1
|
Shalata W, Abu Saleh O, Tourkey L, Shalata S, Neime AE, Abu Juma’a A, Soklakova A, Tourkey L, Jama AA, Yakobson A. The Efficacy of Cannabis in Oncology Patient Care and Its Anti-Tumor Effects. Cancers (Basel) 2024; 16:2909. [PMID: 39199679 PMCID: PMC11352579 DOI: 10.3390/cancers16162909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
As the legalization of medical cannabis expands across several countries, interest in its potential advantages among cancer patients and caregivers is burgeoning. However, patients seeking to integrate cannabis into their treatment often encounter frustration when their oncologists lack adequate information to offer guidance. This knowledge gap is exacerbated by the scarcity of published literature on the benefits of medical cannabis, leaving oncologists reliant on evidence-based data disheartened. This comprehensive narrative article, tailored for both clinicians and patients, endeavors to bridge these informational voids. It synthesizes cannabis history, pharmacology, and physiology and focuses on addressing various symptoms prevalent in cancer care, including insomnia, nausea and vomiting, appetite issues, pain management, and potential anti-cancer effects. Furthermore, by delving into the potential mechanisms of action and exploring their relevance in cancer treatment, this article aims to shed light on the potential benefits and effects of cannabis in oncology.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, Emek Medical Centre, Afula 18341, Israel
| | - Lena Tourkey
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Ala Eddin Neime
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ali Abu Juma’a
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arina Soklakova
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Lama Tourkey
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ashraf Abu Jama
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Spadafora ND, Felletti S, Chenet T, Sirangelo TM, Cescon M, Catani M, De Luca C, Stevanin C, Cavazzini A, Pasti L. The influence of drying and storage conditions on the volatilome and cannabinoid content of Cannabis sativa L. inflorescences. Anal Bioanal Chem 2024; 416:3797-3809. [PMID: 38702447 PMCID: PMC11180634 DOI: 10.1007/s00216-024-05321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The increasing interest in hemp and cannabis poses new questions about the influence of drying and storage conditions on the overall aroma and cannabinoids profile of these products. Cannabis inflorescences are subjected to drying shortly after harvest and then to storage in different containers. These steps may cause a process of rapid deterioration with consequent changes in precious secondary metabolite content, negatively impacting on the product quality and potency. In this context, in this work, the investigation of the effects of freeze vs tray drying and three storage conditions on the preservation of cannabis compounds has been performed. A multi-trait approach, combining both solid-phase microextraction (SPME) two-dimensional gas chromatography coupled to mass spectrometry (SPME-GC × GC-MS) and high-performance liquid chromatography (HPLC), is presented for the first time. This approach has permitted to obtain the detailed characterisation of the whole cannabis matrix in terms of volatile compounds and cannabinoids. Moreover, multivariate statistical analyses were performed on the obtained data, helping to show that freeze drying conditions is useful to preserve cannabinoid content, preventing decarboxylation of acid cannabinoids, but leads to a loss of volatile compounds which are responsible for the cannabis aroma. Furthermore, among storage conditions, storage in glass bottle seems more beneficial for the retention of the initial VOC profile compared to open to air dry tray and closed high-density polyethylene box. However, the glass bottle storage condition causes formation of neutral cannabinoids at the expenses of the highly priced acid forms. This work will contribute to help define optimal storage conditions useful to produce highly valuable and high-quality products.
