1
|
Schwab AD, Nelson AJ, Gleason AM, Schanze OW, Wyatt TA, Shinde DD, Xiao P, Thomas VC, Guda C, Bailey KL, Kielian T, Thiele GM, Poole JA. Aconitate decarboxylase 1 mediates the acute airway inflammatory response to environmental exposures. Front Immunol 2024; 15:1432334. [PMID: 39351225 PMCID: PMC11439662 DOI: 10.3389/fimmu.2024.1432334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Background Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 μg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.
Collapse
Affiliation(s)
- Aaron D. Schwab
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Amy J. Nelson
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Angela M. Gleason
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Oliver W. Schanze
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Todd A. Wyatt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dhananjay D. Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peng Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jill A. Poole
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Guo J, Lei L, Yang H, Zhou B, Fan D, Wu B, Wang G, Yu L, Zhang C, Zhang W, Han Q, Zhang XY, Zhao J. Effects of nasal allergens and environmental particulate matter on brainstem metabolites and the consequence of brain-spleen axis in allergic rhinitis. ENVIRONMENT INTERNATIONAL 2024; 190:108890. [PMID: 39033732 DOI: 10.1016/j.envint.2024.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The growing consensus links exposure to fine particulate matter (PM2.5) with an increased risk of respiratory diseases. However, little is known about the additional effects of particulate matter on brainstem function in allergic rhinitis (AR). Furthermore, it is unknown to what extent the PM2.5-induced effects in the brainstem affect the inflammatory response in AR. This study aimed to determine the effects, mechanisms and consequences of brainstem neural activity altered by allergenic stimulation and PM2.5 exposure. METHODS Using an AR model of ovalbumin (OVA) elicitation and whole-body PM2.5 exposure, the metabolic profile of the brainstem post-allergen stimulation was characterized through in vivo proton magnetic resonance imaging (1H-MRS). Then, the transient receptor potential vanilloid-1 (TRPV1) neuronal expression and sensitivity in the trigeminal nerve in AR were investigated. The link between TRPV1 expression and brainstem differential metabolites was also determined. Finally, we evaluated the mediating effects of brainstem metabolites and the consequences in the brain-spleen axis in the inflammatory response of AR. RESULTS Exposure to allergens and PM2.5 led to changes in the metabolic profiles of the brainstem, particularly affecting levels of glutamine (Gln) and glutamate (Glu). This exposure also increased the expression and sensitivity of TRPV1+ neurons in the trigeminal nerve, with the levels of TRPV1 expression closely linked to the brainstem metabolism of Glu and Gln. Moreover, allergens increased the activity of p38, while PM2.5 led to the phosphorylation of p38 and ERK, resulting in the upregulation of TRPV1 expression. The brainstem metabolites Glu and Gln were found to partially mediate the impact of TRPV1 on AR inflammation, which was supported by the presence of pro-inflammatory changes in the brain-spleen axis. CONCLUSION Brainstem metabolites are altered under allergen stimulation and additional PM2.5 exposure in AR via sensitization of the trigeminal nerve, which exacerbates the inflammatory response via the brain-splenic axis.
Collapse
Affiliation(s)
- JianShu Guo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China; The Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Haibo Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - DongXia Fan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Biao Wu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Wang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lu Yu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - ChiHang Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Wenqing Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - QingJian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; College of Health Science and Technology & Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - JinZhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Agarwal V, Meier B, Schreiner C, Figi R, Tao Y, Wang J. Airborne antibiotic and metal resistance genes - A neglected potential risk at e-waste recycling facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170991. [PMID: 38365028 DOI: 10.1016/j.scitotenv.2024.170991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Heavy metal-rich environments can promote the selection of metal-resistance genes (MRGs) in bacteria, often leading to the simultaneous selection of antibiotic-resistance genes (ARGs) through a process known as co-selection. To comprehensively evaluate the biological pollutants at electronic-waste (e-waste) recycling facilities, air, soil, and river samples were collected at four distinct Swiss e-waste recycling facilities and analyzed for ARGs, MRGs, mobile genetic elements (MGEs), endotoxins, and bacterial species, with correlations drawn to heavy metal occurrence. To our knowledge, the present work marks the first attempt to quantify these bio-pollutants in the air of e-waste recycling facilities, that might pose a significant health risk to workers. Although ARG and MRG's profiles varied among the different sample types, intl1 consistently exhibited high relative abundance rates, identifying it as the predominant MGE across all sample types and facilities. These findings underscore its pivol role in driving diverse bacterial adaptations to extreme heavy metal exposure by selection and dissemination of ARGs and MRGs. All air samples exhibited consistent profiles of ARGs and MRGs, with blaTEM emerging as the predominant ARG, alongside pbrT and nccA as the most prevalent MRGs. However, one facility, engaged in batteries recycling and characterized by exceptionally high concentrations of heavy metals, showcased a more diverse resistance gene profile, suggesting that bacteria in this environment required more complex resistance mechanisms to cope with extreme metal exposure. Furthermore, this study unveiled a strong association between gram-negative bacteria and ARGs and less with MRGs. Overall, this research emphasizes the critical importance of studying biological pollutants in the air of e-waste recycling facilities to inform robust safety measures and mitigate the risk of resistance gene dissemination among workers. These findings establish a solid foundation for further investigations into the complex interplay among heavy metal exposure, bacterial adaptation, and resistance patterns in such distinctive ecosystems.
