1
|
Wang L, Yan J, Saiz-Lopez A, Jiang B, Yue F, Yu X, Xie Z. Mixing state and distribution of iodine-containing particles in Arctic Ocean during summertime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155030. [PMID: 35390390 DOI: 10.1016/j.scitotenv.2022.155030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Iodine chemistry plays a key role in ozone destruction and new aerosol formation in the marine boundary layer (MBL), especially in polar regions. We investigated iodine-containing particles (0.2-2 μm) in the Arctic Ocean using a ship-based single particle aerosol mass spectrometer from July to August 2017. Seven main particle types were identified: dust, biomass combustion particles, sea salt, organic S, aromatics, hydrocarbon-like compounds, and amines. The number fraction of iodine-containing particles was higher inside the Arctic Circle (>65°N) than outside (55-65°N). According to the air mass back trajectories, the latitudinal distribution of iodine-containing particles can be mainly attributed to iodine emissions from the sea ice edge region. Diurnal trends were found, especially during the second half of cruise, with peak iodine-containing particle number fractions during low-light conditions and relatively low number fractions at midday. These results imply that solar radiation plays a significant role in modulating particulate iodine in the Arctic atmosphere.
Collapse
Affiliation(s)
- Longquan Wang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinpei Yan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Bei Jiang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fange Yue
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiawei Yu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we present the aerosol optical properties and radiative forcing (RF) of the tropospheric and stratospheric smoke layers, observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, during the extraordinary Australian biomass burning (BB) event in 2019–2020. These BB layers were studied and analyzed within the longitude range 140° E–20° W and the latitude band 20°–60° S, as they were gradually transported from the Australian banks to the South American continent. These layers were found to be trapped within the Andes circulation, staying for longer time periods in the same longitude region. The BB aerosols reached altitudes even up to 22 km amsl., and regarding their optical properties, they were found to be nearly spherical (particle linear depolarization ratio (PLDR) < 0.10) in the troposphere; while, in the stratosphere, they were more depolarizing with PLDR values reaching up to 0.20. Fine and ultrafine smoke particles were dominant in the stratosphere, according to the observed Ångström exponent, related to the backscatter coefficients obtained by the pair of wavelengths 532 and 1064 nm (Åb up to 3), in contrast to the Åb values in the troposphere (Åb < 1) indicative of the presence of coarser particles. As the aerosols fend off the source, towards North America, a slightly descending trend was observed in the tropospheric Åb values, while the stratospheric ones were lightly increased. A maximum aerosol optical depth (AOD) value of 0.54 was recorded in the lower troposphere over the fire spots, while, in the stratosphere, AOD values up to 0.29 were observed. Sharp changes of carbon monoxide (CO) and ozone (O3) concentrations were also recorded by the Copernicus Atmosphere Monitoring Service (CAMS) in various atmospheric heights over the study region, associated with fire smoke emissions. The tropospheric smoke layers were found to have a negative mean radiative effect, ranging from −12.83 W/m2 at the top of the atmosphere (TOA), to −32.22 W/m2 on the surface (SRF), while the radiative effect of the stratospheric smoke was estimated between −7.36 at the TOA to −18.51 W/m2 at the SRF.
Collapse
|
3
|
A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model. REMOTE SENSING 2022. [DOI: 10.3390/rs14081949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In this study we present a pre-operational forecasting assimilation system of different types of aerosols. This system has been developed within the chemistry-transport model of Météo-France, MOCAGE, and uses the assimilation of the Aerosol Optical Depth (AOD) from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard both Terra and Aqua. It is based on the AOD assimilation system within the MOCAGE model. It operates on a daily basis with a global configuration of 1∘×1∘ (longitude × latitude). The motivation of such a development is the capability to predict and anticipate extreme events and their impacts on the air quality and the aviation safety in the case of a huge volcanic eruption. The validation of the pre-operational system outputs has been done in terms of AOD compared against the global AERONET observations within two complete years (January 2018–December 2019). The comparison between both datasets shows that the correlation between the MODIS assimilated outputs and AERONET over the whole period of study is 0.77, whereas the biases and the RMSE (Root Mean Square Error) are 0.006 and 0.135, respectively. The ability of the pre-operational system to predict extreme events in near real time such as the desert dust transport and the propagation of the biomass burning was tested and evaluated. We particularly presented and documented the desert dust outbreak which occurred over Greece in late March 2018 as well as the wildfire event which happened on Australia between July 2019 and February 2020. We only presented these two events, but globally the assimilation chain has shown that it is capable of predicting desert dust events and biomass burning aerosols which happen all over the globe.
