1
|
Yang S, Fang M, Jin L, Shao Z, Zhang X, Han Y, Du B, Yang D, Gu AZ, Chen Y, Li D, Chen J. In Situ and Rapid Toxicity Assessment of Air Pollution by Self-Assembly Passive Colonization Hydrogel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18109-18121. [PMID: 39248495 DOI: 10.1021/acs.est.4c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Air pollution is a leading environmental health risk factor, and in situ toxicity assessment is urgently needed. Bacteria-based bioassays offer cost-effective and rapid toxicity assessments. However, the application of these bioassays for air toxicity assessment has been challenging, due to the instability of bacterial survival and functionality when directly exposed to air pollutants. Here, we developed an approach employing self-assembly passive colonization hydrogel (SAPCH) for in situ air toxicity assessment. The SAPCH features a core-shell structure, enabling the quantitatively immobilization of bacteria on its shell while continuously provides nutrients from its core. An antimicrobial polyelectrolyte layer between the core and shell confines bacteria to the air-liquid interface, synchronizing bacterial survival with exposure to air pollutants. The SAPCH immobilized a battery of natural and recombinant luminescent bacteria, enabling simultaneous detection of various toxicological endpoints (cytotoxicity, genotoxicity and oxidative stress) of air pollutants within 2 h. Its sensitivity was 3-5 orders of magnitude greater than that of traditional liquid-phase toxicity testing, and successfully evaluating the toxicity of volatile organic compounds and combustion smoke. This study presents a method for in situ, rapid, and economical toxicity assessment of air pollution, making a significant contribution to future air quality monitoring and control.
Collapse
Affiliation(s)
- Shuo Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 99907 Kowloon, Hong Kong
| | - Zhiwei Shao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Han
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
| | - Banghao Du
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Dayong Yang
- Department of Chemistry, Fudan University, 200438 Shanghai, China
| | - April Z Gu
- Atkinson Center for a Sustainable Future Faculty Fellow Civil and Environmental Engineering, Cornell University, Ithaca, New York State 14853, United States
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Karthick Raja Namasivayam S, Priyanka S, Lavanya M, Krithika Shree S, Francis AL, Avinash GP, Arvind Bharani RS, Kavisri M, Moovendhan M. A review on vulnerable atmospheric aerosol nanoparticles: Sources, impact on the health, ecosystem and management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121644. [PMID: 38963970 DOI: 10.1016/j.jenvman.2024.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The Earth's atmosphere contains ultrafine particles known as aerosols, which can be either liquid or solid particles suspended in gas. These aerosols originate from both natural sources and human activities, termed primary and secondary sources respectively. They have significant impacts on the environment, particularly when they transform into ultrafine particles or aerosol nanoparticles, due to their extremely fine atomic structure. With this context in mind, this review aims to elucidate the fundamentals of atmospheric-derived aerosol nanoparticles, covering their various sources, impacts, and methods for control and management. Natural sources such as marine, volcanic, dust, and bioaerosols are discussed, along with anthropogenic sources like the combustion of fossil fuels, biomass, and industrial waste. Aerosol nanoparticles can have several detrimental effects on ecosystems, prompting the exploration and analysis of eco-friendly, sustainable technologies for their removal or mitigation.Despite the adverse effects highlighted in the review, attention is also given to the generation of aerosol-derived atmospheric nanoparticles from biomass sources. This finding provides valuable scientific evidence and background for researchers in fields such as epidemiology, aerobiology, and toxicology, particularly concerning atmospheric nanoparticles.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - S Priyanka
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - M Lavanya
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - S Krithika Shree
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - A L Francis
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - G P Avinash
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - R S Arvind Bharani
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - M Kavisri
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
3
|
Fang Z, Lai A, Dongmei Cai, Chunlin Li, Carmieli R, Chen J, Wang X, Rudich Y. Secondary Organic Aerosol Generated from Biomass Burning Emitted Phenolic Compounds: Oxidative Potential, Reactive Oxygen Species, and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8194-8206. [PMID: 38683689 PMCID: PMC11097630 DOI: 10.1021/acs.est.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.
