test set. In conclusion, this study successfully developed a highly accurate cotton seed cultivar identification model (ELM model). This study provides a new method for the rapid and non-destructive identification of cotton seed cultivars, which will help ensure the cultivar consistency of seeds used in cotton planting, and improve the overall quality and yield of cotton.
Collapse
Affiliation(s)
- Xiao Liu
- College of Sciences, Shihezi University, Shihezi, China
| | - Peng Guo
- College of Sciences, Shihezi University, Shihezi, China
| | - Quan Xu
- China Geological Survey Urumqi Comprehensive Survey Center on Natural Resources, Urumqi, China
| | - Wenling Du
- College of Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Wang Y, Ou X, He HJ, Kamruzzaman M. Advancements, limitations and challenges in hyperspectral imaging for comprehensive assessment of wheat quality: An up-to-date review. Food Chem X 2024; 21:101235. [PMID: 38420503 PMCID: PMC10900407 DOI: 10.1016/j.fochx.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
The potential of hyperspectral imaging technology (HIT) for the determination of physicochemical and nutritional components, evaluation of fungal/mycotoxins contamination, wheat varieties classification, identification of non-mildew-damaged wheat kernels, as well as detection of flour adulteration is comprehensively illustrated and reviewed. The latest findings (2018-2023) of HIT in wheat quality evaluation through internal and external attributes are compared and summarized in detail. The limitations and challenges of HIT to improve assessment accuracy are clearly described. Additionally, various practical recommendations and strategies for the potential application of HIT are highlighted. The future trends and prospects of HIT in evaluating wheat quality are also mentioned. In conclusion, HIT stands as a cutting-edge technology with immense potential for revolutionizing wheat quality evaluation. As advancements in HIT continue, it will play a pivotal role in shaping the future of wheat quality assessment and contributing to a more sustainable and efficient food supply chain.
Collapse
Affiliation(s)
- Yuling Wang
- School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xingqi Ou
- School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Mohammed Kamruzzaman
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Tang T, Luo Q, Yang L, Gao C, Ling C, Wu W. Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology. Foods 2023; 13:25. [PMID: 38201054 PMCID: PMC10778318 DOI: 10.3390/foods13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
As the raw material for tea making, the quality of tea leaves directly affects the quality of finished tea. The quality of fresh tea leaves is mainly assessed by manual judgment or physical and chemical testing of the content of internal components. Physical and chemical methods are more mature, and the test results are more accurate and objective, but traditional chemical methods for measuring the biochemical indexes of tea leaves are time-consuming, labor-costly, complicated, and destructive. With the rapid development of imaging and spectroscopic technology, spectroscopic technology as an emerging technology has been widely used in rapid non-destructive testing of the quality and safety of agricultural products. Due to the existence of spectral information with a low signal-to-noise ratio, high information redundancy, and strong autocorrelation, scholars have conducted a series of studies on spectral data preprocessing. The correlation between spectral data and target data is improved by smoothing noise reduction, correction, extraction of feature bands, and so on, to construct a stable, highly accurate estimation or discrimination model with strong generalization ability. There have been more research papers published on spectroscopic techniques to detect the quality of tea fresh leaves. This study summarizes the principles, analytical methods, and applications of Hyperspectral imaging (HSI) in the nondestructive testing of the quality and safety of fresh tea leaves for the purpose of tracking the latest research advances at home and abroad. At the same time, the principles and applications of other spectroscopic techniques including Near-infrared spectroscopy (NIRS), Mid-infrared spectroscopy (MIRS), Raman spectroscopy (RS), and other spectroscopic techniques for non-destructive testing of quality and safety of fresh tea leaves are also briefly introduced. Finally, in terms of technical obstacles and practical applications, the challenges and development trends of spectral analysis technology in the nondestructive assessment of tea leaf quality are examined.
Collapse
Affiliation(s)
- Ting Tang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (T.T.); (Q.L.); (L.Y.); (C.G.)
| | - Qing Luo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (T.T.); (Q.L.); (L.Y.); (C.G.)
| | - Liu Yang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (T.T.); (Q.L.); (L.Y.); (C.G.)
| | - Changlun Gao
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (T.T.); (Q.L.); (L.Y.); (C.G.)
| | - Caijin Ling
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weibin Wu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (T.T.); (Q.L.); (L.Y.); (C.G.)
