1
|
Paterson TE, Owen R, Sherborne C, Bahmaee H, Harding AL, Green NH, Reilly GC, Claeyssens F. Highly porous polycaprolactone microspheres for skeletal repair promote a mature bone cell phenotype in vitro. J Mater Chem B 2024; 12:11746-11758. [PMID: 39415638 DOI: 10.1039/d4tb01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Improving our ability to treat skeletal defects is a critical medical challenge that necessitates the development of new biomaterials. One promising approach involves the use of degradable polymer microparticles with an interconnected internal porosity. Here, we employed a double emulsion to generate such round microparticles (also known as microspheres) from a polycaprolactone-based polymerised high internal phase emulsion (polyHIPE). These microspheres effectively supported the growth of mesenchymal progenitors over a 30-day period, and when maintained in osteogenic media, cells deposited a bone-like extracellular matrix, as determined by histological staining for calcium and collagen. Interestingly, cells with an osteocyte-like morphology were observed within the core of the microspheres indicating the role of a physical environment comparable to native bone for this phenotype to occur. At later timepoints, these cultures had significantly increased mRNA expression of the osteocyte-specific markers dentin matrix phosphoprotein-1 (Dmp-1) and sclerostin, with sclerostin also observed at the protein level. Cells pre-cultured on porous microspheres exhibited enhanced survival rates compared to those pre-cultured on non-porous counterparts when injected. Cells precultured on both porous and non-porous microspheres promoted angiogenesis in a chorioallantoic membrane (CAM) assay. In summary, the polycaprolactone polyHIPE microspheres developed in this study exhibit significant promise as an alternative to traditional synthetic bone graft substitutes, offering a conducive environment for cell growth and differentiation, with the potential for better clinical outcomes in bone repair and regeneration.
Collapse
Affiliation(s)
- Thomas E Paterson
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| | - Colin Sherborne
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Amy L Harding
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Owen R, Wittkowske C, Lacroix D, Perrault CM, Reilly GC. β-glycerophosphate, not low magnitude fluid shear stress, increases osteocytogenesis in the osteoblast-to-osteocyte cell line IDG-SW3. Connect Tissue Res 2024; 65:313-329. [PMID: 38982804 PMCID: PMC11371265 DOI: 10.1080/03008207.2024.2375065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
AIM As osteoblasts deposit a mineralized collagen network, a subpopulation of these cells differentiates into osteocytes. Biochemical and mechanical stimuli, particularly fluid shear stress (FSS), are thought to regulate this, but their relative influence remains unclear. Here, we assess both biochemical and mechanical stimuli on long-term bone formation and osteocytogenesis using the osteoblast-osteocyte cell line IDG-SW3. METHODS Due to the relative novelty and uncommon culture conditions of IDG-SW3 versus other osteoblast-lineage cell lines, effects of temperature and media formulation on matrix deposition and osteocytogenesis were initially characterized. Subsequently, the relative influence of biochemical (β-glycerophosphate (βGP) and ascorbic acid 2-phosphate (AA2P)) and mechanical stimulation on osteocytogenesis was compared, with intermittent application of low magnitude FSS generated by see-saw rocker. RESULTS βGP and AA2P supplementation were required for mineralization and osteocytogenesis, with 33°C cultures retaining a more osteoblastic phenotype and 37°C cultures undergoing significantly higher osteocytogenesis. βGP concentration positively correlated with calcium deposition, whilst AA2P stimulated alkaline phosphatase (ALP) activity and collagen deposition. We demonstrate that increasing βGP concentration also significantly enhances osteocytogenesis as quantified by the expression of green fluorescent protein linked to Dmp1. Intermittent FSS (~0.06 Pa) rocker had no effect on osteocytogenesis and matrix deposition. CONCLUSIONS This work demonstrates the suitability and ease with which IDG-SW3 can be utilized in osteocytogenesis studies. IDG-SW3 mineralization was only mediated through biochemical stimuli with no detectable effect of low magnitude FSS. Osteocytogenesis of IDG-SW3 primarily occurred in mineralized areas, further demonstrating the role mineralization of the bone extracellular matrix has in osteocyte differentiation.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Claudia Wittkowske
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Cecile M. Perrault
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chang JS, Chao JC, Li C, Tinkov AA. Role of vitamins beyond vitamin D 3 in bone health and osteoporosis (Review). Int J Mol Med 2024; 53:9. [PMID: 38063255 PMCID: PMC10712697 DOI: 10.3892/ijmm.2023.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tatiana V. Korobeinikova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jane C.J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Alexey A. Tinkov
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
4
|
Long L, Wang X, Lei Y, Guo S, Wang C, Dai W, Lin B, Xie M, Xu H, Li S. Icariin: A Potential Alternative Against Osteoporosis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disorder characterized by increased fragility and fracture risk as s result of reduced bone mineral density and microstructural destruction and caused a heavy burden on families and society. Current medicines, on the other hand, have some limitations, with side effects and doubts regarding long-term efficacy being highlighted. Studies seeking for natural constituents as potential treatment options therefore come into focus. Icariin is a phytochemical derived from a traditional Chinese medicine, Herba epimedium, that has been used to treat orthopedic disorders in ancient China for thousands of years, including osteoporosis, osteoarthritis, and fracture. Icariin belongs to a category of prenylated flavonoids and has been shown to help reduce osteoporosis bone loss while having relatively low side effects. Icariin's anti-osteoporosis properties manifest in a variety of ways, like promoting osteogenesis, suppressing osteoclastogenesis and bone resorption, regulating migration, proliferation, and differentiation of mesenchymal stem cells, enhancing angiogenesis, anti-inflammation, and antioxidation. These procedures entail a slew of critical signaling pathways, such as PPARγ, ERα/AKT/β-catenin, and MAPK. Therefore, icariin can be an applicable alternative to improve osteoporosis although the underlying mechanisms have yet to be fully understood. In this study, we searched using the terms “icariin” and “osteoporosis,” and included 64 articles meeting the inclusion criteria and reviewed the research of icariin in anti-osteoporosis over the last 10 years, and discussed new prospects for future study. Therefore, this review may provide some references for further studies.