Collapse
Affiliation(s)
- Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Alexandra Lai
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Dongmei Cai
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- College
of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jianmin Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinming Wang
- State
Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory
of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Clemente Á, Yubero E, Nicolás JF, Crespo J, Galindo N. Organic tracers in fine and coarse aerosols at an urban Mediterranean site: contribution of biomass burning and biogenic emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25216-25226. [PMID: 38468002 PMCID: PMC11023962 DOI: 10.1007/s11356-024-32789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The concentrations of anhydrosugars (levoglucosan, mannosan, and galactosan), polyols (inositol, xylitol, sorbitol, and mannitol), and glucose were measured in PM1 and PM10 samples collected during 1 year at a traffic site in the city of Elche (southeastern Spain). Levoglucosan, mannosan, and galactosan were mainly found in the PM1 fraction since they are mainly emitted from biomass burning (BB). Likewise, inositol, xylitol, and sorbitol were primarily distributed in the fine mode, suggesting a non-negligible contribution from anthropogenic sources (specifically BB) to the levels of these compounds. This was supported by their seasonal variations, with higher concentrations during winter, and their correlations with levoglucosan concentrations. The average contributions of biomass burning and biogenic sources to OC and PM levels were calculated using levoglucosan and mannitol, respectively, as tracers. On average, BB accounted for 12% and 16% of the OC in PM1 and PM10, while the estimated contribution of fungal spores to OC and PM10 levels was 1.2 and 0.8%, respectively. The results of the present study suggest that, at least in the study area, most sugar alcohols are not appropriate tracers of biogenic emissions.
Collapse
Affiliation(s)
- Álvaro Clemente
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Eduardo Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Jose F Nicolás
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Javier Crespo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Nuria Galindo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| |
Collapse
|
5
|
Aghaei Y, Badami MM, Tohidi R, Subramanian PSG, Boffi R, Borgini A, De Marco C, Contiero P, Ruprecht AA, Verma V, Chatila T, Sioutas C. The Impact of Russia-Ukraine geopolitical conflict on the air quality and toxicological properties of ambient PM 2.5 in Milan, Italy. Sci Rep 2024; 14:5996. [PMID: 38472234 PMCID: PMC10933473 DOI: 10.1038/s41598-024-55292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The geopolitical conflict between Russia and Ukraine has disrupted Europe's natural gas supplies, driving up gas prices and leading to a shift towards biomass for residential heating during colder months. This study assessed the consequent air quality and toxicological impacts in Milan, Italy, focusing on fine particulate matter (PM2.5, dp < 2.5 μm) emissions. PM2.5 samples were analyzed for their chemical composition and assessed for their oxidative potential using the dithiothreitol (DTT) assay across three periods reflecting residential heating deployment (RHD): pre-RHD, intra-RHD, and post-RHD periods. During the intra-RHD period, PM2.5 levels were significantly higher than those in other periods, with concentrations reaching 57.94 ± 7.57 μg/m3, indicating a deterioration in air quality. Moreover, levoglucosan was 9.2 times higher during the intra-RHD period compared to the pre-RHD period, correlating with elevated levels of elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs). These findings were compared with previous local studies before the conflict, underscoring a significant rise in biomass-related emissions. DTT assay levels during the intra-RHD were 2.1 times higher than those observed during the same period in 2022, strongly correlating with biomass burning emissions. Our findings highlight the necessity for policies to mitigate the indirect health effects of increased biomass burning emissions due to the energy crisis triggered by the geopolitical conflict.
