1
|
Fromager B, Cambedouzou J, Marhuenda E, Iskratsch T, Pinault M, Bakalara N, Cornu D. Tunable electrospun scaffolds of polyacrylonitrile loaded with carbon nanotubes: from synthesis to biological applications. Chembiochem 2024; 25:e202300768. [PMID: 38353030 DOI: 10.1002/cbic.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/03/2024] [Indexed: 03/13/2024]
Abstract
Growing cells in a biomimetic environment is critical for tissue engineering as well as for studying the cell biology underlying disease mechanisms. To this aim a range of 3D matrices have been developed, from hydrogels to decellularized matrices. They need to mimic the extracellular matrix to ensure the optimal growth and function of cells. Electrospinning has gained in popularity due to its capacity to individually tune chemistry and mechanical properties and as such influence cell attachment, differentiation or maturation. Polyacrylonitrile (PAN) derived electrospun fibres scaffolds have shown exciting potential due to reports of mechanical tunability and biocompatibility. Building on previous work we fabricate here a range of PAN fibre scaffolds with different concentrations of carbon nanotubes. We characterize them in-depth in respect to their structure, surface chemistry and mechanical properties, using scanning electron microscopy, image processing, ultramicrotomic transmission electron microscopy, x-ray nanotomography, infrared spectroscopy, atomic force microscopy and nanoindentation. Together the data demonstrate this approach to enable finetuning the mechanical properties, while keeping the structure and chemistry unaltered and hence offering ideal properties for comparative studies of the cellular mechanobiology. Finally, we confirm the biocompatibility of the scaffolds using primary rat cardiomyocytes, vascular smooth muscle (A7r5) and myoblast (C2C12) cell lines.
Collapse
Affiliation(s)
- Bénédicte Fromager
- IEM, Univ Montpellier, CNRS, ENSCM, cc047 Pl. E. Bataillon, 34095, Montpellier, France
| | - Julien Cambedouzou
- IEM, Univ Montpellier, CNRS, ENSCM, cc047 Pl. E. Bataillon, 34095, Montpellier, France
| | - Emilie Marhuenda
- School of Engineering and Materials Science, Queen Mary University Of London, 327 Mile End Rd, Bethnal Green, London, E1 4NS, Royaume-Uni
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University Of London, 327 Mile End Rd, Bethnal Green, London, E1 4NS, Royaume-Uni
| | - Mathieu Pinault
- Univ Paris Saclay, CEA, CNRS, NIMBE,LEDNA, F-91191, Gif Sur Yvette, France
| | - Norbert Bakalara
- CNRS, ENSTBB-Bordeaux INP, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - David Cornu
- IEM, Univ Montpellier, CNRS, ENSCM, cc047 Pl. E. Bataillon, 34095, Montpellier, France
| |
Collapse
|
2
|
Tian F, Yin L, Lin P, Liu Y, Wang W, Chen Y, Tang Y. Aligned Nanofibrous Net Deposited Perpendicularly on Microridges Supports Endothelium Formation and Promotes the Structural Maturation of hiPSC-Derived Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17518-17531. [PMID: 36992621 DOI: 10.1021/acsami.2c22551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cell alignment widely exists in various in vivo tissues and also plays an essential role in the construction of in vitro models, such as vascular endothelial and myocardial models. Recently, microscale and nanoscale hierarchical topographical structures have been drawing increasing attention for engineering in vitro cell alignment. In the present study, we fabricated a micro-/nanohierarchical substrate based on soft lithography and electrospinning to assess the synergetic effect of both the aligned nanofibrous topographical guidance and the off-ground culture environment provided by the substrate on the endothelium formation and the maturation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The morphology, proliferation, and barrier formation of human umbilical vein endothelial cells (HUVECs) as well as the alignment, cardiac-specific proteins, and maturity-related gene expression of hiPSC-CMs on the aligned-nanofiber/microridge (AN-MR) substrate were studied. Compared with the glass slide and the single-aligned nanofiber substrate, the AN-MR substrate enhanced the proliferation, alignment, and cell-cell interaction of HUVECs and improved the length of the sarcomere and maturation-related gene expression of hiPSC-CMs. Finally, the response of hiPSC-CMs on different substrates to two typical cardiac drugs (isoproterenol and E-4031) was tested and analyzed, showing that the hiPSC-CMs on AN-MR substrates were more resistant to drugs than those in other groups, which was related to the higher maturity of the cells. Overall, the proposed micro-/nanohierarchical substrate supports the in vitro endothelium formation and enhances the maturation of hiPSC-CMs, which show great potential to be applied in the construction of in vitro models and tissue engineering.