Collapse
|
4
|
On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study. REMOTE SENSING 2022. [DOI: 10.3390/rs14020313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Boreal fires have increased during the last years and are projected to become more intense and frequent as a consequence of climate change. Wildfires produce a wide range of effects on the Arctic climate and ecosystem, and understanding these effects is crucial for predicting the future evolution of the Arctic region. This study focuses on the impact of the long-range transport of biomass-burning aerosol into the atmosphere and the corresponding radiative perturbation in the shortwave frequency range. As a case study, we investigate an intense biomass-burning (BB) event which took place in summer 2017 in Canada and subsequent northeastward transport of gases and particles in the plume leading to exceptionally high values (0.86) of Aerosol Optical Depth (AOD) at 500 nm measured in northwestern Greenland on 21 August 2017. This work characterizes the BB plume measured at the Thule High Arctic Atmospheric Observatory (THAAO; 76.53∘N, 68.74∘W) in August 2017 by assessing the associated shortwave aerosol direct radiative impact over the THAAO and extending this evaluation over the broader region (60∘N–80∘N, 110∘W–0∘E). The radiative transfer simulations with MODTRAN6.0 estimated an aerosol heating rate of up to 0.5 K/day in the upper aerosol layer (8–12 km). The direct aerosol radiative effect (ARE) vertical profile shows a maximum negative value of −45.4 Wm−2 for a 78∘ solar zenith angle above THAAO at 3 km altitude. A cumulative surface ARE of −127.5 TW is estimated to have occurred on 21 August 2017 over a portion (∼3.1×106 km2) of the considered domain (60∘N–80∘N, 110∘W–0∘E). ARE regional mean daily values over the same portion of the domain vary between −65 and −25 Wm−2. Although this is a limited temporal event, this effect can have significant influence on the Arctic radiative budget, especially in the anticipated scenario of increasing wildfires.
Collapse
|
5
|
Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). ATMOSPHERE 2021. [DOI: 10.3390/atmos12101254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We assess the 40-year climatological clear-sky global direct radiative effect (DRE) of five main aerosol types using the MERRA-2 reanalysis and a spectral radiative transfer model (FORTH). The study takes advantage of aerosol-speciated, spectrally and vertically resolved optical properties over the period 1980–2019, to accurately determine the aerosol DREs, emphasizing the attribution of the total DREs to each aerosol type. The results show that aerosols radiatively cool the Earth’s surface and heat its atmosphere by 7.56 and 2.35 Wm−2, respectively, overall cooling the planet by 5.21 Wm−2, partly counterbalancing the anthropogenic greenhouse global warming during 1980–2019. These DRE values differ significantly in terms of magnitude, and even sign, among the aerosol types (sulfate and black carbon aerosols cool and heat the planet by 1.88 and 0.19 Wm−2, respectively), the hemispheres (larger NH than SH values), the surface cover type (larger land than ocean values) or the seasons (larger values in local spring and summer), while considerable inter-decadal changes are evident. These DRE differences are even larger by up to an order of magnitude on a regional scale, highlighting the important role of the aerosol direct radiative effect for local and global climate.
Collapse
|
6
|
Ruman M, Kosek K, Koziol K, Ciepły M, Kozak-Dylewska K, Polkowska Ż. A High-Arctic flow-through lake system hydrochemical changes: Revvatnet, southwestern Svalbard (years 2010-2018). CHEMOSPHERE 2021; 275:130046. [PMID: 33676272 DOI: 10.1016/j.chemosphere.2021.130046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/10/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Lake ecosystems are strongly coupled to features of their surrounding landscapes such as geomorphology, lithology, vegetation and hydrological characteristics. In the 2010-2018 summer seasons, we investigated an Arctic flow-through lake system Revvatnet, located in the vicinity of the coastal zone of Hornsund fjord in Svalbard, characterising its hydrological properties and the chemical composition of its waters. The lake system comprises of a small upper lake and a large lower one, the latter cone-shaped, with -29.1 m maximum depth. With near-neutral pH (full range 6.5-8.4) and low EC (7-147 μS cm-1), the lake has rather similar characteristics to many Arctic lakes. Metal and metalloid concentrations were either similar across the lake system or increased downstream (except Zn, which has important ore-bearing veins in the upper part of the catchment), which is consistent with the likely slow dissolution of suspended particles within the lakes. The ∑PAHs concentrations ranged from <MDL to 2151 ng L-1, and according to the indicator PAHs concentration ratios, they originated from a mixture of combustion processes (they were not petrogenic). Principal component analysis showed that seasonal variability was the most characteristic feature of the chemical composition of these waters, although there appear to be consistent changes with time (sampling year) as well. Future research should explore the occurrence of high maxima in the concentrations of priority pollutants, such as PAHs, metals and metalloids (e.g. As).
