1
|
Abdi H, Sánchez-Molina D, García-Vilana S, Rahimi-Movaghar V. Revealing the role of material properties in impact-related injuries: Investigating the influence of brain and skull density variations on head injury severity. Heliyon 2024; 10:e29427. [PMID: 38638953 PMCID: PMC11024611 DOI: 10.1016/j.heliyon.2024.e29427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Traumatic brain injuries (TBI) resulting from head impacts are a major public health concern, which prompted our research to investigate the complex relationship between the material properties of brain tissue and the severity of TBI. The goal of this research is to investigate how variations in brain and skull density influence the vulnerability of brain tissue to traumatic injury, thereby enhancing our understanding of injury mechanism. To achieve this goal, we employed a well-validated finite element head model (FEHM). The current investigation was divided into two phases: in the first one, three distinct brain viscoelastic materials that had been utilized in prior studies were analyzed. The review of the properties of these three materials has been meticulous, encompassing both the spectrum of mechanical properties and the behaviors that are relevant to the way in which brain tissue reacts to traumatic loading conditions. In the second phase, the material properties of both the brain and skull tissue, alongside the impact conditions, were held constant. After this step, the focus was directed towards the variation of density in the brain and skull, which was consistent with the results obtained from previous experimental investigations, in order to determine the precise impact of these variations in density. This approach allowed a more profound comprehension of the impacts that density had on the simulation results. In the first phase, Material No. 2 exhibited the highest maximum first principal strain value in the frontal region (ε max = 15.41 % ), indicating lower stiffness to instantaneous deformation. This characteristic suggests that Material No. 2 may deform more extensively upon impact, potentially increasing the risk of injury due to its viscoelastic behavior. In contrast, Material No. 1, with a lower maximum first principal strain in the frontal region (ε max = 7.87 % ), displayed greater stiffness to instantaneous deformation, potentially reducing the risk of brain injury upon head impact. The second phase provided quantitative findings revealing a proportional relationship between brain tissue density and the pressures experienced by the brain. A 2 % increase in brain tissue density corresponded to approximately a 1 % increase in pressure on the brain tissue. Similarly, changes in skull density exhibited a similar quantitative relationship, with a 6 % increase in skull density leading to a 2.5 % increase in brain pressure. This preliminary approximate ratio of 2 to 1 between brain and skull density variations provides an initial quantitative framework for assessing the impact of density changes on brain vulnerability. These findings have several implications for the development of protective measures and injury prevention strategies, particularly in contexts where head trauma is a major issue.
Collapse
Affiliation(s)
- Hamed Abdi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - David Sánchez-Molina
- Universitat Politècnica de Catalunya, GIES, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Silvia García-Vilana
- Universitat Politècnica de Catalunya, GIES, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Fernandes FAO, Silveira CIC. The Significance of Cross-Sectional Shape Accuracy and Non-Linear Elasticity on the Numerical Modelling of Cerebral Veins under Tensile Loading. BIOLOGY 2023; 13:16. [PMID: 38248447 PMCID: PMC10813171 DOI: 10.3390/biology13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a serious global health issue, leading to serious disabilities. One type of TBI is acute subdural haematoma (ASDH), which occurs when a bridging vein ruptures. Many numerical models of these structures, mainly based on the finite element method, have been developed. However, most rely on linear elasticity (without validation) and others on simplifications at the geometrical level. An example of the latter is the assumption of a regular cylinder with a constant radius, or the geometry of the vein acquired from medical images. Unfortunately, these do not replicate the real conditions of a mechanical tensile test. In this work, the main goal is to evaluate the influence of the vein's geometry in its mechanical behaviour under tensile loading, simulating the real conditions of experimental tests. The second goal is to implement a hyperelastic model of the bridging veins where it would be possible to observe its non-linear elastic behaviour. The results of the developed finite element models were compared to experimental data available in the literature and other models. It was possible to conclude that the geometry of the vein structure influences the tensile stress-strain curve, which means that flattened specimens should be modelled when validating constitutive models for bridging veins. Additionally, the implementation of hyperelastic material models has been verified, highlighting the potential application of the Marlow and reduced polynomial (of fourth and sixth orders) constitutive models.