Collapse
Affiliation(s)
- Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Mirco Cescon
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Claudia Stevanin
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
- Council for Agricultural Research and Economics, CREA, Via Della Navicella 2/4, 00184, Rome, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
3
|
Yoon HI, Lee SH, Ryu D, Choi H, Park SH, Jung JH, Kim HY, Yang JS. Non-destructive assessment of cannabis quality during drying process using hyperspectral imaging and machine learning. FRONTIERS IN PLANT SCIENCE 2024; 15:1365298. [PMID: 38736441 PMCID: PMC11082398 DOI: 10.3389/fpls.2024.1365298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Cannabis sativa L. is an industrially valuable plant known for its cannabinoids, such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), renowned for its therapeutic and psychoactive properties. Despite its significance, the cannabis industry has encountered difficulties in guaranteeing consistent product quality throughout the drying process. Hyperspectral imaging (HSI), combined with advanced machine learning technology, has been used to predict phytochemicals that presents a promising solution for maintaining cannabis quality control. We examined the dynamic changes in cannabinoid compositions under diverse drying conditions and developed a non-destructive method to appraise the quality of cannabis flowers using HSI and machine learning. Even when the relative weight and water content remained constant throughout the drying process, drying conditions significantly influenced the levels of CBD, THC, and their precursors. These results emphasize the importance of determining the exact drying endpoint. To develop HSI-based models for predicting cannabis quality indicators, including dryness, precursor conversion of CBD and THC, and CBD : THC ratio, we employed various spectral preprocessing methods and machine learning algorithms, including logistic regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB). The LR model demonstrated the highest accuracy at 94.7-99.7% when used in conjunction with spectral pre-processing techniques such as multiplicative scatter correction (MSC) or Savitzky-Golay filter. We propose that the HSI-based model holds the potential to serve as a valuable tool for monitoring cannabinoid composition and determining optimal drying endpoint. This tool offers the means to achieve uniform cannabis quality and optimize the drying process in the industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jung-Seok Yang
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, Republic of Korea
| |
Collapse
|
4
|
Birenboim M, Brikenstein N, Duanis-Assaf D, Maurer D, Chalupowicz D, Kenigsbuch D, Shimshoni JA. In Pursuit of Optimal Quality: Cultivar-Specific Drying Approaches for Medicinal Cannabis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1049. [PMID: 38611577 PMCID: PMC11013261 DOI: 10.3390/plants13071049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
A limited number of studies have examined how drying conditions affect the cannabinoid and terpene content in cannabis inflorescences. In the present study, we evaluated the potential of controlled atmosphere drying chambers for drying medicinal cannabis inflorescence. Controlled atmosphere drying chambers were found to reduce the drying and curing time by at least 60% compared to traditional drying methods, while preserving the volatile terpene content. On the other hand, inflorescences subjected to traditional drying were highly infested by Alternaria alternata and also revealed low infestation of Botrytis cinerea. In the high-THC chemovar ("240"), controlled N2 and atm drying conditions preserved THCA concentration as compared to the initial time point (t0). On the other hand, in the hybrid chemovar ("Gen12") all of the employed drying conditions preserved THCA and CBDA content. The optimal drying conditions for preserving monoterpenes and sesquiterpenes in both chemovars were C5O5 (5% CO2, 5% O2, and 90% N2) and pure N2, respectively. The results of this study suggest that each chemovar may require tailored drying conditions in order to preserve specific terpenes and cannabinoids. Controlled atmosphere drying chambers could offer a cost-effective, fast, and efficient drying method for preserving cannabinoids and terpenes during the drying process while reducing the risk of mold growth.
Collapse
Affiliation(s)
- Matan Birenboim
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
- Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Nimrod Brikenstein
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
- Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Danielle Duanis-Assaf
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Dalia Maurer
- Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Daniel Chalupowicz
- Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - David Kenigsbuch
- Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Jakob A. Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
5
|
Birenboim M, Chalupowicz D, Kenigsbuch D, Shimshoni JA. Improved Long-Term Preservation of Cannabis Inflorescence by Utilizing Integrated Pre-Harvest Hexanoic Acid Treatment and Optimal Post-Harvest Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:992. [PMID: 38611521 PMCID: PMC11013627 DOI: 10.3390/plants13070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
The effort to maintain cannabinoid and terpene levels in harvested medicinal cannabis inflorescence is crucial, as many studies demonstrated a significant concentration decrease in these compounds during the drying, curing, and storage steps. These stages are critical for the preparation and preservation of medicinal cannabis for end-use, and any decline in cannabinoid and terpene content could potentially reduce the therapeutic efficacy of the product. Consequently, in the present study, we determined the efficacy of pre-harvest hexanoic acid treatment alongside four months of post-harvest vacuum storage in prolonging the shelf life of high THCA cannabis inflorescence. Our findings indicate that hexanoic acid treatment led to elevated concentrations of certain cannabinoids and terpenes on the day of harvest and subsequent to the drying and curing processes. Furthermore, the combination of hexanoic acid treatment and vacuum storage yielded the longest shelf life and the highest cannabinoid and mono-terpene content as compared to all other groups studied. Specifically, the major cannabinoid's-(-)-Δ9-trans-tetrahydrocannabinolic acid (THCA)-concentration decreased by 4-23% during the four months of storage with the lowest reduction observed following hexanoic acid pre-harvest treatment and post-harvest vacuum storage. Hexanoic acid spray application displayed a more pronounced impact on mono-terpene preservation than storage under vacuum without hexanoic acid treatment. Conversely, sesqui-terpenes were observed to be less prone to degradation than mono-terpenes over an extended storage duration. In summation, appropriate pre-harvest treatment coupled with optimized storage conditions can significantly extend the shelf life of cannabis inflorescence and preserve high active compound concentration over an extended time period.