Collapse
Affiliation(s)
- Feng Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linlin Yin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yurong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 Rue Lhomond, Paris 75005, France
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Comparison of NIH 3T3 Cellular Adhesion on Fibrous Scaffolds Constructed from Natural and Synthetic Polymers. Biomimetics (Basel) 2023; 8:biomimetics8010099. [PMID: 36975329 PMCID: PMC10046565 DOI: 10.3390/biomimetics8010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Polymer scaffolds are increasingly ubiquitous in the field of tissue engineering in improving the repair and regeneration of damaged tissue. Natural polymers exhibit better cellular adhesion and proliferation than biodegradable synthetics but exhibit inferior mechanical properties, among other disadvantages. Synthetic polymers are highly tunable but lack key binding motifs that are present in natural polymers. Using collagen and poly(lactic acid) (PLA) as models for natural and synthetic polymers, respectively, an evaluation of the cellular response of embryonic mouse fibroblasts (NIH 3T3 line) to the different polymer types was conducted. The samples were analyzed using LIVE/DEAD™, alamarBlue™, and phalloidin staining to compare cell proliferation on, interaction with, and adhesion to the scaffolds. The results indicated that NIH3T3 cells prefer collagen-based scaffolds. PLA samples had adhesion at the initial seeding but failed to sustain long-term adhesion, indicating an unsuitable microenvironment. Structural differences between collagen and PLA are responsible for this difference. Incorporating cellular binding mechanisms (i.e., peptide motifs) utilized by natural polymers into biodegradable synthetics offers a promising direction for biomaterials to become biomimetic by combining the advantages of synthetic and natural polymers while minimizing their disadvantages.
Collapse
|
4
|
Uhljar LÉ, Ambrus R. Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face Masks) and Their Regulatory Approach. Pharmaceutics 2023; 15:417. [PMID: 36839739 PMCID: PMC9965305 DOI: 10.3390/pharmaceutics15020417] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Electrospinning is the simplest and most widely used technology for producing ultra-thin fibers. During electrospinning, the high voltage causes a thin jet to be launched from the liquid polymer and then deposited onto the grounded collector. Depending on the type of the fluid, solution and melt electrospinning are distinguished. The morphology and physicochemical properties of the produced fibers depend on many factors, which can be categorized into three groups: process parameters, material properties, and ambient parameters. In the biomedical field, electrospun nanofibers have a wide variety of applications ranging from medication delivery systems to tissue engineering scaffolds and soft electronics. Many of these showed promising results for potential use as medical devices in the future. Medical devices are used to cure, prevent, or diagnose diseases without the presence of any active pharmaceutical ingredients. The regulation of conventional medical devices is strict and carefully controlled; however, it is not yet properly defined in the case of nanotechnology-made devices. This review is divided into two parts. The first part provides an overview on electrospinning through several examples, while the second part focuses on developments in the field of electrospun medical devices. Additionally, the relevant regulatory framework is summarized at the end of this paper.
Collapse
Affiliation(s)
| | - Rita Ambrus
- Faculty of Pharmacy, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Barnes AM, Holmstoen TB, Bonham AJ, Rowland TJ. Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120720. [PMID: 36550926 PMCID: PMC9774171 DOI: 10.3390/bioengineering9120720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be differentiated into cardiomyocytes (hESC-CMs and iPSC-CMs, respectively), which hold great promise for cardiac regenerative medicine and disease modeling efforts. However, the most widely employed differentiation protocols require undefined substrates that are derived from xenogeneic (animal) products, contaminating resultant hESC- and iPSC-CM cultures with xenogeneic proteins and limiting their clinical applicability. Additionally, typical hESC- and iPSC-CM protocols produce CMs that are significantly contaminated by non-CMs and that are immature, requiring lengthy maturation procedures. In this review, we will summarize recent studies that have investigated the ability of purified extracellular matrix (ECM) proteins to support hESC- and iPSC-CM differentiation, with a focus on commercially available ECM proteins and coatings to make such protocols widely available to researchers. The most promising of the substrates reviewed here include laminin-521 with laminin-221 together or Synthemax (a synthetic vitronectin-based peptide coating), which both resulted in highly pure CM cultures. Future efforts are needed to determine whether combinations of specific purified ECM proteins or derived peptides could further improve CM maturation and culture times, and significantly improve hESC- and iPSC-CM differentiation protocols.