| |
Collapse
|
6
|
Bu Y, Jiang X, Tian J, Hu X, Han L, Huang D, Luo H. Rapid nondestructive detecting of sorghum varieties based on hyperspectral imaging and convolutional neural network. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3970-3983. [PMID: 36397181 DOI: 10.1002/jsfa.12344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The purity of sorghum varieties is an important indicator of the quality of raw materials used in the distillation of liquors. Different varieties of sorghum may be mixed during the acquisition process, which will affect the flavor and quality of liquor. To facilitate the rapid identification of sorghum varieties, this study proposes a sorghum variety identification model using hyperspectral imaging (HSI) technology combined with convolutional neural network (AlexNet). RESULTS First, the watershed algorithm, which was modified with the extended-maxim transform, was used to segment the hyperspectral images of a single sorghum grain. The isolated forest algorithm was used to eliminate abnormal spectral data from the complete spectral data. Secondly, the AlexNet model of sorghum variety identification was established based on the two-dimensional gray image data of sorghum grain in group 1. The effects of different preprocessing methods and different convolution kernel sizes on the performance of the AlexNet model were discussed. The eigenvalues of the last layer of the AlexNet model were visualized using the t-distributed random neighborhood embedding method, which is used to evaluate the separability of features extracted by the AlexNet model. The performance differences between the optimal AlexNet model and traditional machine learning models for sorghum variety identification were compared. Finally, the varieties of sorghum grains in groups 2 and 3 were identified based on the optimal AlexNet model, and the average accuracy values of the test set reached 95.62% and 95.91% respectively. CONCLUSION The results in this study demonstrated that HSI combined with the AlexNet model could provide a feasible technical approach for the detection of sorghum varieties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Youhua Bu
- College of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin, China
| | - Xinna Jiang
- College of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin, China
| | - Jianping Tian
- College of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin, China
| | - Xinjun Hu
- College of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin, China
- Key Laboratory of Brewing Biotechnology and Application of Sichuan Province, Yibin, China
| | - Lipeng Han
- College of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Engineering Technology Research Center for Liquor-Making Grains, Yibin, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Engineering Technology Research Center for Liquor-Making Grains, Yibin, China
| |
Collapse
|
7
|
Dogan M, Ozkan IA. Determination of wheat types using optimized extreme learning machine with metaheuristic algorithms. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Liu Y, Pu H, Li Q, Sun DW. Discrimination of Pericarpium Citri Reticulatae in different years using Terahertz Time-Domain spectroscopy combined with convolutional neural network. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122035. [PMID: 36332396 DOI: 10.1016/j.saa.2022.122035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Pericarpium Citri Reticulatae (PCR) in longer storage years possess higher medicinal values, but their differentiation is difficult due to similar morphological characteristics. Therefore, this study investigated the feasibility of using terahertz time-domain spectroscopy (THz-TDS) combined with a convolutional neural network (CNN) to identify PCR samples stored from 1 to 20 years. The absorption coefficient and refractive index spectra in the range of 0.2-1.5 THz were acquired. Partial least squares discriminant analysis, random forest, least squares support vector machines, and CNN were used to establish discriminant models, showing better performance of the CNN model than the others. In addition, the output data points of the CNN intermediate layer were visualized, illustrating gradual changes in these points from overlapping to clear separation. Overall, THz-TDS combined with CNN models could realize rapid identification of different year PCRs, thus providing an efficient alternative method for PCR quality inspection.
Collapse
Affiliation(s)
- Yao Liu
- School of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics (e) Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qian Li
- Shenzhen Institute of Terahertz Technology and Innovation, Shenzhen, Guangdong 518102, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics (e) Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Jia Z, Ou C, Sun S, Wang J, Liu J, Sun M, Ma W, Li M, Jia S, Mao P. Integrating optical imaging techniques for a novel approach to evaluate Siberian wild rye seed maturity. FRONTIERS IN PLANT SCIENCE 2023; 14:1170947. [PMID: 37152128 PMCID: PMC10157248 DOI: 10.3389/fpls.2023.1170947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Advances in optical imaging technology using rapid and non-destructive methods have led to improvements in the efficiency of seed quality detection. Accurately timing the harvest is crucial for maximizing the yield of higher-quality Siberian wild rye seeds by minimizing excessive shattering during harvesting. This research applied integrated optical imaging techniques and machine learning algorithms to develop different models for classifying Siberian wild rye seeds based on different maturity stages and grain positions. The multi-source fusion of morphological, multispectral, and autofluorescence data provided more comprehensive information but also increases the performance requirements of the equipment. Therefore, we employed three filtering algorithms, namely minimal joint mutual information maximization (JMIM), information gain, and Gini impurity, and set up two control methods (feature union and no-filtering) to assess the impact of retaining only 20% of the features on the model performance. Both JMIM and information gain revealed autofluorescence and morphological features (CIELab A, CIELab B, hue and saturation), with these two filtering algorithms showing shorter run times. Furthermore, a strong correlation was observed between shoot length and morphological and autofluorescence spectral features. Machine learning models based on linear discriminant analysis (LDA), random forests (RF) and support vector machines (SVM) showed high performance (>0.78 accuracies) in classifying seeds at different maturity stages. Furthermore, it was found that there was considerable variation in the different grain positions at the maturity stage, and the K-means approach was used to improve the model performance by 5.8%-9.24%. In conclusion, our study demonstrated that feature filtering algorithms combined with machine learning algorithms offer high performance and low cost in identifying seed maturity stages and that the application of k-means techniques for inconsistent maturity improves classification accuracy. Therefore, this technique could be employed classification of seed maturity and superior physiological quality for Siberian wild rye seeds.