Collapse
Affiliation(s)
- V Agarwal
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - B Meier
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland
| | - C Schreiner
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - R Figi
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Y Tao
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - J Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
| |
Collapse
|
4
|
Schwab AD, Wyatt TA, Moravec G, Thiele GM, Nelson AJ, Gleason A, Schanze O, Duryee MJ, Romberger DJ, Mikuls TR, Poole JA. Targeting transitioning lung monocytes/macrophages as treatment strategies in lung disease related to environmental exposures. Respir Res 2024; 25:157. [PMID: 38594676 PMCID: PMC11003126 DOI: 10.1186/s12931-024-02804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 μg), or gram-positive peptidoglycan (PGN, 100 μg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.
Collapse
Affiliation(s)
- Aaron D Schwab
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Pulmonary, Critical Care & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Grace Moravec
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amy J Nelson
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Angela Gleason
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Oliver Schanze
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Debra J Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Pulmonary, Critical Care & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jill A Poole
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
de Rooij MMT, Erbrink HJ, Smit LAM, Wouters IM, Hoek G, Heederik DJJ. Short-term residential exposure to endotoxin emitted from livestock farms in relation to lung function in non-farming residents. ENVIRONMENTAL RESEARCH 2024; 243:117821. [PMID: 38072102 DOI: 10.1016/j.envres.2023.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
Agarwal V, Yue Y, Zhang X, Feng X, Tao Y, Wang J. Spatial and temporal distribution of endotoxins, antibiotic resistance genes and mobile genetic elements in the air of a dairy farm in Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122404. [PMID: 37625772 DOI: 10.1016/j.envpol.2023.122404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Antimicrobial resistance (AMR) is a serious issue that is continuously growing and spreading, leading to a dwindling number of effective treatments for infections that were easily treatable with antibiotics in the past. Animal farms are a major hotspot for AMR, where antimicrobials are often overused, misused, and abused, in addition to overcrowding of animals. In this study, we investigated the risk of AMR transmission from a farm to nearby residential areas by examining the overall occurrence of endotoxins, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the air of a cattle farm. We assessed various factors, including the season and year, day and nighttime, and different locations within the farm building and its vicinity. The most abundant ARGs detected were tetW, aadA1, and sul2, genes that encode for resistances towards antibiotics commonly used in veterinary medicine. While there was a clear concentration gradient for endotoxin from the middle of the farm building to the outside areas, the abundance of ARGs and MGEs was relatively uniform among all locations within the farm and its vicinity. This suggests that endotoxins preferentially accumulated in the coarse particle fraction, which deposited quickly, as opposed to the ARGs and MGEs, which might concentrate in the fine particle fraction and remain longer in the aerosol phase. The occurrence of the same genes found in the air samples and in the manure indicated that ARGs and MGEs in the air mostly originated from the cows, continuously being released from the manure to the air. Although our atmospheric dispersion model indicated a relatively low risk for nearby residential areas, farm workers might be at greater risk of getting infected with resistant bacteria and experiencing overall respiratory tract issues due to continuous exposure to elevated concentrations of endotoxins, ARGs and MGEs in the air of the farm.
Collapse
Affiliation(s)
- V Agarwal
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Yue
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Zhang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Feng
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Tao
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - J Wang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| |
Collapse
|
7
|
Zhang X, Lu B, Chen G, Wang L, Lin B, Peng Z, Lu S, Li D, Chen J. Culturable and inhalable airborne bacteria in a semiunderground municipal wastewater treatment plant: Distribution, transmission, and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132234. [PMID: 37586239 DOI: 10.1016/j.jhazmat.2023.132234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Airborne pathogens constitute a growing threat to global public health. Wastewater treatment plants (WWTPs) are important sources of airborne bacteria, which pose great health risks to the employee and nearby residents. In this study, the distribution, transmission and health risk of the airborne culturable and inhalable bacteria carried by PM2.5 in a semiunderground WWTP were evaluated. The concentrations of culturable bacteria in the air were 21.2-1431.1 CFU/m3, with the main contributions of primary and biological treatments. The relative abundances of culturable and total inhalable bacterial taxa were positively correlated (p < 0.05). However, certain bacteria, including Bacillus, Acinetobacter and Enterococcus, exhibited high reproductive capacity despite their low concentration in the air, suggesting that they can survive and regrow in suitable environments. Transmission modeling revealed that the concentrations of airborne bacteria exponentially decreased with distance from 18.67 to 24.12 copies /m3 at the source to 0.06-0.14 copies /m3 at 1000 m downwind. The risks of 8-h exposure in this WWTP except the outlet exceeded the reference value recommended by WHO, which were primarily dependent on P. aeruginosa, Salmonella, and E. coli. Management practices should consider improved controls for bioaerosols in order to reduce the risk of disease transmission.