Collapse
Affiliation(s)
- Matan Birenboim
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Daniel Chalupowicz
- Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - David Kenigsbuch
- Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Jakob A. Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
6
|
Brikenstein N, Birenboim M, Kenigsbuch D, Shimshoni JA. Optimization of Trimming Techniques for Enhancing Cannabinoid and Terpene Content in Medical Cannabis Inflorescences. Med Cannabis Cannabinoids 2024; 7:111-118. [PMID: 39015609 PMCID: PMC11249524 DOI: 10.1159/000539192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Cannabis sativa L. inflorescences are widely used in the medicinal field as treatments for a variety of symptoms and illnesses due to their unique phytochemicals such as cannabinoids and terpenes. Common postharvest procedures for cannabis inflorescence include trimming, followed by drying, curing, and subsequent storage. The postharvest trimming step, particularly its timing (pre- or post-drying) and the extent of trimming, is not optimally refined in terms of its impact on the cannabinoid and terpene content. In this study, our objective was to identify the optimal trimming conditions for a commercially available medicinal cannabis hybrid chemovar, with the goal of maximizing its cannabinoid and terpene content. Methods To achieve this, we investigated the effects of pre- versus post-drying trimming and evaluated the impact of mild versus aggressive trimming prior to drying on the cannabinoid and terpene profiles using liquid and gas chromatography. Results Our results indicated that pre-drying mild trimming yielded the highest cannabinoid concentration, possibly due to optimal balance between stress signals and precursor influx from the sugar leaves to the inflorescence. On the other, post-drying trimming yielded the highest terpene content. Conclusion Identifying the optimal trimming conditions that maximize both cannabinoid and terpene levels in cannabis is challenging. Therefore, growers face a decision in their trimming practices: to prioritize either enhanced cannabinoid content or increased aromatic terpene concentrations, as optimizing for both simultaneously appears to be difficult.
Collapse
Affiliation(s)
- Nimrod Brikenstein
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Matan Birenboim
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - David Kenigsbuch
- Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Jakob A. Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
7
|
Kwaśnica A, Pachura N, Carbonell-Barrachina ÁA, Issa-Issa H, Szumny D, Figiel A, Masztalerz K, Klemens M, Szumny A. Effect of Drying Methods on Chemical and Sensory Properties of Cannabis sativa Leaves. Molecules 2023; 28:8089. [PMID: 38138578 PMCID: PMC10745367 DOI: 10.3390/molecules28248089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hemp is used as a source of fiber, oil and bioactive substances including volatile and cannabinoid-containing substances. This paper presents, for the first time, results on the evaluation of drying methods (convective, vacuum-microwave and combined convective pre-drying and vacuum-microwave finishing drying) of hemp leaves on the qualitative and quantitative changes in secondary metabolites, including essential oils, cannabinoids and sterols. A ranking and descriptive test of hemp leaves was also performed. Drying kinetics was presented using three models, including logarithmic, Midilli and modified Page. The SPME-Arrow technique was used to determine 41 volatile compounds, of which caryophyllene, β-myrcene and α-humulene were dominant in dried and fresh leaves. Regarding the essential oils obtained, 64 were identified, with caryophyllene, humulene epoxide II and limonene being the dominant ones. For preserving the highest amount of oils, the best method was the convective pre-drying followed by vacuum-microwave finishing drying (CD60-VMD) combined method, where the retention of volatile compounds was 36.08%, whereas the CD70 and 240-VMD methods resulted in the highest loss of 83%. The predominant cannabinoids in fresh hemp leaves were CBDA 6.05 and CBD 2.19 mg g-1. Drying caused no change in the cannabinoid profile of the plant material. β-Sitosterol, campesterol and lupeol were dominant in the phytosterol and triterpene fractions. No changes in either quality or quantity were observed in any of the variants found.