Collapse
|
10
|
Yasar A. Benchmarking analysis of CNN models for bread wheat varieties. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Jia Z, Sun M, Ou C, Sun S, Mao C, Hong L, Wang J, Li M, Jia S, Mao P. Single Seed Identification in Three Medicago Species via Multispectral Imaging Combined with Stacking Ensemble Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197521. [PMID: 36236620 PMCID: PMC9572871 DOI: 10.3390/s22197521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
Multispectral imaging (MSI) has become a new fast and non-destructive detection method in seed identification. Previous research has usually focused on single models in MSI data analysis, which always employed all features and increased the risk to efficiency and that of system cost. In this study, we developed a stacking ensemble learning (SEL) model for successfully identifying a single seed of sickle alfalfa (Medicago falcata), hybrid alfalfa (M. varia), and alfalfa (M. sativa). SEL adopted a three-layer structure, i.e., level 0 with principal component analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) as models of dimensionality reduction and feature extraction (DRFE); level 1 with support vector machine (SVM), multiple logistic regression (MLR), generalized linear models with elastic net regularization (GLMNET), and eXtreme Gradient Boosting (XGBoost) as basic learners; and level 3 with XGBoost as meta-learner. We confirmed that the values of overall accuracy, kappa, precision, sensitivity, specificity, and sensitivity in the SEL model were all significantly higher than those in basic models alone, based on both spectral features and a combination of morphological and spectral features. Furthermore, we also developed a feature filtering process and successfully selected 5 optimal features out of 33 ones, which corresponded to the contents of chlorophyll, anthocyanin, fat, and moisture in seeds. Our SEL model in MSI data analysis provided a new way for seed identification, and the feature filter process potentially could be used widely for development of a low-cost and narrow-channel sensor.
Collapse
|
12
|
Zhang H, Hou Q, Luo B, Tu K, Zhao C, Sun Q. Detection of seed purity of hybrid wheat using reflectance and transmittance hyperspectral imaging technology. FRONTIERS IN PLANT SCIENCE 2022; 13:1015891. [PMID: 36247557 PMCID: PMC9554440 DOI: 10.3389/fpls.2022.1015891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Chemical hybridization and genic male sterility systems are two main methods of hybrid wheat production; however, complete sterility of female wheat plants cannot be guaranteed owing to the influence of the growth stage and weather. Consequently, hybrid wheat seeds are inevitably mixed with few parent seeds, especially female seeds. Therefore, seed purity is a key factor in the popularization of hybrid wheat. However, traditional seed purity detection and variety identification methods are time-consuming, laborious, and destructive. Therefore, to establish a non-destructive classification method for hybrid and female parent seeds, three hybrid wheat varieties (Jingmai 9, Jingmai 11, and Jingmai 183) and their parent seeds were sampled. The transmittance and reflectance spectra of all seeds were collected via hyperspectral imaging technology, and a classification model was established using partial least squares-discriminant analysis (PLS-DA) combined with various preprocessing methods. The transmittance spectrum significantly improved the classification of hybrids and female parents compared to that obtained using reflectance spectrum. Specifically, using transmittance spectrum combined with a characteristic wavelength-screening algorithm, the Detrend-CARS-PLS-DA model was established, and the accuracy rates in the testing sets of Jingmai 9, Jingmai 11, and Jingmai 183 were 95.69%, 98.25%, and 97.25%, respectively. In conclusion, transmittance hyperspectral imaging combined with a machine learning algorithm can effectively distinguish female parent seeds from hybrid seeds. These results provide a reference for rapid seed purity detection in the hybrid production process. Owing to the non-destructive and rapid nature of hyperspectral imaging, the detection of hybrid wheat seed purity can be improved by online sorting in the future.
Collapse
Affiliation(s)
- Han Zhang
- Department of Seed Science & Biotechnology, The Innovation Center (Beijing) of Crop Seeds whole-process Technology Research Ministry of Agriculture and Rural Affairs (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiling Hou
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Keling Tu
- Department of Seed Science & Biotechnology, The Innovation Center (Beijing) of Crop Seeds whole-process Technology Research Ministry of Agriculture and Rural Affairs (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qun Sun
- Department of Seed Science & Biotechnology, The Innovation Center (Beijing) of Crop Seeds whole-process Technology Research Ministry of Agriculture and Rural Affairs (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Wang J, Sun L, Feng G, Bai H, Yang J, Gai Z, Zhao Z, Zhang G. Intelligent detection of hard seeds of snap bean based on hyperspectral imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121169. [PMID: 35358780 DOI: 10.1016/j.saa.2022.121169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a common problem in snap beans, hard seed has seriously affected the large-scale industrial planting and yield of snap bean. To realize accurate, quick and non-destructive identifying the hard seeds of snap bean is of great significance to avoiding the effects of hard seeds on germination and growth. This research was based on hyperspectral imaging (HSI) to achieve accurate detection of hard seeds of snap bean. This study obtained the characteristic spectra from the hyperspectral image of a single seed, and then combined the synthetic minority over-sampling technique (SMOTE) and Tomek links to balance the numbers of hard and non-hard seed samples. The characteristic wavelengths were extracted from the average spectrum. Then the average spectrum was processed by first derivative (1D). After that, the characteristic wavelengths could be extracted using successive projections algorithm (SPA). Finally, a radial basis function-support vector machine (RBF-SVM) model was established to realize the intelligent detection of hard seeds, and the detection accuracy rate reached 89.32%. The research results showed that HSI technology could achieved accurate, fast and non-destructive testing of the hard seeds of snap bean, which is of great significance to the large-scale and standardized planting of snap bean and increase the yield per unit area.