Collapse
Affiliation(s)
- Yashar Aghaei
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA
| | - Mohammad Mahdi Badami
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA
| | - Ramin Tohidi
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA
| | - P S Ganesh Subramanian
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Roberto Boffi
- Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | | | | | - Paolo Contiero
- Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | - Ario Alberto Ruprecht
- Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
- International Society of Doctors for Environment (ISDE), Arezzo, Italy
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Talal Chatila
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Al-Abadleh HA. Iron content in aerosol particles and its impact on atmospheric chemistry. Chem Commun (Camb) 2024. [PMID: 38268472 DOI: 10.1039/d3cc04614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atmospheric aerosol effects on ecological and human health remain uncertain due to their highly complex and evolving nature when suspended in air. Atmospheric chemistry, global climate/oceanic and health exposure models need to incorporate more realistic representations of aerosol particles, especially their bulk and surface chemistry, to account for the evolution in aerosol physicochemical properties with time. (Photo)chemistry driven by iron (Fe) in atmospheric aerosol particles from natural and anthropogenic sources remains limited in these models, particularly under aerosol liquid water conditions. In this feature article, recent advances from our work on Fe (photo)reactivity in multicomponent aerosol systems are highlighted. More specifically, reactions of soluble Fe with aqueous extracts of biomass burning organic aerosols and proxies of humic like substances leading to brown carbon formation are presented. Some of these reactions produced nitrogen-containing gaseous and condensed phase products. For comparison, results from these bulk aqueous phase chemical studies were compared to those from heterogeneous reactions simulating atmospheric aging of Fe-containing reference materials. These materials include Arizona test dust (AZTD) and combustion fly ash particles. Also, dissolution of Fe and other trace elements is presented from simulated human exposure experiments to highlight the impact of aerosol aging on levels of trace metals. The impacts of these chemical reactions on aerosol optical, hygroscopic and morphological properties are also emphasized in light of their importance to aerosol-radiation and aerosol-cloud interactions, in addition to biogeochemical processes at the sea/ocean surface microlayer upon deposition. Future directions for laboratory studies on Fe-driven multiphase chemistry are proposed to advance knowledge and encourage collaborations for efficient utilization of expertise and resources among climate, ocean and health scientific communities.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
7
|
Forello AC, Cunha-Lopes I, Almeida SM, Alves CA, Tchepel O, Crova F, Vecchi R. Insights on the combination of off-line and on-line measurement approaches for source apportionment studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165860. [PMID: 37516189 DOI: 10.1016/j.scitotenv.2023.165860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
This paper presents a source apportionment study performed on a dataset collected at a trafficked site in Coimbra (Portugal) during the period December 2018-June 2019. The novelty of this work consists in the methodological approach used and the sensitivity study carried out to give hints to potential future applications. Indeed, a multi-time resolution and multi-parameter study was performed joining together aerosol data from 24-h chemically characterized samples and high-time resolution multi-wavelength absorption coefficients retrieved by an Aethalometer. A detailed sensitivity study on the most suitable combination of time resolution and uncertainties was carried out to obtain reliable physical and stable solutions over all analyses. In parallel, a regular EPA-PMF source apportionment study using chemical and optical variables averaged on 24 h is presented and discussed in comparison to the more complex multi-time and multi-parameter approach. Apart from results pertaining to the identification and relevance of different sources in Coimbra, the methodological results shown here can give guidance for readers who want to implement optical variables jointly with chemical ones in the same model run.
Collapse
Affiliation(s)
- Alice C Forello
- Department of Physics, Università degli Studi di Milano, Milan 20133, Italy; National Institute of Nuclear Physics INFN-Milan, Milan 20133, Italy
| | - Inés Cunha-Lopes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela-LRS, Portugal
| | - Susana M Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela-LRS, Portugal
| | - Célia A Alves
- Centre of Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Oxana Tchepel
- CITTA, Faculty of Sciences and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Federica Crova
- Department of Physics, Università degli Studi di Milano, Milan 20133, Italy; National Institute of Nuclear Physics INFN-Milan, Milan 20133, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano, Milan 20133, Italy; National Institute of Nuclear Physics INFN-Milan, Milan 20133, Italy.