Collapse
Affiliation(s)
- Andrzej Kwaśnica
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland (A.S.)
| | - Natalia Pachura
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland (A.S.)
| | | | - Hanán Issa-Issa
- Departamento Tecnología Agroalimentaria, Universidad Miguel Hernández, Carretera de Beniel, 03312 Orihuela, Spain
| | - Dorota Szumny
- Department of Pharmacology, Wrocław Medical University, ul. Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - Adam Figiel
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, Chełmońskego 37a, 51-630 Wrocław, Poland
| | - Klaudia Masztalerz
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, Chełmońskego 37a, 51-630 Wrocław, Poland
| | - Marta Klemens
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland (A.S.)
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland (A.S.)
| |
Collapse
|
8
|
Glinn MA, Michaud GP. Potency levels of regulated cannabis products in Michigan 2021-2022. J Forensic Sci 2023; 68:1894-1905. [PMID: 37501559 DOI: 10.1111/1556-4029.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Evaluation of cannabinoid concentrations in products from the legal cannabis market has been fraught with uncertainty. The lack of standardized testing methodology and the susceptibility of cannabinoids to degradation under certain storage conditions complicates the efforts to assess total tetrahydrocannabinol (THC) levels across wide geographic areas. There are few peer-reviewed surveys of cannabinoid concentrations in regulated products. Those that have been done have not characterized the effects of differences in analytical methodology, sample population, and storage conditions. Viridis Laboratories, which operates two cannabis safety compliance facilities in Michigan, has analyzed over 34,000 cannabis products throughout 2021 and 2022 before the sale in the regulated market. Fifteen cannabinoids in cannabis flower, concentrates, and infused products were tested using methanolic extraction and analysis by high-performance liquid chromatography with diode-array detection. Methods were validated before use, and the flower analysis procedure was certified by the Association of Analytical Collaboration. All the samples were tested before submission for sale and therefore had not undergone prolonged storage. The results are compared with those seen in other states as well as in the illicit market. Total THC levels in cannabis flower from the regulated market are significantly higher than those seen in illicit products. The distribution of cannabinoid levels is similar in flowers intended for either the medicinal or adult-use markets, with an average potency of 18%-23% of total THC. Total THC in concentrates averages up to 82%. Other cannabinoids are observed at significant levels, mostly in products specifically formulated to contain them. These results may act as a benchmark for potency levels in the regulated market.
Collapse
|
9
|
Bajda L, Amaro MM, Bongiovanni GA. [Optimized chromatographic methods for the identification and quantification of terpenes in Cannabis sativa oil for medicinal use]. REVISTA DE LA FACULTAD DE CIENCIAS MÉDICAS 2023; 80:99-105. [PMID: 37402299 PMCID: PMC10443410 DOI: 10.31053/1853.0605.v80.n2.39593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/15/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Cannabis sativa is a plant species with numerous active principles, so the list of its therapeutic uses is expanding. In this sense, there are numerous evidences of the possible medicinal use of terpenes, as well as their synergism with cannabinoids (entourage effect). Thus, as more countries contemplate the legalization and authorization of medical cannabis, the number of cannabis extraction and analysis laboratories is increasing to meet the demand, requiring adequate analytical tools. Methodology In response to numerous inquiries from physicians, analytical laboratories and users, the PROBIEN chromatography laboratory has selected two methods for the analysis of terpenes in Cannabis oil by gas chromatography technique (GC-FID). The methods are described using HP-5 and Innowax columns. The external standard method was used for the quantitative determination of β-Pinene, Myrcene, p-Cymene, Limonene, Linalool, α-Terpineol, Nerol and Geraniol. Results good peak separation and reproducibility were observed, appropriate for the identification and quantification of the main terpenes in Cannabis extracts. The area/concentration ratio was linear in the range of 0.0005 to 2.0 mg/ml. Main conclusion The described methods allow the identification and quantification of the major terpenes in Cannabis oil for an adequate quality control.
Collapse
Affiliation(s)
- Leonardo Bajda
- PROBIEN (Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas), CONICET - Universidad Nacional del Comahue, CCT-Patagonia Confluencia.
| | - María Marcela Amaro
- PROBIEN (Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas), CONICET - Universidad Nacional del Comahue, CCT-Patagonia Confluencia.
| | - Guillermina A Bongiovanni
- PROBIEN (Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, CONICET-Universidad Nacional del Comahue.