Collapse
Affiliation(s)
- Jiaying Wang
- School of Electronic Engineering (Heilongjiang University), Harbin, Heilongjiang, China.
| | - Laijun Sun
- School of Electronic Engineering (Heilongjiang University), Harbin, Heilongjiang, China.
| | - Guojun Feng
- College of Modern Agriculture and Ecological Environment (Heilongjiang University), Harbin, Heilongjiang, China.
| | - Hongyi Bai
- School of Electronic Engineering (Heilongjiang University), Harbin, Heilongjiang, China.
| | - Jun Yang
- School of Electronic Engineering (Heilongjiang University), Harbin, Heilongjiang, China.
| | - Zhaodong Gai
- School of Electronic Engineering (Heilongjiang University), Harbin, Heilongjiang, China.
| | - Zhide Zhao
- School of Electronic Engineering (Heilongjiang University), Harbin, Heilongjiang, China.
| | - Guanghui Zhang
- College of Modern Agriculture and Ecological Environment (Heilongjiang University), Harbin, Heilongjiang, China.
| |
Collapse
|
14
|
Yipeng L, Wenbing L, Kaixuan H, Wentao T, Ling Z, Shizhuang W, Linsheng H. Determination of wheat kernels damaged by Fusarium head blight using monochromatic images of effective wavelengths from hyperspectral imaging coupled with an architecture self-search deep network. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
An D, Zhang L, Liu Z, Liu J, Wei Y. Advances in infrared spectroscopy and hyperspectral imaging combined with artificial intelligence for the detection of cereals quality. Crit Rev Food Sci Nutr 2022; 63:9766-9796. [PMID: 35442834 DOI: 10.1080/10408398.2022.2066062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cereals provide humans with essential nutrients, and its quality assessment has attracted widespread attention. Infrared (IR) spectroscopy (IRS) and hyperspectral imaging (HSI), as powerful nondestructive testing technologies, are widely used in the quality monitoring of food and agricultural products. Artificial intelligence (AI) plays a crucial role in data mining, especially in recent years, a new generation of AI represented by deep learning (DL) has made breakthroughs in analyzing spectral data of food and agricultural products. The combination of IRS/HSI and AI further promotes the development of quality evaluation of cereals. This paper comprehensively reviews the advances of IRS and HSI combined with AI in the detection of cereals quality. The aim is to present a complete review topic as it touches the background knowledge, instrumentation, spectral data processing (including preprocessing, feature extraction and modeling), spectral interpretation, etc. To suit this goal, principles of IRS and HSI, as well as basic concepts related to AI are first introduced, followed by a critical evaluation of representative reports integrating IRS and HSI with AI. Finally, the advantages, challenges and future trends of IRS and HSI combined with AI are further discussed, so as to provide constructive suggestions and guidance for researchers.
Collapse
Affiliation(s)
- Dong An
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Liu Zhang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Zhe Liu
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Jincun Liu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Yaoguang Wei
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Hyperspectral Band Selections for Enhancing the Discrimination of Difficult Targets Using Local Band Index and Particle Swarm Optimization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to their similar color and material variability, some ground objects have similar characteristics and overlap in some bands. This leads to a drop in the classification accuracy of hyperspectral images. To address this problem, we simulated hyperspectral images of vegetation and objects with similar colors by mixed pixel calculation to test the classification performance of the dimensionality reduction method for samples with close spectra. In addition, we proposed a novel wavelength selection algorithm called the LBI-BPSO (Binary Particle Swarm Optimization with Local Band Index), which combines the information amount and inter-class separability. The novelty of this study is in its proposal of an improvement of IOIF using inter-class distance. Based on the calculation of the information content by the local band index, the inter-class distance was introduced to measure the inter-class separability of ground objects, and a reasonable fitness function is proposed. It can obtain the wavelength combination of two DR criteria, which considers the larger amount of information and better sample separability. The classification performance of the simulation dataset is verified by comparing LBI-BPSO with Partitioned Relief-F, IOIF (Improved Optimum Index Factor) and GA-BPSO (Particle Swarm Optimization with a Genetic Algorithm). Under the conditions that the signal-to-noise ratio is 1000, compared with IOIF, the OA of LBI-BPSO improved by 2.90%, the AA improved by 2.75%, and the Kappa coefficient improved by 3.91%. LBI-BPSO also showed the best results in the analysis of different abundances and signal-to noise-ratios. The results show that the new wavelength selection algorithm LBI-BPSO, which combines the amount of information and inter-class separability, is more effective than IOIF and GA-BPSO in classifying objects with similar colors and effectively improves the classification accuracy.