Collapse
Affiliation(s)
- Fábio A. O. Fernandes
- TEMA—Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Clara I. C. Silveira
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Abdi H, Sanchez-Molina D, Garcia-Vilana S, Rahimi-Movaghar V. Quantifying the effect of cerebral atrophy on head injury risk in elderly individuals: Insights from computational biomechanics and experimental analysis of bridging veins. Injury 2023; 54:111125. [PMID: 37867025 DOI: 10.1016/j.injury.2023.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The objective of this study was to quantitatively investigate the relationship between cerebral atrophy and the risk of injury in elderly individuals. To achieve this, a sophisticated computational biomechanics approach utilizing finite element analysis was employed to simulate the mechanical behavior of the brain and skull under various conditions. In addition, particular emphasis was placed on understanding the role of cerebral bridging veins (BVs) and their mechanical properties at different ages in the occurrence of head injuries. Head models representing healthy brains and five atrophy models were developed based on imaging data. After validation, the models underwent the identical impact loading conditions to enable the simulation of brain damage. The resulting outcomes of the models with brain atrophy were then compared to the results obtained from the healthy model, allowing for a comparative analysis. Simulations showed increased relative displacement with worsening brain atrophy, particularly in the frontal and occipital regions. Compared to the healthy brain model, relative displacement increased by 2.36 %-9.21 % in the atrophy models, indicating an elevated risk of injury. In severe brain atrophy (FEM 6), the strain reached 83.59 % in local model simulations, leading to damage and rupture of cerebral BVs in both young and elderly individuals. Mechanical tests on cerebral BVs demonstrated a negative correlation between age and ultimate force, stress, and strain, suggesting increased susceptibility to damage with age. An observed sharp decline of approximately 50 % in ultimate stress and 35 % in ultimate strain was noted as age increased. We implemented a 50 % reduction in the intensity of head impact forces; nevertheless, vascular damage continues to manifest in the elderly population. To establish a truly safe zone, it is imperative to further decrease the intensity of the impact. This investigation represents a significant step forward in our understanding of the complex interplay between cerebral atrophy, the mechanical properties of BVs at different age, and the risk of head injury in the elderly. Through continued research in this field, we can strive to improve the quality of care, enhance prevention strategies, and ultimately enhance the well-being and safety of the elderly population.
Collapse
Affiliation(s)
- Hamed Abdi
- Department of Biomedical Engineering, College of Medical Science and Technologies, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran; Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
González AK, Rodríguez-Reséndiz J, Gonzalez-Durán JEE, Olivares Ramírez JM, Estévez-Bén AA. Development of a Hip Joint Socket by Finite-Element-Based Analysis for Mechanical Assessment. Bioengineering (Basel) 2023; 10:bioengineering10020268. [PMID: 36829762 PMCID: PMC9952638 DOI: 10.3390/bioengineering10020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
This article evaluates a hip joint socket design by finite element method (FEM). The study was based on the needs and characteristics of a patient with an oncological amputation; however, the solution and the presented method may be generalized for patients with similar conditions. The research aimed to solve a generalized problem, taking a typical case from the study area as a reference. Data were collected on the use of the current improving prosthesis-specifically in interaction with its socket-to obtain information on the new approach design: this step constituted the work's starting point, where the problems to be solved in conventional designs were revealed. Currently, the development of this type of support does not consider the functionality and comfort of the patient. Research has reported that 58% of patients with sockets have rejected their use, because they do not fit comfortably and functionally; therefore, patients' low acceptance or rejection of the use of the prosthesis socket has been documented. In this study, different designs were evaluated, based on the FEM as scientific support for the results obtained, for the development of a new ergonomic fit with a 60% increase in patient compliance, that had correct gait performance when correcting postures, improved fit-user interaction, and that presented an esthetic fit that met the usability factor. The validation of the results was carried out through the physical construction of the prototype. The research showed how the finite element method improved the design, analyzing the structural behavioral, and that it could reduce cost and time instead of generating several prototypes.
Collapse
Affiliation(s)
- Ana Karen González
- Engineering Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Juvenal Rodríguez-Reséndiz
- Engineering Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
- Correspondence: (J.R.-R.); (J.M.O.R.)
| | | | - Juan Manuel Olivares Ramírez
- Department of Renewable Energy, Universidad Tecnológica de San Juan del Río, Querétaro 76800, Mexico
- Correspondence: (J.R.-R.); (J.M.O.R.)
| | - Adyr A. Estévez-Bén
- Engineering Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
- Chemistry Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
5
|
Age effects on the mechanical behavior of human cerebral bridging veins. Clin Biomech (Bristol, Avon) 2022; 100:105792. [PMID: 36327547 DOI: 10.1016/j.clinbiomech.2022.105792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND It is well established that the probability of occurrence of acute subdural hematomas in traumatic situations increases with age, since the main cause of such hematomas is the mechanical failure of cerebral blood vessels known as bridging veins. This research aims to determine whether there is an effect of age on the mechanical properties of these cerebral vessels, because previous reported studies were conflicting. METHODS This study used mechanical tests blue of cerebral bridging veins from post-mortem human subjects. In particular, a series of in vitro tensile tests were performed on a balanced sample of bridging veins from different human subjects. FINDINGS The mechanical parameters measured from the tests were analyzed by means of regression analysis looking for age related effects. The results show that there is a significant effect on both the ultimate strength, maximum stress and strain that the specimens can withstand. The quantitative analysis shows reductions of nearly 50% in ultimate stress, and almost 35% in ultimate strain. INTERPRETATION Mechanical deterioration of the mechanical strength of cerebral blood vessels seems to be a major factor involved in the increase of frequency of acute subdural hematoma in elderly people in a wide range of life-threatening traumatic situations.
