1
|
Long Y, Zhao Y, Sun N, Xu Y, Xue W, Yin S. Summer urban synergistic effects of anthropogenic pollutants and low-molecular-weight biogenic volatile organic compounds on secondary organic aerosol presented by PM 1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178572. [PMID: 39848158 DOI: 10.1016/j.scitotenv.2025.178572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Biogenic volatile organic compounds (BVOCs) are emitted by urban vegetation and can interact with anthropogenic pollutants to generate secondary organic aerosols (SOA) that are atmospheric pollutants in urban environments. In urban forests, SOA comprise up to 90 % of all fine aerosols (particulate matter smaller than 1 μm [PM1]) in the summer. PM1 can greatly affect urban air quality and public health. The formation of SOA is affected by both environmental conditions and the presence of light BVOCs-predominantly isoprene, pentene, butene, and 1,3-butadiene. These factors exhibit complex interactions and nonlinear relationships. In this study, high-frequency field observations were conducted in two urban forest sites in Shanghai during the summers of 2022 and 2023. Data were collected regarding the concentrations of light BVOCs; SOA; and the anthropogenic pollutants NOx, O3, and SO2, as well as solar radiation, temperature, and humidity. A model was developed to identify the synergistic effects of anthropogenic pollutants, meteorological factors, and BVOCs on SOA concentrations. Increases in short-term SOA concentrations were most strongly correlated with O3, which had a synergistic effect alongside NOx. The empirical analysis indicated that 0.144-0.585 μg/m3 SOA is produced per μg/m3 of urban BVOCs but can be augmented by 0.072-0.491 μg/m3 in the presence of O3, NOx, and SO2. However, long-term feedback mechanisms in urban forests contribute to the maintenance of stable SOA concentrations. The field data and models in this study provide a scientific basis for regulating atmospheric pollutants in urban forests under real-world conditions and offer intuitive and straightforward solutions for managing complex urban air pollution. Synopsis: Anthropogenic pollutants NOx, O3, and SO2 boost BVOCs' SOA production in summer urban forests. Short-term, pollutants are restrictive factors in SOA generation, but long-term forest SOA production exhibits negative feedback.
Collapse
Affiliation(s)
- Yuchong Long
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yu Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Wenkai Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
2
|
Lu M. Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system? Heliyon 2024; 10:e30322. [PMID: 38756557 PMCID: PMC11096952 DOI: 10.1016/j.heliyon.2024.e30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
It is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health. We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.
Collapse
Affiliation(s)
- MengYu Lu
- HEFEI XIAODOUKOU HEALTH TECH CO LTD, China
| |
Collapse
|
3
|
Sbai SE, Bentayeb F, Yin H. Atmospheric pollutants response to the emission reduction and meteorology during the COVID-19 lockdown in the north of Africa (Morocco). STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 36:3769-3784. [PMID: 35498271 PMCID: PMC9033931 DOI: 10.1007/s00477-022-02224-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Climate and air quality change due to COVID-19 lockdown (LCD) are extremely concerned subjects of several research recently. The contribution of meteorological factors and emission reduction to air pollution change over the north of Morocco has been investigated in this study using the framework generalized additive models, that have been proved to be a robust technique for the environmental data sets, focusing on main atmospheric pollutants in the region including ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter (PM2.5 and PM10), secondary inorganic aerosols (SIA), nom-methane volatile organic compounds and carbon monoxide (CO) from the regional air pollution dataset of the Copernicus Atmosphere Monitoring Service. Our results, indicate that secondary air pollutants (PM2.5, PM10 and O3) are more influenced by metrological factors and the other air pollutants reported by this study (NO2 and SO2). We show a negative effect for PBHL, total precipitation and NW10M on PM (PM2.5 and PM10 ), this meteorological parameters contribute to decrease in PM2.5 by 9, 2 and 9% respectively, before LCD and 8, 1 and 5% respectively during LCD. However, a positive marginal effect was found for SAT, Irradiance and RH that contribute to increase PM2.5 by 9, 12 and 18% respectively, before LCD and 17, 54 and 34% respectively during LCD. We found also that meteorological factors contribute to O3, PM2.5, PM10 and SIA average mass concentration by 22, 5, 3 and 34% before LCD and by 28, 19, 5 and 42% during LCD respectively. The increase in meteorological factors marginal effect during LCD shows the contribution of photochemical oxidation to air pollution due to increase in atmospheric oxidant (O3 and OH radical) during LCD, which can explain the response of PM to emission reduction. This study indicates that PM (PM2.5, PM10) has more controlled by SO2 due to the formation of sulfate particles especially under high oxidants level. The positive correlation between westward wind at 10 m (WW10M), Northward Wind at 10 m (NW10M) and PM indicates the implication of sea salt particles transported from Mediterranean Sea and Atlantic Ocean. The Ozone mass concentration shows a positive trend with Irradiance, Total and SAT during LCD; because temperature and irradiance enhance tropospheric ozone formation via photochemical reaction.This study shows the contribution of atmospheric oxidation capacity to air pollution change. Supplementary Information The online version contains supplementary material available at 10.1007/s00477-022-02224-z.