Collapse
Affiliation(s)
- Marek Ruman
- Faculty of Natural Sciences, University of Silesia, 60 Będzińska St., Sosnowiec, 41-200, Poland
| | - Klaudia Kosek
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk, 80-233, Poland.
| | - Krystyna Koziol
- Institute of Geography, Kazimierz Wielki University, 8 Kościelecki Sq., Bydgoszcz, 85-033, Poland
| | - Michał Ciepły
- Faculty of Natural Sciences, University of Silesia, 60 Będzińska St., Sosnowiec, 41-200, Poland
| | - Katarzyna Kozak-Dylewska
- Polpharma Biologics S.A., Gdansk Science & Technology Park, 3 Trzy Lipy St., Gdansk, 80-172, Poland
| | - Żaneta Polkowska
- Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk, 80-233, Poland
| |
Collapse
|
7
|
Aerosol Characterization during the Summer 2017 Huge Fire Event on Mount Vesuvius (Italy) by Remote Sensing and In Situ Observations. REMOTE SENSING 2021. [DOI: 10.3390/rs13102001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy), dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of Mediterranean scrub. The fires affected a very large area of the Vesuvius National Park and the smoke was driven by winds towards the city of Naples, causing daily peak values of particulate matter (PM) concentrations at ground level higher than the limit of the EU air quality directive. The smoke plume spreading over the area of Naples in this period was characterized by active (lidar) and passive (sun photometer) remote sensing as well as near-surface (optical particle counter) observational techniques. The measurements allowed us to follow both the PM variation at ground level and the vertical profile of fresh biomass burning aerosol as well as to analyze the optical and microphysical properties. The results evidenced the presence of a layer of fine mode aerosol with large mean values of optical depth (AOD > 0.25) and Ångstrom exponent (γ > 1.5) above the observational site. Moreover, the lidar ratio and aerosol linear depolarization obtained from the lidar observations were about 40 sr and 4%, respectively, consistent with the presence of biomass burning aerosol in the atmosphere.
Collapse
|
8
|
Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we analysed aerosol measurements from lidar and PM10 samples around the European Arctic site of Ny-Ålesund during late winter–early spring 2019. Lidar observations above 700 m revealed time-independent values for the aerosol backscatter coefficient (ββ), colour ratio (CR), linear particle depolarisation ratio (δδ) and lidar ratio (LR) from January to April. In contrast to previous years, in 2019 the early springtime backscatter increase in the troposphere, linked to Arctic haze, was not observed. In situ nss-sulphate (nss-SO42−) concentration was measured both at a coastal (Gruvebadet) and a mountain (Zeppelin) station, a few kilometres apart. As we employed different measurement techniques at sites embedded in complex orography, we investigated their agreement. From the lidar perspective, the aerosol load (indicated by ββ) above 700 m changed by less than a factor of 3.5. On the contrary, the daily nss-SO42− concentration erratically changed by a factor of 25 (from 0.1 to 2.5 ng m−3) both at Gruvebadet and Zeppelin station, with the latter mostly lying above the boundary layer. Moreover, daily nss-SO42− concentration was remarkably variable (correlation about 0.7 between the sites), despite its long-range origin. However, on a seasonal average basis the in situ sites agreed very well. Therefore, it can be argued that nss-SO42− advection mainly takes place in the lowest free troposphere, while under complex orography it is mixed downwards by local boundary layer processes. Our study suggests that at Arctic sites with complex orography ground-based aerosol properties show higher temporal variability compared to the free troposphere. This implies that the comparison between remote sensing and in situ observations might be more reasonable on longer time scales, i.e., monthly and seasonal basis even for nearby sites.
