1
|
Yu G, Zhao W, Wang Y, Xu N. Molecular farming expression of recombinant fusion proteins applied to skincare strategies. PeerJ 2024; 12:e17957. [PMID: 39308805 PMCID: PMC11416094 DOI: 10.7717/peerj.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
This review discusses the current research progress in molecular farming technology in the field of skincare, with an emphasis on molecular farming expression strategies. The strategies of transdermal drug delivery and their advantages are also highlighted. The expression of cosmetically relevant fused proteins has become an important way to enhance the efficacy of the proteins. Therefore, we also discuss the feasibility and strategies for expressing fusion proteins in A. thaliana, specifically the fusion of Epidermal growth factor (EGF) to a cell-penetrating peptide (CPP), in which the production can be greatly enhanced via plant expression systems since these systems offer higher biosecurity, flexibility, and expansibility than prokaryotic, animal and mammalian expression systems. While the fusion of EGF to CCP can enhance its transdermal ability, the effects of the fusion protein on skin repair, melasma, whitening, and anti-aging are poorly explored. Beyond this, fusing proteins with transdermal peptides presents multiple possibilities for the development of tissue repair and regeneration therapeutics, as well as cosmetics and beauty products. As certain plant extracts are known to contain proteins beneficial for skin health, the expression of these proteins in plant systems will better maintain their integrity and biological activities, thereby facilitating the development of more effective skincare products.
Collapse
Affiliation(s)
- Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Yunpeng Wang
- Jilin Academy of Agricultural Sciences, Northeast Innovation Center of China Agricultural Science and Technology, Ji Lin, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| |
Collapse
|
2
|
Chioran D, Sitaru A, Macasoi I, Pinzaru I, Sarau CA, Dehelean C, Dinu S, Szuhanek C, Zetu IN, Serafin AC, Rivis M, Poenaru M, Dragoi R. Nicotine Exerts Cytotoxic Effects in a Panel of Healthy Cell Lines and Strong Irritating Potential on Blood Vessels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8881. [PMID: 35886732 PMCID: PMC9323709 DOI: 10.3390/ijerph19148881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
The use of tobacco products is a major global public health issue, as it is the leading cause of preventable death worldwide. In addition, nicotine (NIC) is a key component of electronic and conventional cigarettes. Although nicotine's addictive potential is well known, its health effects are not entirely understood. Thus, the main objective of the present study was to evaluate its toxicological profile both in vitro, at the level of three healthy cell lines, and in ovo, at the level of the chorioallantoic membrane. Five different concentrations of nicotine were used in keratinocytes, cardiomyocytes, and hepatocytes for the purpose of evaluating cell viability, cell morphology, and its impact on nuclei. Additionally, the hen's egg test on the chorioallantoic membrane (HET-CAM) method was used to assess the biocompatibility and irritant potential of the chorioallantoic membrane. Across all cell lines studied, nicotine was proven to be significantly damaging to cell viability, with the highest concentration tested resulting in less than 2% viable cells. Moreover, the morphology of cells changed dramatically, with alterations in their shape and confluence. Nicotine-induced cell death appears to be apoptotic, based on its impact on the nucleus. In addition, nicotine was also found to have a very strong irritating effect on the chorioallantoic membrane. In conclusion, nicotine has an extremely strong toxicological profile, as demonstrated by the drastic reduction of cell viability and the induction of morphological changes and nuclear alterations associated with cellular apoptosis. Additionally, the HET-CAM method led to the observation of a strong irritating effect associated with nicotine.
Collapse
Affiliation(s)
- Doina Chioran
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.C.); (S.D.); (C.S.); (A.C.S.); (M.R.)
| | - Adrian Sitaru
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.P.); (R.D.)
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristian Andrei Sarau
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.P.); (R.D.)
| | - Cristina Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.C.); (S.D.); (C.S.); (A.C.S.); (M.R.)
| | - Camelia Szuhanek
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.C.); (S.D.); (C.S.); (A.C.S.); (M.R.)
| | - Irina Nicoleta Zetu
- Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, University Street No. 16, 700115 Iasi, Romania;
| | - Andra Cristine Serafin
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.C.); (S.D.); (C.S.); (A.C.S.); (M.R.)
| | - Mircea Rivis
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (D.C.); (S.D.); (C.S.); (A.C.S.); (M.R.)
| | - Marioara Poenaru
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.P.); (R.D.)
| | - Razvan Dragoi
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.P.); (R.D.)
| |
Collapse
|
3
|
Pozuelos GL, Kagda M, Rubin MA, Goniewicz ML, Girke T, Talbot P. Transcriptomic Evidence That Switching from Tobacco to Electronic Cigarettes Does Not Reverse Damage to the Respiratory Epithelium. TOXICS 2022; 10:370. [PMID: 35878275 PMCID: PMC9321508 DOI: 10.3390/toxics10070370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022]
Abstract
The health benefits of switching from tobacco to electronic cigarettes (ECs) are neither confirmed nor well characterized. To address this problem, we used RNA-seq analysis to compare the nasal epithelium transcriptome from the following groups (n = 3 for each group): (1) former smokers who completely switched to second generation ECs for at least 6 months, (2) current tobacco cigarette smokers (CS), and (3) non-smokers (NS). Group three included one former cigarette smoker. The nasal epithelial biopsies from the EC users vs. NS had a higher number of differentially expressed genes (DEGs) than biopsies from the CS vs. NS and CS vs. EC sets (1817 DEGs total for the EC vs. NS, 407 DEGs for the CS vs. NS, and 116 DEGs for the CS vs. EC comparison). In the EC vs. NS comparison, enriched gene ontology terms for the downregulated DEGs included cilium assembly and organization, whereas gene ontologies for upregulated DEGs included immune response, keratinization, and NADPH oxidase. Similarly, ontologies for cilium movement were enriched in the downregulated DEGs for the CS vs. NS group. Reactome pathway analysis gave similar results and also identified keratinization and cornified envelope in the upregulated DEGs in the EC vs. NS comparison. In the CS vs. NS comparison, the enriched Reactome pathways for upregulated DEGs included biological oxidations and several metabolic processes. Regulator effects identified for the EC vs. NS comparison were inflammatory response, cell movement of phagocytes and degranulation of phagocytes. Disease Ontology Sematic Enrichment analysis identified lung disease, mouth disease, periodontal disease and pulmonary fibrosis in the EC vs. NS comparison. Squamous metaplasia associated markers, keratin 10, keratin 13 and involucrin, were increased in the EC vs. NS comparison. Our transcriptomic analysis showed that gene expression profiles associated with EC use are not equivalent to those from non-smokers. EC use may interfere with airway epithelium recovery by promoting increased oxidative stress, inhibition of ciliogenesis, and maintaining an inflammatory response. These transcriptomic alterations may contribute to the progression of diseases with chronic EC use.
Collapse
Affiliation(s)
- Giovanna L. Pozuelos
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| | - Meenakshi Kagda
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| | - Matine A. Rubin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| | - Maciej L. Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA;
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| |
Collapse
|