Collapse
Affiliation(s)
- Ashlynn M. Barnes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tessa B. Holmstoen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Andrew J. Bonham
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80217, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
6
|
Miranda CC, Gomes MR, Moço M, Cabral JMS, Ferreira FC, Sanjuan-Alberte P. A Concise Review on Electrospun Scaffolds for Kidney Tissue Engineering. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100554. [PMID: 36290522 PMCID: PMC9598616 DOI: 10.3390/bioengineering9100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Chronic kidney disease is one of the deadliest diseases globally and treatment methods are still insufficient, relying mostly on transplantation and dialysis. Engineering of kidney tissues in vitro from induced pluripotent stem cells (iPSCs) could provide a solution to this medical need by restoring the function of damaged kidneys. However, implementation of such approaches is still challenging to achieve due to the complexity of mature kidneys in vivo. Several strategies have been defined to obtain kidney progenitor endothelial and epithelial cells that could form nephrons and proximal tube cells, but these lack tissue maturity and vascularisation to be further implemented. Electrospinning is a technique that has shown promise in the development of physiological microenvironments of several tissues and could be applied in the engineering of kidney tissues. Synthetic polymers such as polycaprolactone, polylactic acid, and poly(vinyl alcohol) have been explored in the manufacturing of fibres that align and promote the proliferation and cell-to-cell interactions of kidney cells. Natural polymers including silk fibroin and decellularised extracellular matrix have also been explored alone and in combination with synthetic polymers promoting the differentiation of podocytes and tubular-specific cells. Despite these attempts, further work is still required to advance the applications of electrospun fibres in kidney tissue engineering and explore this technique in combination with other manufacturing methods such as bioprinting to develop more organised, mature and reproducible kidney organoids.
Collapse
Affiliation(s)
- Cláudia C. Miranda
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (C.C.M.); (P.S.-A.)
| | - Mariana Ramalho Gomes
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mariana Moço
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (C.C.M.); (P.S.-A.)
| |
Collapse
|
7
|
Tambrchi P, Mahdavi AH, DaliriJoupari M, Soltani L. Polycaprolactone-co-polylactic acid nanofiber scaffold in combination with 5-azacytidine and transforming growth factor-β to induce cardiomyocyte differentiation of adipose-derived mesenchymal stem cells. Cell Biochem Funct 2022; 40:668-682. [PMID: 35924670 DOI: 10.1002/cbf.3728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Adipose-derived mesenchymal stem cells (Ad-MSCs) are promising candidates for cardiac repair/regeneration. The application of copolymer nanoscaffolds has received great attention in tissue engineering to support differentiation and functional tissue organization toward effective tissue regeneration. The objective of the current study was to develop functional and bioactive scaffolds by combining polycaprolactone (PCL) and polylactic acid (PLA) for cardiomyocyte differentiation of human Ad-MSC (hAd-MSCs) in the absence or presence of 5-azacytidine and transforming growth factor-β (TGF-β). To that end, the human MSCs were extracted from human adipose tissue (AD). The cardiomyocyte differentiation potency of hAd-MSCs was evaluated on the novel synthetic PCL/PLA nanofiber scaffolds prepared in the absence and presence of 5-azacytidine and TGF-β supplements. A PCL/PLA nanofibrous scaffold was fabricated using the electrospinning method and its nanotopography and porous structure were characterized using scanning electron microscopy. In addition, the attachment of hAd-MSCs on the PCL/PLA scaffolds was semiquantitatively investigated. Compared with other treatments, the PCL/PLA nanofibrous scaffold supplemented with both 5-azacytidine and TGF-β was observed to differentiate hAd-MSCs into cardiomyocytes at Day 21 as evidenced by real-time PCR for cardiac-specific genes including cardiac troponin I (cTnI), GATA4, MYH7, and NKX2.5. In addition, flow cytometric analysis of cTnI-positive cells demonstrated that the cardiomyocyte differentiation of hAd-MSCs was more efficient on the PCL/PLA nanofibrous scaffold supplemented with both 5-azacytidine and TGF-β than it was in the other treatment groups. Generally speaking, the results show that PCL/PLA nanofibrous scaffolds may be applied as a platform for efficient differentiation of hAd-MSCs into functional cardiomyocytes.