Collapse
Affiliation(s)
- Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bingjie Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guang Chen
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Lihua Wang
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Bingjie Lin
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Zhengliang Peng
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Songliu Lu
- Shanghai Investigation, Design & Research Institute, Shanghai 200335, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Yang S, Muthalagu A, Serrano VG, Licina D. Human personal air pollution clouds in a naturally ventilated office during the COVID-19 pandemic. BUILDING AND ENVIRONMENT 2023; 236:110280. [PMID: 37064616 PMCID: PMC10080864 DOI: 10.1016/j.buildenv.2023.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Personal cloud, termed as the difference in air pollutant concentrations between breathing zone and room sites, represents the bias in approximating personal inhalation exposure that is linked to accuracy of health risk assessment. This study performed a two-week field experiment in a naturally ventilated office during the COVID-19 pandemic to assess occupants' exposure to common air pollutants and to determine factors contributing to the personal cloud effect. During occupied periods, indoor average concentrations of endotoxin (0.09 EU/m3), TVOC (231 μg/m3), CO2 (630 ppm), and PM10 (14 μg/m3) were below the recommended limits, except for formaldehyde (58 μg/m3). Personal exposure concentrations, however, were significantly different from, and mostly higher than, concentrations measured at room stationary sampling sites. Although three participants shared the same office, their personal air pollution clouds were mutually distinct. The mean personal cloud magnitude ranged within 0-0.05 EU/m3, 35-192 μg/m3, 32-120 ppm, and 4-9 μg/m3 for endotoxin, TVOC, CO2, and PM10, respectively, and was independent from room concentrations. The use of hand sanitizer was strongly associated with an elevated personal cloud of endotoxin and alcohol-based VOCs. Reduced occupancy density in the office resulted in more pronounced personal CO2 clouds. The representativeness of room stationary sampling for capturing dynamic personal exposures was as low as 28% and 5% for CO2 and PM10, respectively. The findings of our study highlight the necessity of considering the personal cloud effect when assessing personal exposure in offices.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akila Muthalagu
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Systems Group, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Kang X, Lü F, Wang Y, Duan H, Zhang H, He P. Metagenomic analysis of microbiological risk in bioaerosols during biowaste valorization using Musca domestica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121118. [PMID: 36681377 DOI: 10.1016/j.envpol.2023.121118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Bioconversion using insects has gradually become a promising technology for biowaste management and protein production. However, knowledge about microbiological risk of insect related bioaerosols is sparse and conventional methods failed to provide higher resolved information of environmental microbe. In this study, a metagenomic analysis including microorganisms, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), mobile gene elements (MGEs), and endotoxin distribution in bioaerosols during biowaste conversion via Musca domestica revealed that bioaerosols in Fly rearing room possess the highest ARGs abundances and MGEs diversity. Through a metagenome-assembled genomes (MAGs)-based pipeline, compelling evidence of ARGs/VFGs host assignment and ARG-VFG co-occurrence pattern were provided from metagenomic perspective. Bioaerosols in Bioconversion and Maggot separation zone were identified to own high density of MAGs carrying both ARGs and VFGs. Bacteria in Proteobacteria, Actinobacteriota, and Firmicutes phyla were predominate hosts of ARGs and VFGs. Multidrug-Motility, Multidrug-Adherence, and Beta lactam-Motility pairs were the most common ARG-VFG co-occurrence pattern in this study. Results obtained are of great significance for microbiological risk assessment during housefly biowaste conversion process.
Collapse
Affiliation(s)
- Xinyue Kang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Yujing Wang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haowen Duan
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China.
| |
Collapse
|
10
|
Bioaerosol Seasonal Variation and Contribution to Airborne Particulate Matter in Huangshi City of Central China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ambient bioaerosols affect ecosystems and public health, but their seasonal variations and their contributions to aerosol particles are limitedly understood. Ambient bioaerosols in PM2.5 and PM10 samples were measured in Huangshi City, Hubei Province of China from April 2018 to December 2018. Bioaerosols were measured using a fluorescence microscope after staining with 4′, 6-diamino-2-phenylindole dihydrochloride (DAPI) following a direct staining technique. The bioaerosol number concentrations ranged from 0.12 to 15.69 # cm−3 for PM2.5 and 0.22 to 18.20 # cm−3 for PM10, with averages of 2.79 # cm−3 and 4.66 # cm−3, respectively. The bioaerosol concentrations of PM2.5 and PM10 varied significantly by seasons and were arranged in the following descending order: spring > fall > winter > summer. Bioaerosol numbers were dominated by fine particles of 0.37–2.5 μm diameter, while the spring bioaerosol particles were detected at the peak concentration of 0.56–1 μm diameter. Bioaerosol fractions accounted for 18.3 ± 10.6% PM10 mass and 13.7 ± 12.5% PM2.5 mass. Bioaerosol concentrations were increased during the haze event, but the increased amounts were not as large as those of the dust event, and higher bioaerosol contributions to PM were observed in the dust event than in the haze event. As enhanced emission controls have reduced PM concentrations in China, bioaerosols can be important contributors to PM mass.