| |
Collapse
|
10
|
Stack GM, Carlson CH, Toth JA, Philippe G, Crawford JL, Hansen JL, Viands DR, Rose JKC, Smart LB. Correlations among morphological and biochemical traits in high-cannabidiol hemp ( Cannabis sativa L.). PLANT DIRECT 2023; 7:e503. [PMID: 37347078 PMCID: PMC10280002 DOI: 10.1002/pld3.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Cannabis sativa is cultivated for multiple uses including the production of cannabinoids. In developing improved production systems for high-cannabinoid cultivars, scientists and cultivators must consider the optimization of complex and interacting sets of morphological, phenological, and biochemical traits, which have historically been shaped by natural and anthropogenic selection. Determining factors that modulate cannabinoid variation within and among genotypes is fundamental to developing efficient production systems and understanding the ecological significance of cannabinoids. Thirty-two high-cannabinoid hemp cultivars were characterized for traits including flowering date and shoot-tip cannabinoid concentration. Additionally, a set of plant architecture traits, as well as wet, dry, and stripped inflorescence biomass were measured at harvest. One plant per plot was partitioned post-harvest to quantify intra-plant variation in inflorescence biomass production and cannabinoid concentration. Some cultivars showed intra-plant variation in cannabinoid concentration, while many had a consistent concentration regardless of canopy position. There was both intra- and inter-cultivar variation in architecture that correlated with intra-plant distribution of inflorescence biomass, and concentration of cannabinoids sampled from various positions within a plant. These relationships among morphological and biochemical traits will inform future decisions by cultivators, regulators, and plant breeders.
Collapse
Affiliation(s)
- George M. Stack
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| | - Craig H. Carlson
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research, CenterUSDA‐ARSFargoNorth DakotaUSA
| | - Jacob A. Toth
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Jamie L. Crawford
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Julie L. Hansen
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Donald R. Viands
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| |
Collapse
|
11
|
Addo PW, Poudineh Z, Shearer M, Taylor N, MacPherson S, Raghavan V, Orsat V, Lefsrud M. Relationship between Total Antioxidant Capacity, Cannabinoids and Terpenoids in Hops and Cannabis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1225. [PMID: 36986914 PMCID: PMC10056619 DOI: 10.3390/plants12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Efficient determination of antioxidant activity in medicinal plants may provide added value to extracts. The effects of postharvest pre-freezing and drying [microwave-assisted hot air (MAHD) and freeze drying] on hops and cannabis were evaluated to determine the relationship between antioxidant activity and secondary metabolites. The 2,2-diphenyl-1-picrylhydrazine (DPPH) reduction and ferric reducing ability of power (FRAP) assays were assessed for suitability in estimating the antioxidant activity of extracted hops and cannabis inflorescences and correlation with cannabinoid and terpene content. Antioxidant activity in extracts obtained from fresh, undried samples amounted to 3.6 Trolox equivalent antioxidant activity (TEAC) (M) dry matter-1 and 2.32 FRAP (M) dry matter-1 for hops, in addition to 2.29 TEAC (M) dry matter-1 and 0.25 FRAP (M) dry matter-1 for cannabis. Pre-freezing significantly increased antioxidant values by 13% (DPPH) and 29.9% (FRAP) for hops, and by 7.7% (DPPH) and 19.4% (FRAP) for cannabis. ANOVA analyses showed a significant (p < 0.05) increase in total THC (24.2) and THCA (27.2) concentrations (g 100 g dry matter-1) in pre-frozen, undried samples compared to fresh, undried samples. Freeze-drying and MAHD significantly (p < 0.05) reduced antioxidant activity in hops by 79% and 80.2% [DPPH], respectively and 70.1% and 70.4% [FRAP], respectively, when compared to antioxidant activity in extracts obtained from pre-frozen, undried hops. DPPH assay showed that both freeze-drying and MAHD significantly (p < 0.05) reduced the antioxidant activity of cannabis by 60.5% compared to the pre-frozen samples although, there was no significant (p < 0.05) reduction in the antioxidant activity using the FRAP method. Greater THC content was measured in MAHD-samples when compared to fresh, undried (64.7%) and pre-frozen, undried (57%), likely because of decarboxylation. Both drying systems showed a significant loss in total terpene concentration, yet freeze-drying has a higher metabolite retention compared to MAHD. These results may prove useful for future experiments investigating antioxidant activity and added value to cannabis and hops.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Zohreh Poudineh
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Michelle Shearer
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Nichole Taylor
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Vijaya Raghavan
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Mark Lefsrud
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| |
Collapse
|
12
|
Sridhar K, Usmani Z, Sharma M. Bioactive Formulations in Agri-Food-Pharma: Source and Applications. Bioengineering (Basel) 2023; 10:bioengineering10020191. [PMID: 36829685 PMCID: PMC9951862 DOI: 10.3390/bioengineering10020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Bioactive compounds are the secondary metabolites produced by the plant cell through numerous metabolic pathways [...].
