1
|
Ren J, Zhu B, Gu G, Zhang W, Li J, Wang H, Wang M, Song X, Wei Z, Feng S. Schwann cell-derived exosomes containing MFG-E8 modify macrophage/microglial polarization for attenuating inflammation via the SOCS3/STAT3 pathway after spinal cord injury. Cell Death Dis 2023; 14:70. [PMID: 36717543 PMCID: PMC9887051 DOI: 10.1038/s41419-023-05607-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Macrophage/microglia polarization acts as an important part in regulating inflammatory responses in spinal cord injury (SCI). However, the regulation of inflammation of Schwann cell-derived exosomes (SCDEs) for SCI repair is still unclear. Therefore, we intend to find out the effect of SCDEs on regulating the inflammation related to macrophage polarization during the recovery of SCI. Firstly, the thesis demonstrated that SCDEs could attenuate the LPS- inflammation in BMDMs by suppressing M1 polarization and stimulating M2 polarization. Similarly, SCDEs improved functional recovery of female Wistar rats of the SCI contusion model according to BBB (Basso, Beattie, and Bresnahan) score, electrophysiological assay, and the gait analysis system of CatWalk XT. Moreover, MFG-E8 was verified as the main component of SCDEs to improve the inflammatory response by proteomic sequencing and lentiviral transfection. Improvement of the inflammatory microenvironment also inhibited neuronal apoptosis. The knockout of MFG-E8 in SCs can reverse the anti-inflammatory effects of SCDEs treatment. The SOCS3/STAT3 signaling pathway was identified to participate in upregulating M2 polarization induced by MFG-E8. In conclusion, our findings will enrich the mechanism of SCDEs in repairing SCI and provide potential applications and new insights for the clinical translation of SCDEs treatment for SCI.
Collapse
Affiliation(s)
- Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangjin Gu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Junjin Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongda Wang
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaomeng Song
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Deng L, Sui T, Wang DV, Hou S, Cao X, Peng K, Xu Z, Xu X. Locomotor Exercise Enhances Supraspinal Control of Lower-Urinary-Tract Activity to Improve Micturition Function after Contusive Spinal-Cord Injury. Cells 2022; 11:cells11091398. [PMID: 35563703 PMCID: PMC9104392 DOI: 10.3390/cells11091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The recovery of lower-urinary-tract activity is a top priority for patients with spinal-cord injury. Historically, locomotor training improved micturition function in both patients with spinal cord injury and animal models. We explore whether training augments such as the supraspinal control of the external urethral sphincter results in enhanced coordination in detrusor-sphincter activity. We implemented a clinically relevant contusive spinal-cord injury at the 12th thoracic level in rats and administered forced wheel running exercise for 11 weeks. Awake rats then underwent bladder cystometrogram and sphincter electromyography recordings to examine the micturition reflex. Subsequently, pseudorabies-virus-encoding red fluorescent protein was injected into the sphincter to trans-synaptically trace the supraspinal innervation of Onuf's motoneurons. Training in the injury group reduced the occurrence of bladder nonvoiding contractions, decreased the voiding threshold and peak intravesical pressure, and shortened the latency of sphincter bursting during voiding, leading to enhanced voiding efficiency. Histological analysis demonstrated that the training increased the extent of spared spinal-cord tissue around the epicenter of lesions. Compared to the group of injury without exercise, training elicited denser 5-hydroxytryptamine-positive axon terminals in the vicinity of Onuf's motoneurons in the cord; more pseudorabies virus-labeled or c-fos expressing neurons were detected in the brainstem, suggesting the enhanced supraspinal control of sphincter activity. Thus, locomotor training promotes tissue sparing and axon innervation of spinal motoneurons to improve voiding function following contusive spinal-cord injury.
Collapse
Affiliation(s)
- Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (L.D.); (X.X.); Tel.: +1-317-278-1030 (L.D.); +1-317-274-1036 (X.X.)
| | - Tao Sui
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Dong V. Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (D.V.W.); (S.H.)
| | - Shaoping Hou
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (D.V.W.); (S.H.)
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Kaiwen Peng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zaocheng Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (L.D.); (X.X.); Tel.: +1-317-278-1030 (L.D.); +1-317-274-1036 (X.X.)
| |
Collapse
|