1
|
Santiago JL, Rivas E, Sanchez B, Buccolieri R, Vivanco MG, Martilli A, Martín F. Impact of single and combined local air pollution mitigation measures in an urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171441. [PMID: 38447731 DOI: 10.1016/j.scitotenv.2024.171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Urban air pollution is one of the most important environmental problems for human health and several strategies have been developed for its mitigation. The objective of this study is to assess the impact of single and combined mitigation measures on concentrations of air pollutants emitted by traffic at pedestrian level in the same urban environment. The effectiveness of different scenarios of green infrastructure (GI), the implementation of photocatalytic materials and traffic low emission zones (LEZ) are investigated, as well as several combinations of LEZ and GI. A wide set of scenarios is simulated through Computational Fluid Dynamics (CFD) modelling for two different wind directions (perpendicular (0°) and 45° wind directions). Wind flow for the BASE scenario without any measure implemented was previously evaluated using wind-tunnel measurements. Air pollutant concentrations for this scenario are compared with the results obtained from the different mitigation scenarios. Reduction of traffic emissions through LEZ is found to be the most effective single measure to improve local air quality. However, GI enhances the effects of LEZ, which makes the combination of LEZ + GI a very effective measure. The effectiveness of this combination depends on the GI layout, the intensity of emission reduction in the LEZ and the traffic diversion in streets surrounding the LEZ. These findings, in line with previous literature, suggest that the implementation of GI may increase air pollutant concentrations at pedestrian level for some cases. However, this study highlights that this negative effect on air quality can turn into positive when used in combination with reductions of local traffic emissions.
Collapse
Affiliation(s)
- J L Santiago
- Atmospheric Modelling Unit, Environmental Department, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain.
| | - E Rivas
- Atmospheric Modelling Unit, Environmental Department, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain; Vicerrectorado de Investigación, Innovación y Doctorado, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - B Sanchez
- Atmospheric Modelling Unit, Environmental Department, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - R Buccolieri
- Department of Environmental and Biological Sciences and technologies, Laboratory of Micrometeorology, University of Salento, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy; Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), S.P. Lecce-Monteroni km 1,2, 73100 Lecce, Italy
| | - M G Vivanco
- Atmospheric Modelling Unit, Environmental Department, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - A Martilli
- Atmospheric Modelling Unit, Environmental Department, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - F Martín
- Atmospheric Modelling Unit, Environmental Department, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
2
|
Jin MY, Zhang LY, Peng ZR, He HD, Kumar P, Gallagher J. The impact of dynamic traffic and wind conditions on green infrastructure performance to improve local air quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170211. [PMID: 38278279 DOI: 10.1016/j.scitotenv.2024.170211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Road traffic represents the dominant source of air pollution in urban street canyons. Local wind conditions greatly impacts the dispersion of these pollutants, yet street trees complicate ventilation in such settings. This case study adopts a novel modelling framework to account for dynamic traffic and wind conditions to identify the optimal street tree configuration that prevents a deterioration in air quality. Measurement data from a shallow to moderately deep street canyon (average 0.5 H/W aspect ratio and four lanes of 1-way traffic) in Dublin, Ireland was used for model calibration. The computational fluid dynamics (CFD) models were used to examine scenarios of dynamic traffic flows within each traffic lane with respect to its impact on local PM2.5 concentrations on adjacent footpaths, segmenting air quality monitoring results based on different wind conditions for model calibration. The monitoring campaign identified higher PM2.5 concentrations on the leeward (north) footpath, with average differences of 14.1 % (2.15 μg/m3) for early evening peaks. The modelling results demonstrated how street trees negatively impacted air quality on the windward footpath in parallel wind conditions regardless of leaf area density (LAD) or tree spacing, with mixed results observed on the leeward footpath in varying traffic flows and wind speeds. Perpendicular wind direction models and high wind speed exacerbated poor air quality on the windward footpath for all tree spacing models, while improving the air quality on the leeward footpath. The findings advise against planting high-LAD trees in this type of street, with a minimum of 20 m spacing for low-LAD trees to balance reducing local air pollution and ventilation capacity in the street. This study highlights the complexities of those in key decision-marking roles and demonstrates the need to adopt a transparent framework to ensure adequate modelling evidence can inform tree planting in city streets.
Collapse
Affiliation(s)
- Meng-Yi Jin
- Center for Intelligent Transportation Systems and Unmanned Aerial Systems Applications Research, State-Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland
| | - Le-Ying Zhang
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland
| | - Zhong-Ren Peng
- iAdapt: International Center for Adaptation Planning and Design, College of Design, Construction and Planning, University of Florida, FL 32611-5706, USA; Healthy Building Research Center, Ajman University, Ajman, United Arab Emirates
| | - Hong-Di He
- Center for Intelligent Transportation Systems and Unmanned Aerial Systems Applications Research, State-Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Prashant Kumar
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland; Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - John Gallagher
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland.