Collapse
Affiliation(s)
- Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
- Correspondence: (K.S.); (M.S.)
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
- Correspondence: (K.S.); (M.S.)
| |
Collapse
|
13
|
Addo PW, Sagili SUKR, Bilodeau SE, Gladu-Gallant FA, MacKenzie DA, Bates J, McRae G, MacPherson S, Paris M, Raghavan V, Orsat V, Lefsrud M. Microwave- and Ultrasound-Assisted Extraction of Cannabinoids and Terpenes from Cannabis Using Response Surface Methodology. Molecules 2022; 27:molecules27248803. [PMID: 36557949 PMCID: PMC9784742 DOI: 10.3390/molecules27248803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Limited studies have explored different extraction techniques that improve cannabis extraction with scale-up potential. Ultrasound-assisted and microwave-assisted extraction were evaluated to maximize the yield and concentration of cannabinoids and terpenes. A central composite rotatable design was used to optimize independent factors (sample-to-solvent ratio, extraction time, extraction temperature, and duty cycle). The optimal conditions for ultrasound- and microwave-assisted extraction were the sample-to-solvent ratios of 1:15 and 1:14.4, respectively, for 30 min at 60 °C. Ultrasound-assisted extraction yielded 14.4% and 14.2% more oil and terpenes, respectively, compared with microwave-assisted extracts. Ultrasound-assisted extraction increased cannabinoid concentration from 13.2−39.2%. Considering reference ground samples, tetrahydrocannabinolic acid increased from 17.9 (g 100 g dry matter−1) to 28.5 and 20 with extraction efficiencies of 159.2% and 111.4% for ultrasound-assisted and microwave-assisted extraction, respectively. Principal component analyses indicate that the first two principal components accounted for 96.6% of the total variance (PC1 = 93.2% and PC2 = 3.4%) for ultrasound-assisted extraction and 92.4% of the total variance (PC1 = 85.4% and PC2 = 7%) for microwave-assisted extraction. Sample-to-solvent ratios significantly (p < 0.05) influenced the secondary metabolite profiles and yields for ultrasound-assisted extracts, but not microwave-assisted extracts.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Sai Uday Kumar Reddy Sagili
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | | | | | - Douglas A. MacKenzie
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Jennifer Bates
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Garnet McRae
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Maxime Paris
- EXKA Inc., 7625 Route Arthur Sauvé, Mirabel, QC J7N 2R6, Canada
| | - Vijaya Raghavan
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Mark Lefsrud
- Bioresource Engineering Department, Macdonald Campus, McGill University, Ste-Anne-De-Bellevue, Montreal, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-(514)-3987967
| |
Collapse
|
14
|
Schwabe AL, Naibauer SK, McGlaughlin ME, Gilbert AN. Human olfactory discrimination of genetic variation within Cannabis strains. Front Psychol 2022; 13:942694. [PMID: 36389460 PMCID: PMC9651054 DOI: 10.3389/fpsyg.2022.942694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabis sativa L. is grown and marketed under a large number of named strains. Strains are often associated with phenotypic traits of interest to consumers, such as aroma and cannabinoid content. Yet genetic inconsistencies have been noted within named strains. We asked whether genetically inconsistent samples of a commercial strain also display inconsistent aroma profiles. We genotyped 32 samples using variable microsatellite regions to determine a consensus strain genotype and identify genetic outliers (if any) for four strains. Results were used to select 15 samples for olfactory testing. A genetic outlier sample was available for all but one strain. Aroma profiles were obtained by 55 sniff panelists using quantitative sensory evaluation of 40 odor descriptors. Within a strain, aroma descriptor frequencies for the genetic outlier were frequently at odds with those of the consensus samples. It appears that within-strain genetic differences are associated with differences in aroma profile. Because these differences were perceptible to untrained panelists, they may also be noticed by retail consumers. Our results could help the cannabis industry achieve better control of product consistency.
Collapse
Affiliation(s)
- Anna L. Schwabe
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
- *Correspondence: Anna L. Schwabe,
| | - Samantha K. Naibauer
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
| | | | | |
Collapse
|