Collapse
|
11
|
Rasuli L, Dehghani MH, Aghaei M, Mahvi AH, Mubarak NM, Karri RR. Occurrence and fate of bacterial endotoxins in the environment (air, water, wastewater) and remediation technologies: An overview. CHEMOSPHERE 2022; 303:135089. [PMID: 35623438 DOI: 10.1016/j.chemosphere.2022.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 12/07/2022]
Abstract
Endotoxins as the outer membrane of most Gram-Negative Bacteria (GNB) and typical toxic biochemical produced by microorganisms are identified as one of the emerging pollutants. These microbial by-products are harmful compounds that can be present in various environments including air, water, soil, and other ecosystems which was discussed in detail in this review. Environmental and occupational exposure caused by endotoxin occurs in water and wastewater treatment plants, industrial plants, farming, waste recovery, and composting facilities. Even though the health risk related to endotoxin injection in intravenous and dialysis are well identified, the harmful effects of ingestion, inhalation, and other way of exposure are not well quantified and there is insufficient information on the potential health risks of endotoxins exposure in water environments, and another exposures. Because of limited studies, the outbreaks of diseases related to endotoxins in the various source of exposure not been well documented. Endotoxin removal from different environments are investigated in this review. The results of various studies have shown that conventional treatment methods have been unable to remove endotoxins from water and wastewater, therefore, monitoring the effectiveness of these processes in controlling this contaminant and also using the appropriate removal method is essential. However, management of water and wastewater treatment processes and the use of advanced processes such as Advanced Oxidation Processes (AOPs) can be effective in monitoring and reducing endotoxin levels during water and wastewater treatment. One of the limitations of endotoxin monitoring is the lack of sufficient information to develop monitoring levels. In addition, the lack of guidelinesand methods of controlling them at high levels may cause irreparable disaster.
Collapse
Affiliation(s)
- Leila Rasuli
- Qazvin University of Medical Science, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
12
|
Zahalka S, Starkl P, Watzenboeck ML, Farhat A, Radhouani M, Deckert F, Hladik A, Lakovits K, Oberndorfer F, Lassnig C, Strobl B, Klavins K, Matsushita M, Sanin DE, Grzes KM, Pearce EJ, Gorki AD, Knapp S. Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol 2022; 15:896-907. [PMID: 35856089 PMCID: PMC9385480 DOI: 10.1038/s41385-022-00528-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.
Collapse
Affiliation(s)
- Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin L Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mariem Radhouani
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Deckert
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Apangu GP, Frisk CA, Petch GM, Muggia L, Pallavicini A, Hanson M, Skjøth CA. Environmental DNA reveals diversity and abundance of Alternaria species in neighbouring heterogeneous landscapes in Worcester, UK. AEROBIOLOGIA 2022; 38:457-481. [PMID: 36471880 PMCID: PMC9715499 DOI: 10.1007/s10453-022-09760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/28/2022] [Indexed: 05/05/2023]
Abstract
UNLABELLED Alternaria is a pathogenic and allergenic fungus affecting 400 plant species and 334 million people globally. This study aimed at assessing the diversity of Alternaria species in airborne samples collected from closely located (7 km apart) and heterogeneous sites (rural, urban and unmanaged grassland) in Worcester and Lakeside, the UK. A secondary objective was to examine how the ITS1 subregion varies from ITS2 in Alternaria species diversity and composition. Airborne spores were collected using Burkard 7-day and multi-vial Cyclone samplers for the period 5 July 2016-9 October 2019. Air samples from the Cyclone were amplified using the ITS1and ITS2 subregions and sequenced using Illumina MiSeq platform whereas those from the Burkard sampler were identified and quantified using optical microscopy. Optical microscopy and eDNA revealed a high abundance of Alternaria in the rural, urban and unmanaged sites. ITS1 and ITS2 detected five and seven different Alternaria species at the three sampling sites, respectively. A. dactylidicola, A. metachromatica and A. infectoria were the most abundant. The rural, urban and unmanaged grassland sites had similar diversity (PERMANOVA) of the species due to similarity in land use and proximity of the sites. Overall, the study showed that heterogeneous and neighbouring sites with similar land uses can have similar Alternaria species. It also demonstrated that an eDNA approach can complement the classical optical microscopy method in providing more precise information on fungal species diversity in an environment for targeted management. Similar studies can be replicated for other allergenic and pathogenic fungi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09760-9.