Collapse
Affiliation(s)
- Parastoo Tambrchi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Morteza DaliriJoupari
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Gomes MR, Castelo Ferreira F, Sanjuan-Alberte P. Electrospun piezoelectric scaffolds for cardiac tissue engineering. BIOMATERIALS ADVANCES 2022; 137:212808. [PMID: 35929248 DOI: 10.1016/j.bioadv.2022.212808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The use of smart materials in tissue engineering is becoming increasingly appealing to provide additional functionalities and control over cell fate. The stages of tissue development and regeneration often require various electrical and electromechanical cues supported by the extracellular matrix, which is often neglected in most tissue engineering approaches. Particularly, in cardiac cells, electrical signals modulate cell activity and are responsible for the maintenance of the excitation-contraction coupling. Addition of electroconductive and topographical cues improves the biomimicry of cardiac tissues and plays an important role in driving cells towards the desired phenotype. Current platforms used to apply electrical stimulation to cells in vitro often require large external equipment and wires and electrodes immersed in the culture media, limiting the scalability and applicability of this process. Piezoelectric materials represent a shift in paradigm in materials and methods aimed at providing electrical stimulation to cardiac cells since they can produce and deliver electrical signals to cells and tissues by mechanoelectrical transduction. Despite the ability of piezoelectric materials to mimic the mechanoelectrical transduction of the heart, the use of these materials is limited in cardiac tissue engineering and methods to characterise piezoelectricity are often built in-house, which poses an additional difficulty when comparing results from the literature. In this work, we aim at providing an overview of the main challenges in cardiac tissue engineering and how piezoelectric materials could offer a solution to them. A revision on the existing literature in electrospun piezoelectric materials applied to cardiac tissue engineering is performed for the first time, as electrospinning plays an important role in the manufacturing of scaffolds with enhanced piezoelectricity and extracellular matrix native-like morphology. Finally, an overview of the current techniques used to evaluate piezoelectricity and their limitations is provided.
Collapse
Affiliation(s)
- Mariana Ramalho Gomes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
9
|
Alonzo M, El Khoury R, Nagiah N, Thakur V, Chattopadhyay M, Joddar B. 3D Biofabrication of a Cardiac Tissue Construct for Sustained Longevity and Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21800-21813. [PMID: 35533308 PMCID: PMC9238347 DOI: 10.1021/acsami.1c23883] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study, we developed three-dimensional (3D) printed annular ring-like scaffolds of hydrogel (gelatin-alginate) constructs encapsulated with a mixture of human cardiac AC16 cardiomyocytes (CMs), fibroblasts (CFs), and microvascular endothelial cells (ECs) as cardiac organoid models in preparation for investigating the role of microgravity in cardiovascular disease initiation and development. We studied the mechanical properties of the acellular scaffolds and confirmed their cell compatibility as well as heterocellular coupling for cardiac tissue engineering. Rheological analysis performed on the acellular scaffolds showed the scaffolds to be elastogenic with elastic modulus within the range of a native in vivo heart tissue. The microstructural and physicochemical properties of the scaffolds analyzed through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (ATR-FTIR) confirmed the mechanical and functional stability of the scaffolds for long-term use in in vitro cell culture studies. HL-1 cardiomyocytes bioprinted in these hydrogel scaffolds exhibited contractile functions over a sustained period of culture. Cell mixtures containing CMs, CFs, and ECs encapsulated within the 3D printed hydrogel scaffolds exhibited a significant increase in viability and proliferation over 21 days, as shown by flow cytometry analysis. Moreover, via the expression of specific cardiac biomarkers, cardiac-specific cell functionality was confirmed. Our study depicted the heterocellular cardiac cell interactions, which is extremely important for the maintenance of normal physiology of the cardiac wall in vivo and significantly increased over a period of 21 days in in vitro. This 3D bioprinted "cardiac organoid" model can be adopted to simulate cardiac environments in which cellular crosstalk in diseased pathologies like cardiac atrophy can be studied in vitro and can further be used for drug cytotoxicity screening or underlying disease mechanisms.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Raven El Khoury