Collapse
|
9
|
Characterization of Stratospheric Smoke Particles over the Antarctica by Remote Sensing Instruments. REMOTE SENSING 2020. [DOI: 10.3390/rs12223769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Australian smoke from the extraordinary biomass burning in December 2019 was observed over Marambio, Antarctica from the 7th to the 10th January, 2020. The smoke plume was transported thousands of kilometers over the Pacific Ocean, and reached the Antarctic Peninsula at a hight of 13 km, as determined by satellite lidar observations. The proposed origin and trajectory of the aerosol are supported by back-trajectory model analyses. Ground-based Sun–Sky–Moon photometer belonging to the Aerosol Robotic Network (AERONET) measured aerosol optical depth (500 nm wavelength) above 0.3, which is unprecedented for the site. Inversion of sky radiances provide the optical and microphysical properties of the smoke over Marambio. The AERONET data near the fire origin in Tumbarumba, Australia, was used to investigate the changes in the measured aerosol properties after transport and ageing. The analysis shows an increase in the fine mode particle radius and a reduction in absorption (increase in the single scattering albedo). The available long-term AOD data series at Marambio suggests that smoke particles could have remained over Antarctica for several weeks after the analyzed event.
Collapse
|
10
|
Does the Intra-Arctic Modification of Long-Range Transported Aerosol Affect the Local Radiative Budget? (A Case Study). REMOTE SENSING 2020. [DOI: 10.3390/rs12132112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of aerosol spatio-temporal variability on the Arctic radiative budget is not fully constrained. This case study focuses on the intra-Arctic modification of long-range transported aerosol and its direct aerosol radiative effect (ARE). Different types of air-borne and ground-based remote sensing observations (from Lidar and sun-photometer) revealed a high tropospheric aerosol transport episode over two parts of the European Arctic in April 2018. By incorporating the derived aerosol optical and microphysical properties into a radiative transfer model, we assessed the ARE over the two locations. Our study displayed that even in neighboring Arctic upper tropospheric levels, aged aerosol was transformed due to the interplay of removal processes (nucleation scavenging and dry deposition) and alteration of the aerosol source regions (northeast Asia and north Europe). Along the intra-Arctic transport, the coarse aerosol mode was depleted and the visible wavelength Lidar ratio (LR) increased significantly (from 15 to 64–82 sr). However, the aerosol modifications were not reflected on the ARE. More specifically, the short-wave (SW) atmospheric column ARE amounted to +4.4 - +4.9 W m−2 over the ice-covered Fram Strait and +4.5 W m−2 over the snow-covered Ny-Ålesund. Over both locations, top-of-atmosphere (TOA) warming was accompanied by surface cooling. These similarities can be attributed to the predominant accumulation mode, which drives the SW radiative budget, as well as to the similar layer altitude, solar geometry, and surface albedo conditions over both locations. However, in the context of retreating sea ice, the ARE may change even along individual transport episodes due to the ice albedo feedback.
Collapse
|
11
|
Michalski R, Pecyna-Utylska P, Kernert J. Ion Chromatography and Related Techniques in Carboxylic Acids Analysis. Crit Rev Anal Chem 2020; 51:549-564. [PMID: 32295398 DOI: 10.1080/10408347.2020.1750340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ion chromatography (IC) is a variant of high-performance liquid chromatography. Its most important applications include the determination of inorganic and some organic ions in different types of liquid samples. The development of new types of stationary phases with various separation mechanisms, sample preparation methods, and detection modes has extended ion chromatography applications to practically all ionic and ionogenic substances, as well as extending sample types to include gaseous and solid matrices. Carboxylic acids and their derivatives are examples of compounds that are becoming more frequently analyzed using ion chromatography and related techniques. Their occurrence in the environment can be natural or anthropogenic in origin and are broadly used in various industries and daily life. This article discusses the applications of ion chromatography and related techniques for the determination of carboxylic acids in different types of liquid, solid, and gaseous matrices. It also presents detailed methodologies and literature data on this subject from the last 15 years.
Collapse
Affiliation(s)
- Rajmund Michalski
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
| | | | - Joanna Kernert
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|