1
|
Kim Y, Jeon Y, Song K, Ji H, Hwang SJ, Yoon Y. Development of an Escherichia coli Cell-Based Biosensor for Aspirin Monitoring by Genetic Engineering of MarR. BIOSENSORS 2024; 14:547. [PMID: 39590006 PMCID: PMC11591804 DOI: 10.3390/bios14110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multiple antibiotic resistance regulators (MarRs) control the transcription of genes in the mar operon of Escherichia coli in the presence of salicylic acid (SA). The interaction with SA induces conformational changes in the MarR released from the promoter of the mar operon, turning on transcription. We constructed an SA-specific E. coli cell-based biosensor by fusing the promoter of the mar operon (PmarO) and the gene that encodes an enhanced green fluorescent protein (egfp). Because SA and aspirin are structurally similar, a biosensor for monitoring aspirin can be obtained by genetically engineering MarR to be aspirin (ASP)-responsive. To shift the selectivity of MarR toward ASP, we changed the residues around the ligand-binding sites by site-directed mutagenesis. We examined the effects of genetic engineering on MarR by introducing MarRs with PmarO-egfp into E. coli. Among the tested mutants, MarR T72A improved the ASP responses by approximately 3 times compared to the wild-type MarR, while still showing an SA response. Although the MarR T72A biosensor exhibited mutual interference between SA and ASP, it accurately determined the ASP concentration in spiked water and medicine samples with over 90% accuracy. While the ASP biosensors still require improvement, our results provide valuable insights for developing E. coli cell-based biosensors for ASP and transcription factor-based biosensors in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.)
| |
Collapse
|
2
|
Khoshmanesh M, Sanati AM, Ramavandi B. Influence of cephalexin on cadmium adsorption onto microplastic particles in water: Human health risk evaluation. Heliyon 2024; 10:e37775. [PMID: 39309868 PMCID: PMC11416549 DOI: 10.1016/j.heliyon.2024.e37775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
This paper explores the impact of environmental factors on the adsorption of cadmium (Cd) and cephalexin (CEX) onto polyethylene (PE) microplastics. The study focused on Cd adsorption behavior on microplastics (MPs) of various sizes, revealing that particles sized 30-63 μm exhibited the highest adsorption capacity compared to other sizes. Cd sorption was significantly influenced by initial pH and salinity levels. Experimental data closely matched both the Langmuir (R2 > 0.91) and Freundlich (R2 > 0.92) isotherms. Cd adsorption onto PE particles was greater than CEX adsorption, with the maximum Cd uptake capacity measured at 1.8 mg/g. FTIR analysis indicated that Cd and CEX adsorption onto MPs was likely governed by physical interactions, as no new functional groups were detected post-uptake. The desorption rates of Cd and CEX from PE microplastics were evaluated in various liquids, including aqueous solution, tap water, seawater, and synthetic gastric juice. The health risks associated with Cd, in combination with MPs and CEX, for both children and adults were assessed in groundwater and aqueous solutions. This study offers scientific insights and guidelines for examining the environmental behavior, migration, and transformation of microplastics and their related ecological risks in scenarios of combined pollution.
Collapse
Affiliation(s)
- Madineh Khoshmanesh
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| |
Collapse
|
3
|
Dhakshinamoorthy V, Vishali SPR, Elumalai S, Perumal E. Acute exposure to environmentally relevant concentrations of pharmaceutical pollutants induces neurobehavioral toxicity in zebrafish ( Danio rerio). Drug Chem Toxicol 2024:1-14. [PMID: 39072487 DOI: 10.1080/01480545.2024.2382451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Pharmaceutical waste from point and non-point sources enters, persists, or disseminates in the environment and is known as environmentally persistent pharmaceutical pollutants. Understanding the impacts of pharmaceutical pollutants on the environment and health is essential. This study investigates the behavioral impacts of pharmaceutical pollutants on aquatic organisms and delineates the possible nexus of oxidative stress. The male zebrafish were exposed to four major representative pharmaceutical pollutants, viz., acetaminophen, carbamazepine, metformin, and trimethoprim at environmentally relevant concentrations individually as well as in a mixture for seven days. Substantial alterations in social interaction, aggressive nature, novel tank exploration, and light and dark zone preferences were recorded and the degree varied to different pharmaceutical pollutants. The activity of oxidative stress markers, superoxide dismutase, glutathione-S-transferase, and catalase, was found to be suppressed to 66-20%, 42-25%, and 59-20% respectively with the elevated malondialdehyde generation (180-260%) compared to control. The activity level of acetylcholine esterase was found to be increased to 200-500% across all treatment groups. Despite the synergistic impacts of pharmaceutical pollutants on the whole system that could not be ascertained, this comprehensive study highlights their toxicity nature to induce neurobehavioral toxicity in zebrafish through oxidative stress mechanisms and altered cholinergic systems.