| |
Collapse
|
8
|
Song K, Tang R, Li A, Wan Z, Zhang Y, Gong Y, Lv D, Lu S, Tan Y, Yan S, Yan S, Zhang J, Fan B, Chan CK, Guo S. Particulate organic emissions from incense-burning smoke: Chemical compositions and emission characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165319. [PMID: 37414164 DOI: 10.1016/j.scitotenv.2023.165319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Incense burning is a common practice in Asian cultures, releasing hazardous particulate organics. Inhaling incense smoke can result in adverse health effects, yet the molecular compositions of incense-burning organics have not been well investigated due to the lack of measurement of intermediate-volatility and semi-volatile organic compounds (I/SVOCs). To elucidate the detailed emission profile of incense-burning particles, we conducted a non-target measurement of organics emitted from incense combustion. Quartz filters were utilized to trap particles, and organics were analyzed by a comprehensive two-dimensional gas chromatography-mass spectrometer (GC × GC-MS) coupled with a thermal desorption system (TDS). To deal with the complex data obtained by GC × GC-MS, homologs are identified mainly by the combination of selected ion chromatograms (SICs) and retention indexes. SICs of 58, 60, 74, 91, and 97 were utilized to identify 2-ketones, acids, fatty acid methyl esters, fatty acid phenylmethyl esters, and alcohols, respectively. Phenolic compounds contribute the most to emission factors (EFs) among all chemical classes, taking up 24.5 % ± 6.5 % of the total EF (96.1 ± 43.1 μg g-1). These compounds are largely derived from the thermal degradation of lignin. Biomarkers like sugars (mainly levoglucosan), hopanes, and sterols are extensively detected in incense combustion fumes. Incense materials play a more important role in shaping emission profiles than incense forms. Our study provides a detailed emission profile of particulate organics emitted from incense burning across the full-volatility range, which can be used in the health risk assessments. The data processing procedure in this work could also benefit those with less experience in non-target analysis, especially GC × GC-MS data processing.
Collapse
Affiliation(s)
- Kai Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China; Shenzhen Research Institue, City University of Hong Kong, Shenzhen 518057, China.
| | - Ang Li
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Zichao Wan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuan Zhang
- School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yuanzheng Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daqi Lv
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China
| | - Shuyuan Yan
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Shichao Yan
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | | | - Baoming Fan
- TECHSHIP (Beijing) Technology Co., LTD, Beijing 100039, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China; Shenzhen Research Institue, City University of Hong Kong, Shenzhen 518057, China; Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
9
|
Jorga SD, Wang Y, Abbatt JPD. Reaction of HOCl with Wood Smoke Aerosol: Impacts on Indoor Air Quality and Outdoor Reactive Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1292-1299. [PMID: 36607741 DOI: 10.1021/acs.est.2c07577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High loadings of biomass burning (BB) aerosol particles from wildfire or residential heating sources can be present in both outdoor and indoor environments, where they deposit onto surfaces such as walls and furniture. These pollutants can interact with oxidants in both the aerosol and deposited forms. Hypochlorous acid (HOCl), a strong oxidant emitted during cleaning with chlorine-cleaning agents such as bleach, can attain mixing ratios of hundreds of ppbv indoors; moreover, lower mixing ratios are naturally present outdoors. Here, we report the heterogeneous reactivity of HOCl with wood smoke aerosol particles. After exposure to gas-phase HOCl, the particle chlorine content increased reaching chlorine-to-organic mass ratios of 0.07 with the chlorine covalently bound as organochlorine species, many of which are aromatic. Investigating individual potential BB components, we observed that unsaturated species such as coniferaldehyde and furfural react efficiently with HOCl. These observations indicate that organochlorine pollutants will form indoors when bleach cleaning a wildfire impacted space. The chlorine component of particles internally mixed with BB material and chloride initially increased, upon HOCl exposure, indicating that active chlorine recycling in the outdoor environment will be suppressed in the presence of BB emissions.
Collapse
Affiliation(s)
- Spiro D Jorga
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| | - Yutong Wang
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6Ontario, Canada
| |
Collapse
|
10
|
The Impact of Long-Range Transport of Biomass Burning Emissions in Southeast Asia on Southern China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The long-range transport of biomass burning pollutants from Southeast Asia has a significant impact on air quality in China. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) fire data and aerosol optical depth (AOD) products and the Tropospheric Monitoring Instrument (TROPOMI) carbon monoxide (CO) data were used to analyze the impact of air pollution caused by biomass burning in Southeast Asia on southern China. Results showed that Yunnan, Guangdong and Guangxi were deeply affected by biomass burning emissions from March to April during 2016–2020. Comparing the data for fires on the Indochinese Peninsula and southern provinces of China, it is obvious that the contribution of pollutants emitted by local biomass burning in China to air pollution is only a small possibility. The distribution of CO showed that the overall emissions increased greatly from March to April, and there was an obvious transmission process. In addition, the MODIS AOD in areas close to the national boundary of China is at a high level (>0.6), and the AOD in the southwest of Guangxi province and the southeast of Yunnan Province is above 0.8. Combined with a typical air pollution event in southern China, the UVAI combined with wind direction and other meteorological data showed that the pollutants were transferred from the Indochinese Peninsula to southern China under the southwest monsoon. The PM2.5 data from ground-based measurements and backward tracking were used to verify the pollutant source of the pollution event, and it was concluded that the degree of pollution in Yunnan, Guangxi and Guangdong provinces was related to the distance from the Indochinese Peninsula. Results indicate that it is necessary to carry out in-depth research on the impact of cross-border air pollution transport on domestic air quality as soon as possible and to actively cooperate with foreign countries to carry out pollution source research and control.