Collapse
|
17
|
Çetin N. Machine Learning for Varietal Binary Classification of Soybean (Glycine max (L.) Merrill) Seeds Based on Shape and Size Attributes. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02286-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Differentiation of Organic Cocoa Beans and Conventional Ones by Using Handheld NIR Spectroscopy and Multivariate Classification Techniques. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:1844675. [PMID: 34845434 PMCID: PMC8627362 DOI: 10.1155/2021/1844675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022]
Abstract
The global market for organic cocoa beans continues to show sturdy growth. A low-cost handheld NIR spectrometer (900-1700 nm) combined with multivariate classification algorithms was used for rapid differentiation analysis of organic cocoa beans' integrity. In this research, organic and conventionally cultivated cocoa beans were collected from different locations in Ghana and scanned nondestructively with a handheld spectrometer. Different preprocessing treatments were employed. Principal component analysis (PCA) and classification analysis, RF (random forest), KNN (K-nearest neighbours), LDA (linear discriminant analysis), and PLS-DA (partial least squares-discriminant analysis) were performed comparatively to build classification models. The performance of the models was evaluated by accuracy, specificity, sensitivity, and efficiency. Second derivative preprocessing together with PLS-DA algorithm was superior to the rest of the algorithms with a classification accuracy of 100.00% in both the calibration set and prediction set. Second derivative algorithm was found to be the best preprocessing tool. The identification rates for the calibration set and prediction set were 96.15% and 98.08%, respectively, for RF, 91.35% and 92.31% for KNN, and 90.38% and 98.08% for LDA. Generally, the results showed that a handheld NIR spectrometer coupled with an appropriate multivariate algorithm could be used in situ for the differentiation of organic cocoa beans from conventional ones to ensure food integrity along the cocoa bean value chain.
Collapse
|
19
|
Zhang L, Sun H, Li H, Rao Z, Ji H. Identification of rice-weevil (Sitophilus oryzae L.) damaged wheat kernels using multi-angle NIR hyperspectral data. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Sun H, Zhang L, Li H, Rao Z, Ji H. Nondestructive identification of barley seeds varieties using hyperspectral data from two sides of barley seeds. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Heng Sun
- Key Laboratory of Modern Precision Agriculture System Integration Research Ministry of Education, China Agricultural University Beijing China
- Key Laboratory of Agriculture Information Acquisition Technology, Ministry of Agriculture China Agricultural University Beijing China
| | - Liu Zhang
- Key Laboratory of Modern Precision Agriculture System Integration Research Ministry of Education, China Agricultural University Beijing China
- Key Laboratory of Agriculture Information Acquisition Technology, Ministry of Agriculture China Agricultural University Beijing China
| | - Hao Li
- Key Laboratory of Modern Precision Agriculture System Integration Research Ministry of Education, China Agricultural University Beijing China
- College of Information and Electrical Engineering China Agricultural University China
| | - Zhenhong Rao
- College of Science China Agricultural University Beijing China
| | - Haiyan Ji
- Key Laboratory of Modern Precision Agriculture System Integration Research Ministry of Education, China Agricultural University Beijing China
- Key Laboratory of Agriculture Information Acquisition Technology, Ministry of Agriculture China Agricultural University Beijing China
| |
Collapse
|
21
|
Li H, Zhang L, Sun H, Rao Z, Ji H. Identification of soybean varieties based on hyperspectral imaging technology and one‐dimensional convolutional neural network. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hao Li
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education China Agricultural University Beijing China
- Key Laboratory of Agricultural Information Acquisition Technology Ministry of Agriculture China Agricultural University Beijing China
| | - Liu Zhang
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education China Agricultural University Beijing China
- Key Laboratory of Agricultural Information Acquisition Technology Ministry of Agriculture China Agricultural University Beijing China
| | - Heng Sun
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education China Agricultural University Beijing China
- Key Laboratory of Agricultural Information Acquisition Technology Ministry of Agriculture China Agricultural University Beijing China
| | - Zhenhong Rao
- College of Science China Agricultural University Beijing China
| | - Haiyan Ji
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education China Agricultural University Beijing China
- Key Laboratory of Agricultural Information Acquisition Technology Ministry of Agriculture China Agricultural University Beijing China
| |
Collapse
|
22
|
Wu N, Liu F, Meng F, Li M, Zhang C, He Y. Rapid and Accurate Varieties Classification of Different Crop Seeds Under Sample-Limited Condition Based on Hyperspectral Imaging and Deep Transfer Learning. Front Bioeng Biotechnol 2021; 9:696292. [PMID: 34368096 PMCID: PMC8343196 DOI: 10.3389/fbioe.2021.696292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid varieties classification of crop seeds is significant for breeders to screen out seeds with specific traits and market regulators to detect seed purity. However, collecting high-quality, large-scale samples takes high costs in some cases, making it difficult to build an accurate classification model. This study aimed to explore a rapid and accurate method for varieties classification of different crop seeds under the sample-limited condition based on hyperspectral imaging (HSI) and deep transfer learning. Three deep neural networks with typical structures were designed based on a sample-rich Pea dataset. Obtained the highest accuracy of 99.57%, VGG-MODEL was transferred to classify four target datasets (rice, oat, wheat, and cotton) with limited samples. Accuracies of the deep transferred model achieved 95, 99, 80.8, and 83.86% on the four datasets, respectively. Using training sets with different sizes, the deep transferred model could always obtain higher performance than other traditional methods. The visualization of the deep features and classification results confirmed the portability of the shared features of seed spectra, providing an interpreted method for rapid and accurate varieties classification of crop seeds. The overall results showed great superiority of HSI combined with deep transfer learning for seed detection under sample-limited condition. This study provided a new idea for facilitating a crop germplasm screening process under the scenario of sample scarcity and the detection of other qualities of crop seeds under sample-limited condition based on HSI.