Collapse
Affiliation(s)
- Godfrey Philliam Apangu
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, AL5 2JQ Hertfordshire UK
| | - Carl Alexander Frisk
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Geoffrey M. Petch
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Mary Hanson
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Carsten Ambelas Skjøth
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
14
|
Lad N, Murphy A, Parenti C, Nelson C, Williams N, Sharpe G, McTernan P. Asthma and obesity: endotoxin another insult to add to injury? Clin Sci (Lond) 2021; 135:2729-2748. [PMID: 34918742 PMCID: PMC8689194 DOI: 10.1042/cs20210790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Low-grade inflammation is often an underlying cause of several chronic diseases such as asthma, obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Defining the mediators of such chronic low-grade inflammation often appears dependent on which disease is being investigated. However, downstream systemic inflammatory cytokine responses in these diseases often overlap, noting there is no doubt more than one factor at play to heighten the inflammatory response. Furthermore, it is increasingly believed that diet and an altered gut microbiota may play an important role in the pathology of such diverse diseases. More specifically, the inflammatory mediator endotoxin, which is a complex lipopolysaccharide (LPS) derived from the outer membrane cell wall of Gram-negative bacteria and is abundant within the gut microbiota, and may play a direct role alongside inhaled allergens in eliciting an inflammatory response in asthma. Endotoxin has immunogenic effects and is sufficiently microscopic to traverse the gut mucosa and enter the systemic circulation to act as a mediator of chronic low-grade inflammation in disease. Whilst the role of endotoxin has been considered in conditions of obesity, cardiovascular disease and T2DM, endotoxin as an inflammatory trigger in asthma is less well understood. This review has sought to examine the current evidence for the role of endotoxin in asthma, and whether the gut microbiota could be a dietary target to improve disease management. This may expand our understanding of endotoxin as a mediator of further low-grade inflammatory diseases, and how endotoxin may represent yet another insult to add to injury.
Collapse
Affiliation(s)
- Nikita Lad
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Alice M. Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Cristina Parenti
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Carl P. Nelson
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Neil C. Williams
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Graham R. Sharpe
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Philip G. McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| |
Collapse
|
15
|
Pöther DC, Schneider D, Prott U, Karmann J, Klug K, Heubach N, Hebisch R, Jäckel U. Multiplexed Workplace Measurements in Biogas Plants Reveal Compositional Changes in Aerosol Properties. Ann Work Expo Health 2021; 65:1061-1074. [PMID: 34219143 PMCID: PMC8577234 DOI: 10.1093/annweh/wxab036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion is an emerging technology producing energy from renewable resources or food waste. Exposure screenings, comprising hazardous substances and biological agents, at different workplaces are necessary for a comprehensive overview of potential hazards in order to assess the risk of employees in biogas plants. In order to analyse these parameters, workplace measurements were conducted in seven full-scale anaerobic digesters. Personal and stationary sampling was performed for inhalable and respirable particles, volatile organic compounds, ammonia, hydrogen sulphide, carbon monoxide, and carbon dioxide. Furthermore, concentrations of the total cell count, endotoxins, and fungi-down to species level-were determined in comparison to windward air. Sequencing of the 16S rRNA genes was utilized for the determination of the bacterial composition inside the biogas plants. Measurements of hazardous substances show hardly values reaching the specific occupational exposure limit value, except ammonia. An approximate 5-fold increase in the median of the total cell count, 15-fold in endotoxins, and 4-fold in fungi was monitored in the biogas plants compared with windward air. Specifying the comparison to selected workplaces showed the highest concentrations of these parameters for workplaces related to delivery and cleaning. Strikingly, the fungal composition drastically changed between windward air and burdened workplaces with an increase of Aspergillus species up to 250-fold and Penicillium species up to 400-fold. Sequence analyses of 16S rRNA genes revealed that many workplaces are dominated by the order of Bacillales or Lactobacillales, but many sequences were not assignable to known bacteria. Although significant changes inside the biogas plant compared with windward air were identified, that increase does not suggest stricter occupational safety measures at least when applying German policies. However, exposure to biological agents revealed wide ranges and specific workplace measurements should be conducted for risk assessment.
Collapse
Affiliation(s)
- Dierk-Christoph Pöther
- Unit for Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstr. 40–42, 10317 Berlin, Germany
| | - Daniela Schneider
- Unit for Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstr. 40–42, 10317 Berlin, Germany
| | - Ulrich Prott
- Unit for Measurement of Hazardous Substances, Federal Institute for Occupational Safety and Health, Friedrich-Henkel-Weg 1–25, 44149 Dortmund, Germany
| | - Jörg Karmann
- Unit for Measurement of Hazardous Substances, Federal Institute for Occupational Safety and Health, Friedrich-Henkel-Weg 1–25, 44149 Dortmund, Germany
| | - Kerstin Klug
- Unit for Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstr. 40–42, 10317 Berlin, Germany
| | - Nancy Heubach
- Unit for Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstr. 40–42, 10317 Berlin, Germany
| | - Ralph Hebisch
- Unit for Measurement of Hazardous Substances, Federal Institute for Occupational Safety and Health, Friedrich-Henkel-Weg 1–25, 44149 Dortmund, Germany
| | - Udo Jäckel
- Unit for Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstr. 40–42, 10317 Berlin, Germany
| |
Collapse
|
16
|
Riederer AM, Krenz JE, Tchong-French MI, Torres E, Perez A, Younglove LR, Jansen KL, Hardie DC, Farquhar SA, Sampson PD, Metwali N, Thorne PS, Karr CJ. Effectiveness of portable HEPA air cleaners on reducing indoor endotoxin, PM 10, and coarse particulate matter in an agricultural cohort of children with asthma: A randomized intervention trial. INDOOR AIR 2021; 31:1926-1939. [PMID: 34288127 PMCID: PMC8577577 DOI: 10.1111/ina.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
We conducted a randomized trial of portable HEPA air cleaners in the homes of children age 6-12 years with asthma in the Yakima Valley, Washington. All families received asthma education while intervention families also received two HEPA cleaners (child's bedroom, living room). We collected 14-day integrated samples of endotoxin in settled dust and PM10 and PM10-2.5 in the air of the children's bedrooms at baseline and one-year follow-up, and used linear regression to compare follow-up levels, adjusting for baseline. Seventy-one families (36 HEPA, 35 control) completed the study. Baseline geometric mean (GSD) endotoxin loadings were 1565 (6.3) EU/m2 and 2110 (4.9) EU/m2 , respectively, in HEPA vs. control homes while PM10 and PM10-2.5 were 22.5 (1.9) μg/m3 and 9.5 (2.9) μg/m3 , respectively, in HEPA homes, and 19.8 (1.8) μg/m3 and 7.7 (2.0) μg/m3 , respectively, in control homes. At follow-up, HEPA families had 46% lower (95% CI, 31%-57%) PM10 on average than control families, consistent with prior studies. In the best-fit heterogeneous slopes model, HEPA families had 49% (95% CI, 6%-110%) and 89% lower (95% CI, 28%-177%) PM10-2.5 at follow-up, respectively, at 50th and 75th percentile baseline concentrations. Endotoxin loadings did not differ significantly at follow-up (4% lower, HEPA homes; 95% CI, -87% to 50%).