| |
Collapse
|
3
|
Jin Y, Yoon H. Evaluating planting strategies for outdoor thermal comfort in high-rise residential complexes: a computational fluid dynamics simulation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88641-88663. [PMID: 37440133 DOI: 10.1007/s11356-023-28526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
This study aims to examine the impact of planting strategies on improving thermal comfort in relation to the existing buildings within real high-rise residential complexes. Using numerical simulation via ENVI-met, we compare six planting scenarios characterized by two locational schemes-open-space planting and building-vicinity planting-and three tree quantities. The results highlight the importance of planting greater numbers of trees, and also of their locations, to moderate the thermal environment. The findings of the study demonstrated that increasing the number of trees in the open space by threefold of the advisory guidelines led to a significant reduction in the average air temperature by 0.87 °C, mean radiant temperature (MRT) by 11.00 °C, physiological equivalent temperature (PET) by 4.50 °C, and wind speed by 0.30 m/s. Planting the minimum number of trees under building-vicinity reduced air temperature by 0.07 °C, MRT by 2.48 °C, and PET by 0.92 °C, while showing a slight increase in wind speed of approximately 0.01 m/s. To achieve improvements in both thermal condition and air flow, we suggest planting rows of trees parallel to the prevailing wind direction in the ventilation corridors at some distance from buildings, to minimize overlap of shade from trees and from buildings. The findings of this study will provide useful guidelines for effective planting design in dense residential areas.
Collapse
Affiliation(s)
- Yeongeun Jin
- Department of Landscape Architecture and Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Integrated Major in Smart City Global Convergence, Seoul National University, Seoul, Republic of Korea
| | - Heeyeun Yoon
- Department of Landscape Architecture and Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Integrated Major in Smart City Global Convergence, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Impact of Different Combinations of Green Infrastructure Elements on Traffic-Related Pollutant Concentrations in Urban Areas. FORESTS 2022. [DOI: 10.3390/f13081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban air quality is a major problem for human health and green infrastructure (GI) is one of the potential mitigation measures used. However, the optimum GI design is still unclear. The purpose of this study is to provide some recommendation that could help in the design of the GI (mainly, the selection of locations and characteristics of trees and hedgerows). Aerodynamic and deposition effects of each vegetation element of different GI scenarios are investigated. Computational fluid dynamics (CFD) simulations of a wide set of GI scenarios in an idealized three-dimensional urban environment are performed. In conclusion, it was found that trees in the middle of the avenue (median strip) reduce street ventilation, and traffic-related pollutant concentrations increase, in particular for streets parallel to the wind. Trees in the sidewalks act as a barrier for pollutants emitted outside, specifically for a 45° wind direction. Regarding hedgerows, the most important effect on air quality is deposition and the effects of green walls and green roofs are limited to their proximity to the building surfaces.
Collapse
|
5
|
Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid. FORESTS 2022. [DOI: 10.3390/f13050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nature-based solutions and green urban infrastructures are becoming common measures in local air quality and climate strategies. However, there is a lack of analytical frameworks to anticipate the effect of such interventions on urban meteorology and air quality at a city scale. We present a modelling methodology that relies on the weather research and forecasting model (WRF) with the building effect parameterization (BEP) and the community multiscale air quality (CMAQ) model and apply it to assess envisaged plans involving vegetation in the Madrid (Spain) region. The study, developed within the VEGGAP Life project, includes the development of two detailed vegetation scenarios making use of Madrid’s municipality tree inventory (current situation) and future vegetation-related interventions. An annual simulation was performed for both scenarios (considering constant anthropogenic emissions) to identify (i) variations in surface temperature and the reasons for such changes, and (ii) implications on air-quality standards according to EU legislation for the main pollutants (PM10, PM2.5, NO2 and O3). Our results suggest that vegetation may have significant effects on urban meteorology due to changes induced in relevant surface properties such as albedo, roughness length or emissivity. We found a net-heating effect of around +0.18 °C when trees are introduced in dry, scarcely vegetated surfaces in the city outskirts. In turn, this enhances the planetary boundary layer height (PBLH), which brings about reductions in ambient concentrations of relevant pollutants such as NO2 (in the range of 0.5–0.8 µg m−3 for the annual mean, and 2–4 µg m−3 for the 19th highest 1 h value). Conversely, planting new trees in consolidated urban areas causes a cooling effect (up to −0.15 °C as an annual mean) that may slightly increase concentration levels due to less-effective vertical mixing and wind-speed reduction caused by increased roughness. This highlights the need to combine nature-based solutions with emission-reduction measures in Madrid.
Collapse
|
6
|
Low-Cost Air Quality Stations’ Capability to Integrate Reference Stations in Particulate Matter Dynamics Assessment. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Low-cost air quality stations can provide useful data that can offer a complete picture of urban air quality dynamics, especially when integrated with daily measurements from reference air quality stations. However, the success of such deployment depends on the measurement accuracy and the capability of resolving spatial and temporal gradients within a spatial domain. In this work, an ensemble of three low-cost stations named “AirQino” was deployed to monitor particulate matter (PM) concentrations over three different sites in an area affected by poor air quality conditions. Data of PM2.5 and PM10 concentrations were collected for about two years following a protocol based on field calibration and validation with a reference station. Results indicated that: (i) AirQino station measurements were accurate and stable during co-location periods over time (R2 = 0.5–0.83 and RMSE = 6.4–11.2 μg m−3; valid data: 87.7–95.7%), resolving current spatial and temporal gradients; (ii) spatial variability of anthropogenic emissions was mainly due to extensive use of wood for household heating; (iii) the high temporal resolution made it possible to detect time occurrence and strength of PM10 concentration peaks; (iv) the number of episodes above the 1-h threshold of 90 μg m−3 and their persistence were higher under urban and industrial sites compared to the rural area.