Collapse
Affiliation(s)
- Na Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fanjia Meng
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Mu Li
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Automated In Situ Seed Variety Identification via Deep Learning: A Case Study in Chickpea. PLANTS 2021; 10:plants10071406. [PMID: 34371609 PMCID: PMC8309301 DOI: 10.3390/plants10071406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
On-time seed variety recognition is critical to limit qualitative and quantitative yield loss and asynchronous crop production. The conventional method is a subjective and error-prone process, since it relies on human experts and usually requires accredited seed material. This paper presents a convolutional neural network (CNN) framework for automatic identification of chickpea varieties by using seed images in the visible spectrum (400–700 nm). Two low-cost devices were employed for image acquisition. Lighting and imaging (background, focus, angle, and camera-to-sample distance) conditions were variable. The VGG16 architecture was modified by a global average pooling layer, dense layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate visual features of the diverse chickpea varieties and recognizing them according to these features was conceivable by the obtained model. A five-fold cross-validation was performed to evaluate the uncertainty and predictive efficiency of the CNN model. The modified deep learning model was able to recognize different chickpea seed varieties with an average classification accuracy of over 94%. In addition, the proposed vision-based model was very robust in seed variety identification, and independent of image acquisition device, light environment, and imaging settings. This opens the avenue for the extension into novel applications using mobile phones to acquire and process information in situ. The proposed procedure derives possibilities for deployment in the seed industry and mobile applications for fast and robust automated seed identification practices.
Collapse
|
24
|
Feng L, Wu B, Zhu S, He Y, Zhang C. Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging With Machine Learning Techniques for Identifying Food Varieties and Geographical Origins. Front Nutr 2021; 8:680357. [PMID: 34222304 PMCID: PMC8247466 DOI: 10.3389/fnut.2021.680357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023] Open
Abstract
Food quality and safety are strongly related to human health. Food quality varies with variety and geographical origin, and food fraud is becoming a threat to domestic and global markets. Visible/infrared spectroscopy and hyperspectral imaging techniques, as rapid and non-destructive analytical methods, have been widely utilized to trace food varieties and geographical origins. In this review, we outline recent research progress on identifying food varieties and geographical origins using visible/infrared spectroscopy and hyperspectral imaging with the help of machine learning techniques. The applications of visible, near-infrared, and mid-infrared spectroscopy as well as hyperspectral imaging techniques on crop food, beverage, fruits, nuts, meat, oil, and some other kinds of food are reviewed. Furthermore, existing challenges and prospects are discussed. In general, the existing machine learning techniques contribute to satisfactory classification results. Follow-up researches of food varieties and geographical origins traceability and development of real-time detection equipment are still in demand.
Collapse
Affiliation(s)
- Lei Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Baohua Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Susu Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
25
|
Pang L, Wang J, Men S, Yan L, Xiao J. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118888. [PMID: 32947159 DOI: 10.1016/j.saa.2020.118888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, the feasibility of estimation and forecast of different vitality Quercus variabilis seeds by a hyperspectral imaging technique were investigated. Artificially accelerated aging was conducive to achieve the division of four vitality levels. Hyperspectral data in the first 10 h of germination were continuously collected at one-hour intervals. The optimal band was selected for the original and pre-processed spectra which were treated by multiple scatter correction (MSC) and the Savitzky-Golay first derivative (SG 1st). Five characteristic wavelength methods were compared: successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), variable important in projection (VIP), and random frog (RF). Partial least square-discriminant analysis (PLS-DA) and K-nearest neighbor (KNN) built the vitality estimation model based on different data sets, and GA + PLS-DA constructed the optimal model with the highest accuracy. According to the weight coefficient and reflectance of the characteristic band extracted by the GA, the reflectance curves of different levels over time were plotted. The data of 0 h was employed to establish the vitality forecast model. The forecast model had a high recognition rate, with PLS-DA exceeding 99% and KNN exceeding 85%. This indicated that hyperspectral imaging of seed germination processes could achieve non-destructive estimation of Q. variabilis seed vitality, and accurate prediction in a shorter time is feasible.
Collapse
Affiliation(s)
- Lei Pang
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinghua Wang
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Sen Men
- College of Robotics, Beijing Union University, Beijing 100020, China; Beijing Engineering Research Center of Smart Mechanical Innovation Design Service, Beijing Union University, Beijing 100020, China
| | - Lei Yan
- School of Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jiang Xiao
- School of Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
26
|
Cultivar Discrimination of Single Alfalfa ( Medicago sativa L.) Seed via Multispectral Imaging Combined with Multivariate Analysis. SENSORS 2020; 20:s20226575. [PMID: 33217897 PMCID: PMC7698633 DOI: 10.3390/s20226575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
Rapid and accurate discrimination of alfalfa cultivars is crucial for producers, consumers, and market regulators. However, the conventional routine of alfalfa cultivars discrimination is time-consuming and labor-intensive. In this study, the potential of a new method was evaluated that used multispectral imaging combined with object-wise multivariate image analysis to distinguish alfalfa cultivars with a single seed. Three multivariate analysis methods including principal component analysis (PCA), linear discrimination analysis (LDA), and support vector machines (SVM) were applied to distinguish seeds of 12 alfalfa cultivars based on their morphological and spectral traits. The results showed that the combination of morphological features and spectral data could provide an exceedingly concise process to classify alfalfa seeds of different cultivars with multivariate analysis, while it failed to make the classification with only seed morphological features. Seed classification accuracy of the testing sets was 91.53% for LDA, and 93.47% for SVM. Thus, multispectral imaging combined with multivariate analysis could provide a simple, robust and nondestructive method to distinguish alfalfa seed cultivars.