Collapse
Affiliation(s)
- Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer E. Krenz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Maria I. Tchong-French
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Torres
- Northwest Communities Education Center, Radio KDNA, Granger, WA, USA
| | - Adriana Perez
- Yakima Valley Farm Workers Clinic, Toppenish, WA, USA
| | - Lisa R. Younglove
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Karen L. Jansen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - David C. Hardie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie A. Farquhar
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Paul D. Sampson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nervana Metwali
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Can-Güven E. The current status and future needs of global bioaerosol research: a bibliometric analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2021; 19:7857-7868. [PMID: 34630577 PMCID: PMC8487676 DOI: 10.1007/s13762-021-03683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
A bibliometric analysis was conducted to reveal the global status and highlight significant or promising areas of bioaerosol research based on the Web of Science database from 1989 to 2019. Yearly publications, main subject categories, journals, the performance of countries, and research hot topics were identified. The network of keywords and collaborations of countries was visualized and cross relationships were determined. Results showed that the annual output in the field increased during the related period. The USA, China, and Germany are the leading countries while the USA, Germany, and the UK are the most collaborative countries in bioaerosol research. "Journal of Aerosol Science" is the most productive journal and "Environmental Sciences & Ecology" is the most popular research area. The research hot spots are health effects, sampling, particulate matter, and indoor air quality in the bioaerosol topic. The findings of this research could provide information to understand the development and trends as well as future needs of bioaerosol research.
Collapse
Affiliation(s)
- E. Can-Güven
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, 34220 İstanbul, Turkey
| |
Collapse
|
18
|
Giltrap D, Cavanagh J, Stevenson B, Ausseil AG. The role of soils in the regulation of air quality. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200172. [PMID: 34365824 DOI: 10.1098/rstb.2020.0172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Soils play a key role in meeting the UN Sustainable Development Goals (SDGs). In this study, we review the contribution of soils to the regulation of air quality, which is one of 'Nature's Contributions to People' identified by the Intergovernmental-Policy Platform on Biodiversity and Ecosystem Services (IPBES). This is particularly relevant for SDG3 (health and well-being) and 11 (sustainable cities and well-being) but also impacts other SDGs. Soils can act as both a source and a sink of air pollutants (and their precursors). In addition, soils support plant growth which plays a major role in regulating air quality. The scale of the soil impacts on air quality range from global (e.g. greenhouse gas fluxes, stratospheric ozone depletion) to local (e.g. odours, particulates, pathogen transport). Harmful emissions from soil can be increased or decreased by anthropogenic activity, while climate change is likely to modify future emissions patterns, both directly and in response to human mitigation and adaption actions. Although soils are not the only source of these pollutants, it is worthwhile managing them to reduce erosion and nutrient losses to maintain soil health so we may continue to benefit from the contributions to good quality of life they provide. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Donna Giltrap
- Manaaki Whenua-Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442, New Zealand
| | - Jo Cavanagh
- Manaaki Whenua-Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442, New Zealand
| | - Bryan Stevenson
- Manaaki Whenua-Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442, New Zealand
| | - Anne-Gäelle Ausseil
- Manaaki Whenua-Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442, New Zealand
| |
Collapse
|
19
|
Singh NK, Sanghvi G, Yadav M, Padhiyar H, Thanki A. A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124686. [PMID: 33309139 DOI: 10.1016/j.jhazmat.2020.124686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 05/13/2023]
Abstract
Wastewater treatment plants (WWTPs) associated bioaerosols have emerged as one of the critical sustainability indicators, ensuring health and well-being of societies and cities. In this context, this review summarizes the various wastewater treatment technologies which have been studied with a focus of bioaerosols emissions, potential emission stages, available sampling strategies, survival and dispersion factors, dominant microbial species in bioaerosols, and possible control approaches. Literature review revealed that most of the studies were devoted to sampling, enumerating and identifying cultivable microbial species of bioaerosols, as well as measuring their concentrations. However, the role of treatment technologies and their operational factors are investigated in limited studies only. Moreover, few studies have been reported to investigate the presence and concentrations of air borne virus and fungi in WWTP, as compared to bacterial species. The common environmental factors, affecting the survival and dispersion of bioaerosols, are observed as relative humidity, temperature, wind speed, and solar illumination. Further, research studies on recent episodes of COVID-19 (SARS-CoV-2 virus) pandemic also revealed that continuous and effective surveillance on WWTPs associated bioaerosols may led to early sign for future pandemics. The evaluation of reported data is bit complicated, due to the variation in sampling approaches, ambient conditions, and site activities of each study. Therefore, such studies need a standardized methodology and improved guidance to help informed future policies, contextual research, and support a robust health-based risk assessment process. Based on this review, an integrated sampling and analysis framework is suggested for future WWTPs to ensure their sustainability at social and/or health associated aspects.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Environmental Science and Engineering, Marwadi Education Foundations Group of Institutions, Rajkot, India.