Collapse
Affiliation(s)
- Vasanth Dhakshinamoorthy
- Department of Nanobiotechnology, Molecular Environmental Toxicology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - S P R Vishali
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Sriramakrishnan Elumalai
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Ekambaram Perumal
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Savoca D, Vazzana M, Arizza V, Maccotta A, Orecchio S, Longo F, Giudice V, D’Oca G, Messina S, Marrone F, Mauro M. Contamination Profiles of Selected Pollutants in Procambarus clarkii Non-Edible Portions Highlight Their Potential Exploitation Applications. J Xenobiot 2024; 14:893-906. [PMID: 39051345 PMCID: PMC11270285 DOI: 10.3390/jox14030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Properly managing aquatic organisms is crucial, including protecting endemic species and controlling invasive species. From a circular economy perspective, the sustainable use of aquatic species as a source of bioactive molecules is an area that is increasingly being explored. This includes the use of non-edible portions of seafood, which could pose considerable risks to the environment due to current methods of disposal. Therefore, it is of paramount importance to ensure that the exploitation of these resources does not result in the transfer of pollutants to the final product. This study analyzed two types of non-edible parts from the crayfish Procambarus clarkii: the abdominal portion of the exoskeleton (AbE) and the whole exoskeleton (WE), including the cephalothorax. These portions could potentially be utilized in the context of eradication activities regulated by local authorities. A screening analysis of four classes of pollutants, including pesticides, per- and polyfluoroalkyl substances (PFAS), phthalic acid esters (PAEs), and trace elements (TEs), was performed. The only analytes detected were TEs, and significant differences in the contamination profile were found between AbE and WE. Nevertheless, the levels recorded were comparable to or lower than those reported in the literature and below the maximum levels allowed in the current European legislation for food, suggesting that their potential use is legally permitted. In terms of scalability, the utilization of the entire non-edible P. clarkii portion would represent a sustainable solution for the reuse of waste products.
Collapse
Affiliation(s)
- Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Antonella Maccotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Santino Orecchio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| | - Francesco Longo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| | - Vittoria Giudice
- ARPA Sicilia, Agenzia Regionale Protezione Ambiente, UOC L2, via Nairobi, 90129 Palermo, Italy; (V.G.); (G.D.); (S.M.)
| | - Gaetano D’Oca
- ARPA Sicilia, Agenzia Regionale Protezione Ambiente, UOC L2, via Nairobi, 90129 Palermo, Italy; (V.G.); (G.D.); (S.M.)
| | - Salvatore Messina
- ARPA Sicilia, Agenzia Regionale Protezione Ambiente, UOC L2, via Nairobi, 90129 Palermo, Italy; (V.G.); (G.D.); (S.M.)
| | - Federico Marrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| |
Collapse
|
5
|
Gupta A, Kumar S, Bajpai Y, Chaturvedi K, Johri P, Tiwari RK, Vivekanand V, Trivedi M. Pharmaceutically active micropollutants: origin, hazards and removal. Front Microbiol 2024; 15:1339469. [PMID: 38419628 PMCID: PMC10901114 DOI: 10.3389/fmicb.2024.1339469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Pharmaceuticals, recognized for their life-saving potential, have emerged as a concerning class of micropollutants in the environment. Even at minute concentrations, chronic exposure poses a significant threat to ecosystems. Various pharmaceutically active micropollutants (PhAMP), including antibiotics, analgesics, and hormones, have been detected in underground waters, surface waters, seawater, sewage treatment plants, soils, and activated sludges due to the absence of standardized regulations on pharmaceutical discharge. Prolonged exposureof hospital waste and sewage treatment facilities is linked to the presence of antibiotic-resistant bacteria. Conventional water treatment methods prove ineffective, prompting the use of alternative techniques like photolysis, reverse osmosis, UV-degradation, bio-degradation, and nano-filtration. However, commercial implementation faces challenges such as incomplete removal, toxic sludge generation, high costs, and the need for skilled personnel. Research gaps include the need to comprehensively identify and understand various types of pharmaceutically active micropollutants, investigate their long-term ecological impact, develop more sensitive monitoring techniques, and explore integrated treatment approaches. Additionally, there is a gap in understanding the socio-economic implications of pharmaceutical pollution and the efficacy of public awareness campaigns. Future research should delve into alternative strategies like phagotherapy, vaccines, and natural substance substitutes to address the escalating threat of pharmaceutical pollution.