Collapse
|
6
|
Adrover-Monserrat B, García-Vilana S, Sánchez-Molina D, Llumà J, Jerez-Mesa R, Travieso-Rodriguez JA. Viscoelastic Characterization of a Thermoplastic Elastomer Processed through Material Extrusion. Polymers (Basel) 2022; 14:polym14142914. [PMID: 35890690 PMCID: PMC9317395 DOI: 10.3390/polym14142914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Objective. We aim to characterize the viscoelastic behavior of Polyether-Block-Amide (PEBA 90A), provide reference values for the parameters of a constitutive model for the simulation of mechanical behaviors, and paying attention to the influence of the manufacturing conditions. Methods. Uniaxial relaxation tests of filaments of PEBA were used to determine the values of the parameters of a Prony series for a Quasi-Linear Visco-Elastic (QLVE) model. Additional, fast cyclic loading tests were used to corroborate the adequacy of the model under different test criteria in a second test situation. Results. The QLVE model predicts the results of the relaxation tests very accurately. In addition, the behavior inferred from this model fits very well with the measurements of fast cyclic loading tests. The viscoelastic behavior of PEBA under small strain polymer fits very well to a six-parameter QLVE model.
Collapse
|
7
|
Serra-Aguila A, Puigoriol-Forcada JM, Reyes G, Menacho J. Estimation of Tensile Modulus of a Thermoplastic Material from Dynamic Mechanical Analysis: Application to Polyamide 66. Polymers (Basel) 2022; 14:1210. [PMID: 35335539 PMCID: PMC8949491 DOI: 10.3390/polym14061210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The mechanical properties of thermoplastic materials depend on temperature and strain rate. This study examined the development of a procedure to predict tensile moduli at different strain rates and temperatures, using experimental data from three-point-bending dynamic mechanical analysis (DMA). The method integrated different classical concepts of rheology to establish a closed formulation that will allow researchers save an important amount of time. Furthermore, it implied a significant decrease in the number of tests when compared to the commonly used procedure with a universal testing machine (UTM). The method was validated by means of a prediction of tensile moduli of polyamide PA66 in the linear elastic range, over a temperature range that included the glass-transition temperature. The method was applicable to thermo-rheologically simple materials under the hypotheses of isotropy, homogeneity, small deformations, and linear viscoelasticity. This method could be applicable to other thermoplastic materials, although it must be tested using these other materials to determine to what extent it can be applied reliably.
Collapse
Affiliation(s)
- Albert Serra-Aguila
- Passive Safety Department, Applus + IDIADA HQ, Santa Oliva, L'Albornar, P.O. Box 20, 43710 Tarragona, Spain
| | | | - Guillermo Reyes
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Joaquin Menacho
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| |
Collapse
|
8
|
Injury Metrics for Assessing the Risk of Acute Subdural Hematoma in Traumatic Events. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413296. [PMID: 34948905 PMCID: PMC8702226 DOI: 10.3390/ijerph182413296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Worldwide, the ocurrence of acute subdural hematomas (ASDHs) in road traffic crashes is a major public health problem. ASDHs are usually produced by loss of structural integrity of one of the cerebral bridging veins (CBVs) linking the parasagittal sinus to the brain. Therefore, to assess the risk of ASDH it is important to know the mechanical conditions to which the CBVs are subjected during a potentially traumatic event (such as a traffic accident or a fall from height). Recently, new studies on CBVs have been published allowing much more accurate prediction of the likelihood of mechanical failure of CBVs. These new data can be used to propose new damage metrics, which make more accurate predictions about the probability of occurrence of ASDH in road crashes. This would allow a better assessement of the effects of passive safety countermeasures and, consequently, to improve vehicle restraint systems. Currently, some widely used damage metrics are based on partially obsolete data and measurements of the mechanical behavior of CBVs that have not been confirmed by subsequent studies. This paper proposes a revision of some existing metrics and constructs a new metric based on more accurate recent data on the mechanical failure of human CBVs.
Collapse
|