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, India.
| | - Manish Yadav
- Central Mine Planning Design Institute, Bhubaneshwar, India.
| | - Hirendrasinh Padhiyar
- Department of Environmental Science and Engineering, Marwadi Education Foundations Group of Institutions, Rajkot, India.
| | - Arti Thanki
- Department of Microbiology, Marwadi University, Rajkot, India.
| |
Collapse
|
20
|
Ferguson RMW, Neath CEE, Nasir ZA, Garcia-Alcega S, Tyrrel S, Coulon F, Dumbrell AJ, Colbeck I, Whitby C. Size fractionation of bioaerosol emissions from green-waste composting. ENVIRONMENT INTERNATIONAL 2021; 147:106327. [PMID: 33387881 DOI: 10.1016/j.envint.2020.106327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Particle size is a significant factor in determining the dispersal and inhalation risk from bioaerosols. Green-waste composting is a significant source of bioaerosols (including pathogens), but little is known about the distribution of specific taxa across size fractions. To characterise size fractionated bioaerosol emissions from a compost facility, we used a Spectral Intensity Bioaerosol Sensor (SIBS) to quantify total bioaerosols and qPCR and metabarcoding to quantify microbial bioaerosols. Overall, sub-micron bioaerosols predominated, but molecular analysis showed that most (>75%) of the airborne microorganisms were associated with the larger size fractions (>3.3 µm da). The microbial taxa varied significantly by size, with Bacilli dominating the larger, and Actinobacteria the smaller, size fractions. The human pathogen Aspergillus fumigatus dominated the intermediate size fractions (>50% da 1.1-4.7 µm), indicating that it has the potential to disperse widely and once inhaled may penetrate deep into the respiratory system. The abundance of Actinobacteria (>60% at da < 2.1 µm) and other sub-micron bioaerosols suggest that the main health effects from composting bioaerosols may come from allergenic respiratory sensitisation rather than directly via infection. These results emphasise the need to better understand the size distributions of bioaerosols across all taxa in order to model their dispersal and to inform risk assessments of human health related to composting facilities.
Collapse
Affiliation(s)
- Robert M W Ferguson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Charlotte E E Neath
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; School of Applied Sciences, University of South Wales, Cemetery Road, Glyntaff, Pontypridd CF37 4BD, UK
| | - Zaheer A Nasir
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Sonia Garcia-Alcega
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Sean Tyrrel
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
21
|
Aghaei M, Yaghmaeian K, Hassanvand MS, Hedayati MH, Yousefian F, Janjani H, Nabizadeh R, Yunesian M. Exposure to endotoxins and respiratory health in composting facilities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110907. [PMID: 32800242 DOI: 10.1016/j.ecoenv.2020.110907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 05/21/2023]
Abstract
The impact of bioaerosols in municipal solid waste management is nowadays identified as a growing health concern worldwide. In this study, exposure to endotoxin in composting facilities and its association with lung function and clinical symptoms was investigated in Tehran municipal solid waste management complex (Aradkooh) as one of the largest solid waste management facilities in the Middle East. Airborne endotoxins were collected between June and July 2019 and the concentrations were determined by Limulus Amebocyte Lysate (LAL) method. Healthy workers with no history of respiratory disease were recruited and data on clinical symptoms (cough, phlegm, wheezing, dyspnea, fatigue, headache, eye irritation, runny nose, runny eyes, and sore throat) was obtained by the modified American Thoracic Society questionnaire, and spirometric measurement was performed by an expert. The binary logistic regression test was used and adjusted for confounding variables. The results didn't show any difference in lung function parameters (FEV1, FVC, FEV1/FVC, PEF, FEF25-75%), and most of the respiratory symptoms despite a relatively high difference in the concentration of endotoxin observed in air samples of different locations. Only the increased risk of cough (OR 10.5, 95% CI: 2.4 to 44.8 in the moderately exposed group and 7.8, 95% CI: 1.6 to 39.1 in highly exposed ones), fatigue (OR 3.7, 95% CI: 1.2 to 11.7), and headache (OR 6.02, 95% CI: 1.4 to 24.5) were found in the exposed groups compared to controls after adjusting for age, active and passive smoking. However, findings of the study might be underestimated due to some issues including healthy worker effect, intra and intersubject variability, and self-reporting bias, thereby the results should be interpreted with caution. Although we did not find any relationship, due to the high concentrations of endotoxins observed in some sites, it is recommended to consider some possible prevention measures such as using personal protective equipment to reduce the exposure of workers at an acceptable level.