Collapse
|
7
|
Street Trees for Bicyclists, Pedestrians, and Vehicle Drivers: A Systematic Multimodal Review. URBAN SCIENCE 2021. [DOI: 10.3390/urbansci5030056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multimodal Complete Streets have emerged as a prominent aspiration of urban planning to ensure safe access for all users of streets including pedestrians, bicyclists, motorists, and transit users. Concurrently, municipal leaders are pursuing ambitious tree planting initiatives. These co-arising trends are potentially good news, as trees are important elements of livable cities and Complete Streets. Yet, street trees may have different health and safety benefits and disbenefits for various circulation modes. To advance a multimodal approach to research and practice, we undertook a systematic literature review with goals to (1) identify the scholarly literature addressing links between street trees, human health, and safety for pedestrians, bicyclists, and vehicle drivers; (2) depict the principal disciplines, themes, and conceptual scope of this research; and (3) discuss the implications for urban planning and design practice and research. This review drew upon 13 scholarly databases and yielded 63 relevant articles spanning 15 countries, of which 49 constituted original research. The systematic analysis covers eight research categories. Findings show exponential growth in related scholarship over the past two decades, especially for pedestrians. Journals oriented toward interdisciplinary planning and public health and safety are leading this rise, and benefits far outweigh disbenefits. Yet, there are multimodal tensions especially as it relates to the role of street trees in relationship to drivers and pedestrians. Implications for research and practice are discussed, with an eye towards governance, design, and equity.
Collapse
|
8
|
Huang Y, Lei C, Liu CH, Perez P, Forehead H, Kong S, Zhou JL. A review of strategies for mitigating roadside air pollution in urban street canyons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116971. [PMID: 33774541 DOI: 10.1016/j.envpol.2021.116971] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Urban street canyons formed by high-rise buildings restrict the dispersion of vehicle emissions, which pose severe health risks to the public by aggravating roadside air quality. However, this issue is often overlooked in city planning. This paper reviews the mechanisms controlling vehicle emission dispersion in urban street canyons and the strategies for managing roadside air pollution. Studies have shown that air pollution hotspots are not all attributed to heavy traffic and proper urban design can mitigate air pollution. The key factors include traffic conditions, canyon geometry, weather conditions and chemical reactions. Two categories of mitigation strategies are identified, namely traffic interventions and city planning. Popular traffic interventions for street canyons include low emission zones and congestion charges which can moderately improve roadside air quality. In comparison, city planning in terms of building geometry can significantly promote pollutant dispersion in street canyons. General design guidelines, such as lower canyon aspect ratio, alignment between streets and prevailing winds, non-uniform building heights and ground-level building porosity, may be encompassed in new development. Concurrently, in-street barriers are widely applicable to rectify the poor roadside air quality in existing street canyons. They are broadly classified into porous (e.g. trees and hedges) and solid (e.g. kerbside parked cars, noise fences and viaducts) barriers that utilize their aerodynamic advantages to ease roadside air pollution. Post-evaluations are needed to review these strategies by real-world field experiments and more detailed modelling in the practical perspective.
Collapse
Affiliation(s)
- Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Chengwang Lei
- Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, NSW, 2006, Australia
| | - Chun-Ho Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Pascal Perez
- SMART Infrastructure Facility, University of Wollongong, NSW, 2522, Australia
| | - Hugh Forehead
- SMART Infrastructure Facility, University of Wollongong, NSW, 2522, Australia
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan, 430074, China
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
9
|
Urban Vegetation in Air Quality Management: A Review and Policy Framework. SUSTAINABILITY 2020. [DOI: 10.3390/su12031258] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent episodes of high air pollution concentration levels in many Polish cities indicate the urgent need for policy change and for the integration of various aspects of urban development into a common platform for local air quality management. In this article, the focus was placed on the prospects of improving urban air quality through proper design and protection of vegetation systems within local spatial planning strategies. Recent studies regarding the mitigation of air pollution by urban greenery due to deposition and aerodynamic effects were reviewed, with special attention given to the design guidelines resulting from these studies and their applicability in the process of urban planning. The conclusions drawn from the review were used to conduct three case studies: in Gdańsk, Warsaw, and Poznań, Poland. The existing local urban planning regulations for the management of urban greenery were critically evaluated in relation to the findings of the review. The results indicate that the current knowledge regarding the improvement of urban air quality by vegetation is not applied in the process of urban planning to a sufficient degree. Some recommendations for alternative provisions were discussed.
Collapse
|