Collapse
|
27
|
Hyperspectral Imaging Tera Hertz System for Soil Analysis: Initial Results. SENSORS 2020; 20:s20195660. [PMID: 33023001 PMCID: PMC7582483 DOI: 10.3390/s20195660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022]
Abstract
Analyzing soils using conventional methods is often time consuming and costly due to their complexity. These methods require soil sampling (e.g., by augering), pretreatment of samples (e.g., sieving, extraction), and wet chemical analysis in the laboratory. Researchers are seeking alternative sensor-based methods that can provide immediate results with little or no excavation and pretreatment of samples. Currently, visible and infrared spectroscopy, electrical resistivity, gamma ray spectroscopy, and X-ray spectroscopy have been investigated extensively for their potential utility in soil sensing. Little research has been conducted on the application of THz (Tera Hertz) spectroscopy in soil science. The Tera Hertz band covers the frequency range between 100 GHz and 10 THz of the electromagnetic spectrum. One important feature of THz radiation is its correspondence with the particle size of the fine fraction of soil minerals (clay < 2 µm to sand < 2 mm). The particle size distribution is a fundamental soil property that governs soil water and nutrient content, among other characteristics. The interaction of THz radiation with soil particles creates detectable Mie scattering, which is the elastic scattering of electromagnetic waves by particles whose diameter corresponds approximately to the wavelength of the radiation. However, single-spot Mie scattering spectra are difficult to analyze and the understanding of interaction between THz radiation and soil material requires basic research. To improve the interpretation of THz spectra, a hyperspectral imaging system was developed. The addition of the spatial dimension to THz spectra helps to detect relevant features. Additionally, multiple samples can be scanned in parallel and measured under identical conditions, and the high number of data points within an image can improve the statistical accuracy. Technical details of the newly designed hyperspectral imaging THz system working from 250 to 370 GHz are provided. Results from measurements of different soil samples and buried objects in soil demonstrated its performance. The system achieved an optical resolution of about 2 mm. The sensitivity of signal damping to the changes in particle size of 100 µm is about 10 dB. Therefore, particle size variations in the µm range should be detectable. In conclusion, automated hyperspectral imaging reduced experimental effort and time consumption, and provided reliable results because of the measurement of hundreds of sample positions in one run. At this stage, the proposed setup cannot replace the current standard laboratory methods, but the present study represents the initial step to develop a new automated method for soil analysis and imaging.
Collapse
|
28
|
de Medeiros AD, da Silva LJ, Ribeiro JPO, Ferreira KC, Rosas JTF, Santos AA, da Silva CB. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. SENSORS 2020; 20:s20154319. [PMID: 32756355 PMCID: PMC7435829 DOI: 10.3390/s20154319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
Optical sensors combined with machine learning algorithms have led to significant advances in seed science. These advances have facilitated the development of robust approaches, providing decision-making support in the seed industry related to the marketing of seed lots. In this study, a novel approach for seed quality classification is presented. We developed classifier models using Fourier transform near-infrared (FT-NIR) spectroscopy and X-ray imaging techniques to predict seed germination and vigor. A forage grass (Urochloa brizantha) was used as a model species. FT-NIR spectroscopy data and radiographic images were obtained from individual seeds, and the models were created based on the following algorithms: linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), random forest (RF), naive Bayes (NB), and support vector machine with radial basis (SVM-r) kernel. In the germination prediction, the models individually reached an accuracy of 82% using FT-NIR data, and 90% using X-ray data. For seed vigor, the models achieved 61% and 68% accuracy using FT-NIR and X-ray data, respectively. Combining the FT-NIR and X-ray data, the performance of the classification model reached an accuracy of 85% to predict germination, and 62% for seed vigor. Overall, the models developed using both NIR spectra and X-ray imaging data in machine learning algorithms are efficient in quickly, non-destructively, and accurately identifying the capacity of seed to germinate. The use of X-ray data and the LDA algorithm showed great potential to be used as a viable alternative to assist in the quality classification of U. brizantha seeds.
Collapse
Affiliation(s)
- André Dantas de Medeiros
- Agronomy Department, Federal University of Viçosa, Viçosa MG 36570-900, Brazil; (L.J.d.S.); (J.P.O.R.); (A.A.S.)