Collapse
Affiliation(s)
- Salah Eddine Sbai
- Department of Physics, Laboratoires de Physique des Hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco
| | - Farida Bentayeb
- Department of Physics, Laboratoires de Physique des Hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco
| | - Hao Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
- University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
4
|
Bai J, Zong X, Lanconelli C, Lupi A, Driemel A, Vitale V, Li K, Song T. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053084. [PMID: 35270776 PMCID: PMC8910517 DOI: 10.3390/ijerph19053084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
An empirical model to predict hourly global solar irradiance under all-sky conditions as a function of absorbing and scattering factors has been applied at the Dome C station in the Antarctic, using measured solar radiation and meteorological variables. The calculated hourly global solar irradiance agrees well with measurements at the ground in 2008–2011 (the model development period) and at the top of the atmosphere (TOA). This model is applied to compute global solar irradiance at the ground and its extinction in the atmosphere caused by absorbing and scattering substances during the 2006–2016 period. A sensitivity study shows that the responses of global solar irradiance to changes in water vapor and scattering factors (expressed by water vapor pressure and S/G, respectively; S and G are diffuse and global solar irradiance, respectively) are nonlinear and negative, and that global solar irradiance is more sensitive to changes in scattering than to changes in water vapor. Applying this empirical model, the albedos at the TOA and the surface in 2006–2016 are estimated and found to agree with the satellite-based retrievals. During 2006–2016, the annual mean observed and estimated global solar exposures decreased by 0.05% and 0.09%, respectively, and the diffuse exposure increased by 0.68% per year, associated with the yearly increase of the S/G ratio by 0.57% and the water vapor pressure by 1.46%. The annual mean air temperature increased by about 1.80 °C over the ten years, and agrees with the warming trends for all of Antarctica. The annual averages were 316.49 Wm−2 for the calculated global solar radiation, 0.332 for S/G, −46.23 °C for the air temperature and 0.10 hPa for the water vapor pressure. The annual mean losses of solar exposure due to absorbing and scattering substances and the total loss were 4.02, 0.19 and 4.21 MJ m−2, respectively. The annual mean absorbing loss was much larger than the scattering loss; their contributions to the total loss were 95.49% and 4.51%, respectively, indicating that absorbing substances are dominant and play essential roles. The annual absorbing, scattering and total losses increased by 0.01%, 0.39% and 0.28% per year, respectively. The estimated and satellite-retrieved annual albedos increased at the surface. The mechanisms of air-temperature change at two pole sites, as well as a mid-latitude site, are discussed.
Collapse
Affiliation(s)
- Jianhui Bai
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
- Correspondence:
| | - Xuemei Zong
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
| | | | - Angelo Lupi
- Institute of Polar Sciences (CNR-ISP), National Research Council of Italy, Via P. Gobetti 101, 40129 Bologna, Italy; (A.L.); (V.V.)
| | - Amelie Driemel
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12, 27570 Bremerhaven, Germany;
| | - Vito Vitale
- Institute of Polar Sciences (CNR-ISP), National Research Council of Italy, Via P. Gobetti 101, 40129 Bologna, Italy; (A.L.); (V.V.)
| | - Kaili Li
- Nanjing Zhongkehuaxing Emergency Science and Technology Research Institute, Nanjing 211899, China; (K.L.); (T.S.)
| | - Tao Song
- Nanjing Zhongkehuaxing Emergency Science and Technology Research Institute, Nanjing 211899, China; (K.L.); (T.S.)
| |
Collapse
|