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Naveen Nagiah
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
10
|
Nagiah N, El Khoury R, Othman MH, Akimoto J, Ito Y, Roberson DA, Joddar B. Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. ACS OMEGA 2022; 7:13894-13905. [PMID: 35559153 PMCID: PMC9088935 DOI: 10.1021/acsomega.2c00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
In this study, three types of electrospun scaffolds, including furfuryl-gelatin (f-gelatin) alone, f-gelatin with polycaprolactone (PCL) in a 1:1 ratio, and coaxial scaffolds with PCL (core) and f-gelatin (sheath), were developed for tissue engineering applications. Scaffolds were developed through single nozzle electrospinning and coaxial electrospinning, respectively, to serve as scaffolds for cardiac tissue engineering. Uniform fibrous structures were revealed in the scaffolds with significantly varying average fiber diameters of 760 ± 80 nm (f-gelatin), 420 ± 110 nm [f-gelatin and PCL (1:1)], and 810 ± 60 nm (coaxial f-gelatin > PCL) via scanning electron microscopy. The distinction between the core and the sheath of the fibers of the coaxial f-gelatin > PCL electrospun fibrous scaffolds was revealed by transmission electron microscopy. Thermal analysis and Fourier transformed infrared (FTIR) spectroscopy revealed no interactions between the polymers in the blended electrospun scaffolds. The varied blending methods led to significant differences in the elastic moduli of the electrospun scaffolds with the coaxial f-gelatin > PCL revealing the highest elastic modulus of all scaffolds (164 ± 3.85 kPa). All scaffolds exhibited excellent biocompatibility by supporting the adhesion and proliferation of human AC16 cardiomyocytes cells. The biocompatibility of the coaxial f-gelatin > PCL scaffolds with superior elastic modulus was assessed further through adhesion and functionality of human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, thereby demonstrating the potential of the coaxially spun scaffolds as an ideal platform for developing cardiac tissue-on-a-chip models. Our results demonstrate a facile approach to produce visible light cross-linkable, hybrid, biodegradable nanofibrous scaffold biomaterials, which can serve as platforms for cardiac tissue engineered models.
Collapse
Affiliation(s)
- Naveen Nagiah
- Inspired
Materials & Stem-Cell Based Tissue Engineering Laboratory, Department
of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Raven El Khoury
- Inspired
Materials & Stem-Cell Based Tissue Engineering Laboratory, Department
of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahmoud H. Othman
- Nano
Medical Engineering Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Jun Akimoto
- Emergent
Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano
Medical Engineering Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - David A. Roberson
- Polymer
Extrusion Lab, Department of Metallurgical, Materials, and Biomedical
Engineering, The University of Texas at
El Paso, El Paso, Texas 79968, United
States
| | - Binata Joddar
- Inspired
Materials & Stem-Cell Based Tissue Engineering Laboratory, Department
of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, The University
of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United
States
| |
Collapse
|
11
|
Growth of MIN-6 Cells on Salmon Fibrinogen Scaffold Improves Insulin Secretion. Pharmaceutics 2022; 14:pharmaceutics14050941. [PMID: 35631527 PMCID: PMC9144899 DOI: 10.3390/pharmaceutics14050941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of type I diabetes has been increasing worldwide at an annual rate of approximately 3%. One of the strategies to treat type I diabetes is islet transplantation, in which damaged β-cells are replaced with new islets. To improve β-cells’ expansion and pseudoislet formation, studies are focusing on using extracellular-matrix-resembling substrates. We evaluated the potential of salmon fibrinogen and chitosan electrospun scaffold as cell substrate for cultivating MIN-6 cells. The morphology of cells, insulin secretion and gene expression was evaluated and compared with other substrates (nanofibrous scaffold, microporous scaffold and tissue culture polystyrene). We found that all tested 3D conditions favored the pseudoislet formation of MIN-6 cells. The insulin secretion of MIN-6 cells after stimulation with high-glucose media shows approximately a 9-fold increase compared to the control group when a fibrinogen/chitosan-based electrospun scaffold was used for cultivation. The differences in insulin secretion were corroborated by differences in gene expression. The differences in insulin secretion could probably be attributed to the differences in the mechanical and/or chemical nature of the tested substrates.