- Correspondence:
| | - Laércio Junio da Silva
- Agronomy Department, Federal University of Viçosa, Viçosa MG 36570-900, Brazil; (L.J.d.S.); (J.P.O.R.); (A.A.S.)
| | - João Paulo Oliveira Ribeiro
- Agronomy Department, Federal University of Viçosa, Viçosa MG 36570-900, Brazil; (L.J.d.S.); (J.P.O.R.); (A.A.S.)
| | | | | | - Abraão Almeida Santos
- Agronomy Department, Federal University of Viçosa, Viçosa MG 36570-900, Brazil; (L.J.d.S.); (J.P.O.R.); (A.A.S.)
- Entomology Department, Federal University of Viçosa, Viçosa MG 36570-900, Brazil
| | - Clíssia Barboza da Silva
- Laboratory of Radiobiology and Environment, University of São Paulo-Center for Nuclear Energy in Agriculture, 303 Centenário Avenue, Piracicaba SP 13416-000, Brazil;
| |
Collapse
|
29
|
Weng S, Tang P, Yuan H, Guo B, Yu S, Huang L, Xu C. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118237. [PMID: 32200232 DOI: 10.1016/j.saa.2020.118237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 05/28/2023]
Abstract
The phenomena of rice adulteration and shoddy rice arise continuously in high-quality rice and reduce the interests of producers, consumers and traders. Hyperspectral imaging (HSI) was conducted to determine rice variety using a deep learning network with multiple features, namely, spectroscopy, texture and morphology. HSI images of 10 representative high-quality rice varieties in China were measured. Spectroscopy and morphology were extracted from HSI images and binary images in region of interest, respectively. And texture was obtained from the monochromatic images of characteristic wavelengths which were highly correlated with rice varieties. A deep learning network, namely principal component analysis network (PCANet), was adopted with these features to develop classification models for determining rice variety, and machine learning methods as K-nearest neighbour and random forest were used to compare with PCANet. Meanwhile, multivariate scatter correction, standard normal variate, Savitzky-Golay smoothing and Savitzky-Golay's first-order were applied to eliminate spectral interference, and principal component analysis (PCA) was performed to obtain the main information of high-dimensional features. Multi-feature fusion improved recognition accuracy, and PCANet demonstrated considerable advantage in classification performance. The best result was achieved by PCANet with PCA-processed spectroscopic and texture features with correct classification rates of 98.66% and 98.57% for the training and prediction sets, respectively. In summary, the proposed method provides an accurate identification of rice variety and can be easily extended to the classification, attribution and grading of other agricultural products.
Collapse
Affiliation(s)
- Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, China.
| | - Peipei Tang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, China
| | - Hecai Yuan
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, China
| | - Bingqing Guo
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, China
| | - Shuan Yu
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, China
| | - Linsheng Huang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, China
| | - Chao Xu
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, China.
| |
Collapse
|
30
|
Deep-Learning-Based Active Hyperspectral Imaging Classification Method Illuminated by the Supercontinuum Laser. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hyperspectral imaging (HSI) technology is able to provide fine spectral and spatial information of objects. It has the ability to discriminate materials and thereby has been used in a wide range of areas. However, traditional HSI strongly depends on the sunlight and hence is restricted to daytime. In this paper, a visible/near-infrared active HSI classification method illuminated by a visible/near-infrared supercontinuum laser is developed for spectra detection and objects imaging in the dark. Besides, a deep-learning-based classifier, hybrid DenseNet, is created to learn the feature representations of spectral and spatial information parallelly from active HSI data and is used for the active HSI classification. By applying the method to a selection of objects in the dark successfully, we demonstrate that with the active HSI classification method, it is possible to detect objects of interest in practical applications. Correct active HSI classification of different objects further supports the viability of the method for camouflage detection, biomedical alteration detection, cave painting mapping and so on.
Collapse
|
31
|
Zhang L, Sun H, Rao Z, Ji H. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117973. [PMID: 31887678 DOI: 10.1016/j.saa.2019.117973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
In recent years, deep learning models have been widely used in the field of hyperspectral imaging. However, the training of deep learning models requires not only a large number of samples, but also the need to set too many hyper-parameters, which is time consuming and laborious for researchers. This study used hyperspectral imaging technology combined with a deep learning model suitable for small-scale sample data sets, deep forests (DF) model, to classify rice seeds with different degrees of frost damage. During the period, three spectral preprocessing methods (Savitzky-Golay first derivative (SG1), standard normal variate (SNV), and multivariate scatter correction (MSC)) were used to process the original spectral data, and three feature extraction algorithms (principal component analysis (PCA), successive projections algorithm (SPA), and neighborhood component analysis (NCA)) were used to extract the characteristic wavelengths. Moreover, DF model and three traditional machine learning models (decision tree (DT), k-nearest neighbor (KNN), and support vector machine (SVM)) were built based on different numbers of sample sets. After multivariate data analysis, it showed that the pretreatment effect of MSC was the most excellent, and the characteristic wavelength extracted by NCA algorithm was the most useful. In addition, the performance of DF model was better than these three traditional classifier models, and it still performed well in small-scale sample set data. Therefore, DF model was chosen as the best classification model. The results of this study show that the DF model maintains good classification performance in small-scale sample set data, and it has a good application prospect in hyperspectral imaging technology.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Heng Sun
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhenhong Rao
- College of Science, China Agricultural University, Beijing 100083, China
| | - Haiyan Ji
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China.
| |
Collapse
|