Collapse
|
11
|
Temporal and Spatial Patterns of Biomass Burning Fire Counts and Carbon Emissions in the Beijing–Tianjin–Hebei (BTH) Region during 2003–2020 Based on GFED4. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biomass burning (BB) plays an important role in the formation of heavy pollution events during harvest seasons in the Beijing–Tianjin–Hebei (BTH) region by releasing trace gases and particulate matter into the atmosphere. A better understanding of spatial-temporal variations of BB in BTH is required to assess its impacts on air quality, especially on heavy haze pollution. The fourth version of the Global Fire Emissions Database (GFED4)’s fire counts and carbon emissions data were used in this research, which shows the varying number of fire counts in China from 2003 to 2020 demonstrated a fluctuating but generally rising trend, with a peak in 2013. Most fire counts were concentrated in three key periods: March (11%), June–July (33%), and October (9.68%). The increase in fire counts will inevitably lead to the growth of carbon emissions. The four major vegetation types of the fires were agriculture (58.1%), followed by grassland (35.5%), and forest (4.1%), with the fewest in peat. In addition, a separate study for the year 2020 found that the fire counts and carbon emissions were different for this year, with the overall average trend in the study time. For example, the monthly peak fire counts changed from June to March. The cumulative emissions of carbon, CO, CO2, CH4, dry matter, and particulate matter from BB in BTH reached 201 Gg, 39 Gg, 670 Gg, 2 Gg, 417 Gg, and 3 Gg in 2020, respectively.
Collapse
|
12
|
A New Method for the Assessment of the Oxidative Potential of Both Water-Soluble and Insoluble PM. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water-soluble and insoluble fractions of airborne particulate matter (PM) exhibit different toxicological potentials and peculiar mechanisms of action in biological systems. However, most of the research on the oxidative potential (OP) of PM is focused exclusively on its water-soluble fraction, since experimental criticisms were encountered for detaching the whole PM (soluble and insoluble species) from field filters. However, to estimate the actual potential effects of PM on human health, it is essential to assess the OP of both its water-soluble and insoluble fractions. In this study, to estimate the total OP (TOP), an efficient method for the detachment of intact PM10 from field filters by using an electrical toothbrush was applied to 20 PM10 filters in order to obtain PM10 water suspensions to be used for the DCFH, AA and DTT oxidative potential assays (OPDCFH, OPAA and OPDTT). The contribution of the insoluble PM10 to the TOP was evaluated by comparing the TOP values to those obtained by applying the three OP assays to the water-soluble fraction of 20 equivalent PM10 filters. The OP of the insoluble fraction (IOP) was calculated as the difference between the TOP and the WSOP. Moreover, each PM10 sample was analyzed for the water-soluble and insoluble fractions of 10 elements (Al, Cr, Cs, Cu, Fe, Li, Ni, Rb, Sb, Sn) identified as primary elemental tracers of the main emission sources in the study area. A principal component analysis (PCA) was performed on the data obtained to identify the predominant sources for the determination of TOP, WSOP, and IOP. Results showed that water-soluble PM10 released by traffic, steel plant, and biomass burning is mainly responsible for the generation of the TOP as well as of the WSOP. This evidence gave strength to the reliability of the results from OP assays performed only on the water-soluble fraction of PM. Lastly, the IOPDCFH and IOPDTT were found to be principally determined by insoluble PM10 from mineral dust.
Collapse
|