Collapse
|
12
|
Varzideh F, Mone P, Santulli G. Bioengineering Strategies to Create 3D Cardiac Constructs from Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:168. [PMID: 35447728 PMCID: PMC9028595 DOI: 10.3390/bioengineering9040168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used to generate various cell types in the human body. Hence, hiPSC-derived cardiomyocytes (hiPSC-CMs) represent a significant cell source for disease modeling, drug testing, and regenerative medicine. The immaturity of hiPSC-CMs in two-dimensional (2D) culture limit their applications. Cardiac tissue engineering provides a new promise for both basic and clinical research. Advanced bioengineered cardiac in vitro models can create contractile structures that serve as exquisite in vitro heart microtissues for drug testing and disease modeling, thereby promoting the identification of better treatments for cardiovascular disorders. In this review, we will introduce recent advances of bioengineering technologies to produce in vitro cardiac tissues derived from hiPSCs.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
13
|
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front Bioeng Biotechnol 2022; 10:831300. [PMID: 35295645 PMCID: PMC8918733 DOI: 10.3389/fbioe.2022.831300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
Collapse
Affiliation(s)
| | | | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
14
|
Farahani A, Zarei-Hanzaki A, Abedi HR, Tayebi L, Mostafavi E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. J Funct Biomater 2021; 12:71. [PMID: 34940550 PMCID: PMC8704870 DOI: 10.3390/jfb12040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
Polylactide acid (PLA), as an FDA-approved biomaterial, has been widely applied due to its unique merits, such as its biocompatibility, biodegradability, and piezoelectricity. Numerous utilizations, including sensors, actuators, and bio-application-its most exciting application to promote cell migration, differentiation, growth, and protein-surface interaction-originate from the piezoelectricity effect. Since PLA exhibits piezoelectricity in both crystalline structure and an amorphous state, it is crucial to study it closely to understand the source of such a phenomenon. In this respect, in the current study, we first reviewed the methods promoting piezoelectricity. The present work is a comprehensive review that was conducted to promote the low piezoelectric constant of PLA in numerous procedures. In this respect, its chemistry and structural origins have been explored in detail. Combining any other variables to induce a specific application or to improve any PLA barriers, namely, its hydrophobicity, poor electrical conductivity, or the tuning of its mechanical properties, especially in the application of cardiovascular tissue engineering, is also discussed wherever relevant.
Collapse
Affiliation(s)
- Amirhossein Farahani
- Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Abbas Zarei-Hanzaki
- Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Hamid Reza Abedi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Li X, Zhang W, Zhang C, Wo Y, Ma A, Li Y, Zhang X. The role of bFGF in preventing the shrinkage of cardiac progenitor cell-engineered conduction tissue by downregulating α-SMA expression. Life Sci 2021; 282:119794. [PMID: 34237312 DOI: 10.1016/j.lfs.2021.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
AIMS Engineered conduction tissues (ECTs) fabricated from cardiac progenitor cells (CPCs) and collagen sponges were precisely targeted for the treatment of atrioventricular conduction block in our previous studies. However, obvious shrinkage and deformation of ECTs was observed during in vitro culture. According to the literature, it can be speculated that basic fibroblast growth factor (bFGF) may downregulate alpha-smooth muscle actin (α-SMA) produced by CPCs to prevent the shrinkage of CPC-engineered conduction tissues. MAIN METHODS In this study, culture media with or without bFGF were used for both cell culture and 3D tissue construction. The expression of α-SMA and the size change of engineered tissue were analyzed to evaluate the feasibility of adding bFGF to regulate α-SMA expression and shrinkage of constructs. In addition, cardiac-specific examinations were performed to evaluate the effect of bFGF on cardiac tissue formation. KEY FINDINGS Supplementation with bFGF efficiently relieved shrinkage of engineered tissue by downregulating the expression of α-SMA at both the cellular and 3D tissue levels. Moreover, bFGF had a positive influence on cardiac tissue formation in terms of cell viability, tissue organization and electrical conduction velocity. SIGNIFICANCE This study provides a guide for both shape control and quality improvement of CPC-engineered cardiac tissues.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anatomy, Naval Medical University, Shanghai, China
| | - Wenbo Zhang
- Rheumatology Department of Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuansen Zhang
- Department of Anatomy, Naval Medical University, Shanghai, China
| | - Yan Wo
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Airong Ma
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Zhang
- Department of Anatomy, Naval Medical University, Shanghai, China.
| |
Collapse
|
16
|
Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac Organoids to Model and Heal Heart Failure and Cardiomyopathies. Biomedicines 2021; 9:563. [PMID: 34069816 PMCID: PMC8157277 DOI: 10.3390/biomedicines9050563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.
Collapse
Affiliation(s)
- Magali Seguret
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Eva Vermersch
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Charlène Jouve
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Jean-Sébastien Hulot
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
- CIC1418 and DMU CARTE, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| |
Collapse
|