Collapse
Affiliation(s)
- Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Solid Waste Management (CSWM), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosna Janjani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran. http://yunesian.tums.ac.ir
| |
Collapse
|
22
|
Roy R, Jan R, Joshi U, Bhor R, Pai K, Satsangi PG. Characterization, pro-inflammatory response and cytotoxic profile of bioaerosols from urban and rural residential settings in Pune, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114698. [PMID: 32387676 PMCID: PMC7190302 DOI: 10.1016/j.envpol.2020.114698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Microbiota associated with airborne particulate matter (PM) is an important indicator of indoor pollution as they can be pathogenic and cause serious health threats to the exposed occupants. Present study aimed to investigate the level of culturable microbes associated with PM and their toxicological characterization in urban and rural houses of Pune city. Highest concentration of bacterial aerosols observed to be associated with PM10 size fraction in urban site (2136 ± 285 CFU/m3) whereas maximum fungal concentration has been measured in rural houses (1521 ± 302 CFU/m3). Predominantly found bacterial species were Bacillus sp., S. aureus, and Pseudomonas aeruginosa and fungal species were Aspergillus sp., Cladosporium sp., and Penicillium sp. in both urban and rural residential premises. Concentration of endotoxin measured using the kinetic Limulus Amebocyte Lysate assay exhibited that the level of endotoxin in both urban and rural sites are associated with household characteristics and the activities performed in indoor as well as outdoor. Cell free DTT assay confirmed the ability of these airborne microbes to induce the production of reactive oxygen species (ROS) varying along with the types of microorganisms. On exposure of A549 cells to airborne microbes, a significant decrease in cell viability was observed in terms of both necrosis and apoptosis pathway. Elevated production of nitric oxide (NO) and proinflammatory cytokines in epithelial cells and macrophages clearly suggest the inflammatory nature of these airborne microbes. Results derived from the present study demonstrated that the indoor air of urban and rural houses of Pune is contaminated in terms of microbial load. Therefore, attention should be paid to control the factors favoring the microbial growth in order to safeguard the health of exposed inhabitants.
Collapse
Affiliation(s)
- Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Uttara Joshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Renuka Bhor
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
| |
Collapse
|
23
|
Górny RL, Gołofit-Szymczak M, Cyprowski M, Stobnicka-Kupiec A. Nasal lavage as analytical tool in assessment of exposure to particulate and microbial aerosols in wood pellet production facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134018. [PMID: 31479905 DOI: 10.1016/j.scitotenv.2019.134018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Occupational exposure to wood dust and bioaerosols may lead to numerous respiratory tract diseases. We aimed to assess a degree of workplace contamination with dust, bacteria, fungi, endotoxins, and (1 → 3)-β-D-glucans released into the air during wood processing in pellet production facilities and to check against this background the usefulness of nasal lavage (NAL) as analytical tool for assessment of combined workers' exposure to airborne dust and microbiological contaminants. In 10 pellet plants, the particulate (wood dust) aerosol concentrations were determined by using Grimm aerosol spectrometer and CIS filter sampler. The collected CIS samples were subsequently used to evaluate endotoxin and (1 → 3)-β-D-glucan concentrations. Simultaneously with particulate aerosol, bioaerosol samples were collected by using 6-stage Andersen and single-stage MAS impactors. Bacterial and fungal aerosol concentrations were calculated and all isolated microorganisms were taxonomically identified. NAL fluid samples were collected from workers exposed to studied aerosols and the concentrations of proinflammatory mediators (IL-1β, IL-6, IL-8, and TNFα) and cytological image of nasal mucosa (expressed as cell counts) were established. The dynamics of production activities resulted in wide range of observed wood dust, microorganism, endotoxin and (1 → 3)-β-D-glucan concentrations reaching periodically extremely high values up to 65 mg m-3, 19,320 CFU m-3, 215 ng m-3 and 1525 ng m-3, respectively. Environmental stress caused by exposure to particulate and microbial aerosols stimulated immune response among workers of pellet production facilities. Correlation analysis revealed that interleukin levels and the number of cells in NAL were significantly affected by both wood dust and bioaerosol concentrations. As nasal mucosa serves as the primary barrier against inhaled pollutants, NAL seems a reliable analytical material to assess work-related adverse respiratory health outcomes derived from such exposure.
Collapse
Affiliation(s)
- Rafał L Górny
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland.
| | - Małgorzata Gołofit-Szymczak
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland
| | - Marcin Cyprowski
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland
| | - Agata Stobnicka-Kupiec
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland
| |
Collapse
|