Collapse
Affiliation(s)
- Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yang Lei
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Birong Lin
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Mingzhong Xie
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Department of Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Chen Y, Xue Y, Xu L, Li W, Chen Y, Zheng S, Dai R, Liu J. Recapitulation of dynamic nanoparticle transport around tumors using a triangular multi-chamber tumor-on-a-chip. LAB ON A CHIP 2022; 22:4191-4204. [PMID: 36172838 DOI: 10.1039/d2lc00631f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
3D tumor models are emerging as valuable tools for drug screening and nanoparticle based personalized cancer treatments. The main challenges in building microfluidic chip-based 3D tumor models currently include the development of bioinks with high bioactivity and the reproduction of the key tumor extracellular matrix (ECM) with heterogeneous tumor microenvironments. In this study, we designed a triangular multi-chamber tumor-on-a-chip (TM-CTC) platform, which consisted of three circular chambers at the vertices of a triangle connected by three rectangular chambers; it significantly improved the culture efficiency of 3D tumor tissues. MCF-7 tumor cells were cultured in a 3D ECM and then dynamically perfused for 7 days of culture to obtain abundant tumor spheroids with uniform size (100 ± 4.1 μm). The biological features of the 3D tumor tissue including epithelial transformation (EMT), hypoxia and proliferation activities were reproduced in the triangular multi-chamber tumor-on-a-chip (TM-CTC) platform. The permeability results of NPs confirmed that the ECM exhibited a significant barrier effect on the transportation of NPs when compared with free drugs, indicating that the ECM barrier should be considered as one of the key factors of drug delivery carrier development. In addition, this TM-CTC model provided a suitable platform for constructing a complex heterogeneous tumor microenvironment with multiple cells (MCF-7, HUVEC and MRC-5) involved, which was beneficial for exploring the dynamic interaction between tumor cells and other cells in the tumor microenvironment. The above results suggest that this TM-CTC model can simulate the dynamic transportation of NPs around 3D tumor tissues, and thus provide a reliable platform for NP evaluation.
Collapse
Affiliation(s)
- You Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Langtao Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Weilin Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Yiling Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Shunan Zheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Rui Dai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
6
|
Teng YY, Zou ML, Liu SY, Jia Y, Zhang KW, Yuan ZD, Wu JJ, Ye JX, Yu S, Li X, Zhou XJ, Yuan FL. Dual-Action Icariin-Containing Thermosensitive Hydrogel for Wound Macrophage Polarization and Hair-Follicle Neogenesis. Front Bioeng Biotechnol 2022; 10:902894. [PMID: 35832407 PMCID: PMC9272914 DOI: 10.3389/fbioe.2022.902894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic protein (BMP) pathway is essential for M2 macrophage polarization and hair-follicle neogenesis. Icariin, a flavonoid derived from Epimedium, is a mediator of the BMP pathway. Here, we develop a hydrogel formulation functionalized with icariin for regulation of macrophage polarization to accelerate wound healing and hair-follicle neogenesis. Compared to skin defects without icariin treatment, those treated with icariin+PEG hydrogel healed faster and had new hair follicles. Results in vivo showed that icariin+PEG hydrogel induced a higher level of M2 phenotypic transformation of macrophages. Moreover, icariin+PEG hydrogel significantly accelerated wound-repair process by reducing the invasion of inflammation, excessive deposition of collagen, immoderate activation of myofibroblasts, and increasing the regeneration of hair follicles. Furthermore, studies in vitro demonstrated that the icariin+PEG hydrogel induced macrophages to polarize to the M2 phenotype and dermal papilla cell to hair follicles. Finally, molecular analysis demonstrated that the icariin+PEG hydrogel increased the expression of BMP4 and Smad1/5 phosphorylation in skin wounds. These results demonstrate the therapeutic potential of icariin-containing thermosensitive hydrogels for inducing M2 macrophage polarization to accelerate wound healing and promote hair-follicle neogenesis by regulating the BMP pathway.
