1
|
Li Y, Wu J, Ye P, Cai Y, Shao M, Zhang T, Guo Y, Zeng S, Pathak JL. Decellularized Extracellular Matrix Scaffolds: Recent Advances and Emerging Strategies in Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:7372-7385. [PMID: 39492720 DOI: 10.1021/acsbiomaterials.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application. Decellularized extracellular matrix (DECM), a kind of natural biological material obtained from specific tissues and organs, has certain advantages over synthetic and exogenous biomaterial-derived bone grafts. Moreover, DECM can be developed from a wide range of biological sources and possesses strong molding abilities, natural 3D structures, and bioactive factors. Although DECM has shown robust osteogenic, proangiogenic, immunomodulatory, and bone defect healing potential, the rapid degradation and limited mechanical properties should be improved for bench-to-bed translation in BTE. This review summarizes the recent advances in DECM-based BTE and discusses emerging strategies of DECM-based BTE.
Collapse
Affiliation(s)
- Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Peilin Ye
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai 519040, P. R. China
| | - Yilin Cai
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| |
Collapse
|
2
|
De Miguel-Gómez L, Sehic E, Thorén E, Ahlström J, Rabe H, Oltean M, Brännström M, Hellström M. Toward human uterus tissue engineering: Uterine decellularization in a non-human primate species. Acta Obstet Gynecol Scand 2024. [PMID: 39641531 DOI: 10.1111/aogs.15030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Uterus bioengineering offers a potential treatment option for women with uterine factor infertility and for mitigating the risk of uterine rupture associated with women with defective uterine tissue. Decellularized uterine tissue scaffolds proved promising in further in vivo experiments in rodent and domestic species animal models. Variations in the extracellular matrix composition among different species and adaptations of the decellularization protocols make it difficult to compare the results between studies. Therefore, we assessed if our earlier developed sodium deoxycholate-based decellularization protocol for the sheep and the cow uterus could become a standardized cross-species protocol by assessing it on the non-human primate (baboon) uterus. MATERIAL AND METHODS The baboon uterus was decellularized using sodium deoxycholate, and the remaining acellular scaffold was quantitatively assessed for DNA, protein, and specific extracellular matrix components. Furthermore, electron microscopy deepened morphology examination, while the chorioallantoic membrane assay examined the scaffolds' cytotoxicity, bioactivity, and angiogenic properties. The in vitro recellularization efficiency of the scaffolds using xenogeneic (rat) bone marrow-derived mesenchymal stem cells was also assessed. Finally, the immune potential of the scaffolds was evaluated by in vitro exposure to human peripheral blood mononuclear cells. RESULTS We obtained a decellularized baboon uterus with preserved extracellular matrix components by adding an 8-h sodium deoxycholate perfusion to our previously developed protocol for the sheep and cow models. This minor modification resulted in scaffolds with less than 1% of immunogenic host DNA content while preserving important uterine-specific collagen, elastin, and glycosaminoglycan structures. The chorioallantoic membrane assay and in vitro recellularization experiments confirmed that the scaffolds were bioactive and non-cytotoxic. As we have observed in other animal models, the enzymatic scaffold preconditioning with matrix metalloproteinases improved the recellularization efficiency further. Additionally, the preconditioning generated more immune-privileged scaffolds, as shown in a novel in vitro co-culture assay with human peripheral blood mononuclear cells. CONCLUSIONS For the first time, our data demonstrate the efficiency of our protocol for non-human primate uteri and its translational potential. This standardized protocol will facilitate cross-study comparisons and expedite clinical translation.
Collapse
Affiliation(s)
- Lucía De Miguel-Gómez
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emy Thorén
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ahlström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hardis Rabe
- Unit of Biological Function, Division Materials and Production, RISE-Research Institutes of Sweden, Borås, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Health Innovation Labs, Sahlgrenska Science Park, Gothenburg, Sweden
| |
Collapse
|
3
|
Fazel Anvari Yazdi A, Tahermanesh K, Ejlali M, Babaei-Ghazvini A, Acharya B, Badea I, MacPhee DJ, Chen X. Comparative analysis of porcine-uterine decellularization for bioactive-molecule preservation and DNA removal. Front Bioeng Biotechnol 2024; 12:1418034. [PMID: 39416283 PMCID: PMC11480021 DOI: 10.3389/fbioe.2024.1418034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Decellularized uterine extracellular matrix has emerged as a pivotal focus in the realm of biomaterials, offering a promising source in uterine tissue regeneration, research on disease diagnosis and treatments, and ultimately uterine transplantation. In this study, we examined various protocols for decellularizing porcine uterine tissues, aimed to unravel the intricate dynamics of DNA removal, bioactive molecules preservation, and microstructural alterations. Methods Porcine uterine tissues were treated with 6 different, yet rigorously selected and designed, protocols with sodium dodecyl sulfate (SDS), Triton® X-100, peracetic acid + ethanol, and DNase I. After decellularization, we examined DNA quantification, histological staining (H&E and DAPI), glycosaminoglycans (GAG) assay, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetric Analysis (TGA). Results A comparative analysis among all 6 protocols was conducted with the results demonstrating that all protocols achieved decellularization; while 0.1% SDS + 1% Triton® X-100, coupled with agitation, demonstrated the highest efficiency in DNA removal. Also, it was found that DNase I played a key role in enhancing the efficiency of the decellularization process by underscoring its significance in digesting cellular contents and eliminating cell debris by 99.79% (19.63 ± 3.92 ng/mg dry weight). Conclusions Our findings enhance the nuanced understanding of DNA removal, GAG preservation, microstructural alteration, and protein decomposition in decellularized uterine extracellular matrix, while highlighting the importance of decellularization protocols designed for intended applications. This study along with our findings represents meaningful progress for advancing the field of uterine transplantation and related tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Kobra Tahermanesh
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Ejlali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|