Collapse
Affiliation(s)
- Ying-Ying Teng
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Shun Yu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xiao-Jin Zhou
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
7
|
Hasan A, Bagnol R, Owen R, Latif A, Rostam HM, Elsharkawy S, Rose FRAJ, Rodríguez-Cabello JC, Ghaemmaghami AM, Eglin D, Mata A. Mineralizing Coating on 3D Printed Scaffolds for the Promotion of Osseointegration. Front Bioeng Biotechnol 2022; 10:836386. [PMID: 35832405 PMCID: PMC9271852 DOI: 10.3389/fbioe.2022.836386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Design and fabrication of implants that can perform better than autologous bone grafts remain an unmet challenge for the hard tissue regeneration in craniomaxillofacial applications. Here, we report an integrated approach combining additive manufacturing with supramolecular chemistry to develop acellular mineralizing 3D printed scaffolds for hard tissue regeneration. Our approach relies on an elastin-like recombinamer (ELR) coating designed to trigger and guide the growth of ordered apatite on the surface of 3D printed nylon scaffolds. Three test samples including a) uncoated nylon scaffolds (referred to as "Uncoated"), b) ELR coated scaffolds (referred to as "ELR only"), and c) ELR coated and in vitro mineralized scaffolds (referred to as "Pre-mineralized") were prepared and tested for in vitro and in vivo performance. All test samples supported normal human immortalized mesenchymal stem cell adhesion, growth, and differentiation with enhanced cell proliferation observed in the "Pre-mineralized" samples. Using a rabbit calvarial in vivo model, 'Pre-mineralized' scaffolds also exhibited higher bone ingrowth into scaffold pores and cavities with higher tissue-implant integration. However, the coated scaffolds ("ELR only" and "Pre-mineralized") did not exhibit significantly more new bone formation compared to "Uncoated" scaffolds. Overall, the mineralizing coating offers an opportunity to enhance integration of 3D printed bone implants. However, there is a need to further decipher and tune their immunologic response to develop truly osteoinductive/conductive surfaces.
Collapse
Affiliation(s)
- Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Romain Bagnol
- Regenerative Orthopaedics, AO Research Institute, Davos, Switzerland
| | - Robert Owen
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Arsalan Latif
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hassan M. Rostam
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sherif Elsharkawy
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Felicity R. A. J. Rose
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Amir M. Ghaemmaghami
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David Eglin
- Regenerative Orthopaedics, AO Research Institute, Davos, Switzerland
- Ecole des Mines Saint-Etienne, Saint-Étienne, France
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Ratri MC, Brilian AI, Setiawati A, Nguyen HT, Soum V, Shin K. Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Monica Cahyaning Ratri
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Chemistry Education Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Albertus Ivan Brilian
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Life Science Sogang University Seoul 04107 Republic of Korea
- Faculty of Pharmacy Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
9
|
Effects of PIN on Osteoblast Differentiation and Matrix Mineralization through Runt-Related Transcription Factor. Int J Mol Sci 2020; 21:ijms21249579. [PMID: 33339165 PMCID: PMC7765567 DOI: 10.3390/ijms21249579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 μM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 μM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 μM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased β-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.
Collapse
|
10
|
Bahmaee H, Owen R, Boyle L, Perrault CM, Garcia-Granada AA, Reilly GC, Claeyssens F. Design and Evaluation of an Osteogenesis-on-a-Chip Microfluidic Device Incorporating 3D Cell Culture. Front Bioeng Biotechnol 2020; 8:557111. [PMID: 33015017 PMCID: PMC7509430 DOI: 10.3389/fbioe.2020.557111] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Microfluidic-based tissue-on-a-chip devices have generated significant research interest for biomedical applications, such as pharmaceutical development, as they can be used for small volume, high throughput studies on the effects of therapeutics on tissue-mimics. Tissue-on-a-chip devices are evolving from basic 2D cell cultures incorporated into microfluidic devices to complex 3D approaches, with modern designs aimed at recapitulating the dynamic and mechanical environment of the native tissue. Thus far, most tissue-on-a-chip research has concentrated on organs involved with drug uptake, metabolism and removal (e.g., lung, skin, liver, and kidney); however, models of the drug metabolite target organs will be essential to provide information on therapeutic efficacy. Here, we develop an osteogenesis-on-a-chip device that comprises a 3D environment and fluid shear stresses, both important features of bone. This inexpensive, easy-to-fabricate system based on a polymerized High Internal Phase Emulsion (polyHIPE) supports proliferation, differentiation and extracellular matrix production of human embryonic stem cell-derived mesenchymal progenitor cells (hES-MPs) over extended time periods (up to 21 days). Cells respond positively to both chemical and mechanical stimulation of osteogenesis, with an intermittent flow profile containing rest periods strongly promoting differentiation and matrix formation in comparison to static and continuous flow. Flow and shear stresses were modeled using computational fluid dynamics. Primary cilia were detectable on cells within the device channels demonstrating that this mechanosensory organelle is present in the complex 3D culture environment. In summary, this device aids the development of ‘next-generation’ tools for investigating novel therapeutics for bone in comparison with standard laboratory and animal testing.
Collapse
Affiliation(s)
- Hossein Bahmaee
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Robert Owen
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom.,Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Liam Boyle
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Cecile M Perrault
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom.,Eden Microfluidics, Paris, France
| | | | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Akhter MN, Hara ES, Kadoya K, Okada M, Matsumoto T. Cellular Fragments as Biomaterial for Rapid In Vitro Bone-Like Tissue Synthesis. Int J Mol Sci 2020; 21:E5327. [PMID: 32727114 PMCID: PMC7432235 DOI: 10.3390/ijms21155327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Current stem cell-based techniques for bone-like tissue synthesis require at least two to three weeks. Therefore, novel techniques to promote rapid 3D bone-like tissue synthesis in vitro are still required. In this study, we explored the concept of using cell nanofragments as a substrate material to promote rapid bone formation in vitro. The methods for cell nanofragment fabrication were ultrasonication (30 s and 3 min), non-ionic detergent (triton 0.1% and 1%), or freeze-dried powder. The results showed that ultrasonication for 3 min allowed the fabrication of homogeneous nanofragments of less than 150 nm in length, which mineralized surprisingly in just one day, faster than the fragments obtained from all other methods. Further optimization of culture conditions indicated that a concentration of 10 mM or 100 mM of β-glycerophosphate enhanced, whereas fetal bovine serum (FBS) inhibited in a concentration-dependent manner, the mineralization of the cell nanofragments. Finally, a 3D collagen-cell nanofragment-mineral complex mimicking a bone-like structure was generated in just two days by combining the cell nanofragments in collagen gel. In conclusion, sonication for three min could be applied as a novel method to fabricate cell nanofragments of less than 150 nm in length, which can be used as a material for in vitro bone tissue engineering.
Collapse
Affiliation(s)
- Mst Nahid Akhter
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Koichi Kadoya
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| |
Collapse
|
12
|
Owen R, Sherborne C, Evans R, Reilly GC, Claeyssens F. Combined Porogen Leaching and Emulsion Templating to produce Bone Tissue Engineering Scaffolds. Int J Bioprint 2020; 6:265. [PMID: 32782992 PMCID: PMC7415854 DOI: 10.18063/ijb.v6i2.265] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 01/13/2023] Open
Abstract
Bone has a hierarchy of porosity that is often overlooked when creating tissue engineering scaffolds where pore sizes are typically confined to a single order of magnitude. High internal phase emulsion (HIPE) templating produces polymerized HIPEs (polyHIPEs): highly interconnected porous polymers which have two length scales of porosity covering the 1-100 μm range. However, additional larger scales of porosity cannot be introduced in the standard emulsion formulation. Researchers have previously overcome this by additively manufacturing emulsions; fabricating highly microporous struts into complex macroporous geometries. This is time consuming and expensive; therefore, here we assessed the feasibility of combining porogen leaching with emulsion templating to introduce additional macroporosity. Alginate beads between 275 and 780 μm were incorporated into the emulsion at 0, 50, and 100 wt%. Once polymerized, alginate was dissolved leaving highly porous polyHIPE scaffolds with added macroporosity. The compressive modulus of the scaffolds decreased as alginate porogen content increased. Cellular performance was assessed using MLO-A5 post-osteoblasts. Seeding efficiency was significantly higher and mineralized matrix deposition was more uniformly deposited throughout porogen leached scaffolds compared to plain polyHIPEs. Deep cell infiltration only occurred in porogen leached scaffolds as detected by histology and lightsheet microscopy. This study reveals a quick, low cost and simple method of producing multiscale porosity scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, UK
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, UK
| | - Colin Sherborne
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, UK
| | - Richard Evans
- Bioengineering, Interdisciplinary Programmes Engineering, University of Sheffield, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, UK
| |
Collapse
|