Collapse
Affiliation(s)
- Anuradha Gupta
- Flavin Labs Private Limited, Lucknow, Uttar Pradesh, India
- J. Somaiya College of Science and Commerce, Mumbai, India
| | - Sandeep Kumar
- Flavin Labs Private Limited, Lucknow, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Yashi Bajpai
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Kavita Chaturvedi
- Flavin Labs Private Limited, Lucknow, Uttar Pradesh, India
- Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Parul Johri
- Department of Biotechnology, AITH, Kanpur, Uttar Pradesh, India
| | - Rajesh K. Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - V. Vivekanand
- Department of Biotechnology, MNIT, Jaipur, Rajasthan, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Cardoso L, Owatari MS, Chaves FCM, Ferreira TH, Costa DS, Furtado WE, Tedesco M, Honorato LA, Mouriño JLP, Martins ML. Lippia sidoides essential oil at concentration of 0.25% provided improvements in microbiota and intestine integrity of Danio rerio. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e005323. [PMID: 38362241 PMCID: PMC10868529 DOI: 10.29374/2527-2179.bjvm005323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The study evaluated the effects of dietary supplementation with Lippia sidoides essential oil on the microbiota and intestinal morphology of Danio rerio. For this, 448 fish were randomly distributed in 28 tanks divided into a control group fed a commercial diet without supplementation, a group fed a commercial diet containing grain alcohol and five groups fed a commercial diet containing essential oil of L. sidoides (LSEO) at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After the period of dietary supplementation, biological materials were collected for microbiological and histological analyses. There were no significant differences regarding the microbiological count between the groups. Diversity of the microbiome was higher in 0.25% group than in control group. LSEO inhibited the growth of potentially pathogenic bacteria. Fish fed LSEO0.25% showed greater intestinal histomorphometric indices. The inclusion of LSEO at 0.25% in the diet of D. rerio provided improvements in fish microbiota and intestine integrity.
Collapse
Affiliation(s)
- Lucas Cardoso
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Marco Shizuo Owatari
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - Tamiris Henrique Ferreira
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Domickson Silva Costa
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - William Eduardo Furtado
- Aquaculture engineer, DSc., Departamento de Doenças Infecciosas e Saúde Pública, Colégio do Jockey Club de Medicina Veterinária e Ciências da Vida, Universidade da Cidade de Hong Kong, Hong Kong, China.
| | - Marília Tedesco
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - José Luiz Pedreira Mouriño
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Maurício Laterça Martins
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Impellitteri F, Yunko K, Calabrese G, Porretti M, Martyniuk V, Gnatyshyna L, Nava V, Potortì AG, Piccione G, Di Bella G, Stoliar O, Faggio C. Chlorpromazine's impact on Mytilus galloprovincialis: a multi-faceted investigation. CHEMOSPHERE 2024; 350:141079. [PMID: 38160957 DOI: 10.1016/j.chemosphere.2023.141079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The antipsychotic chlorpromazine (Cpz) has raised concern as a pharmaceutical effluent due to its wide medical applications. Moreover, its potent pro-oxidant properties and impact on the cell viability of the marine mollusc Mytilus galloprovincialis, even at low concentrations (ng/L), have been noted. Based on this evidence, in this study, we investigated the physiological effects of Cpz on M. galloprovincialis, to elucidate its fate within the organism, in terms of bioaccumulation, biotransformation, byssus changes and stress responses of the cellular thiolome. Histological and indicators of vitality analyses were also performed to better evaluate the influence of the drug on the morphology and cell viability of the digestive gland. To this end, two different concentrations of Cpz (Cpz I (12 ng/L or 37 pM) and Cpz II (12 μg/L or 37 nM)) were administered to mussels over 14 days. Cpz accumulation in the digestive gland significantly increased with water concentration (BCF of Cpz I and Cpz II). Biochemical analyses indicated lysosomal dysfunction, reflected in elevated total Cathepsin D activity and compromised lysosomal membrane stability. Stress-related and metal-buffering proteins (GST and metallothionein) responded to both Cpz concentrations. Cpz I induced phase I biotransformation activity (CYP450-dependent EROD), while Cpz II triggered caspase-3 activation, indicative of detoxification overload. Histological analysis revealed digestive gland atrophy, epithelial thinning, haemocyte infiltration, and brown cell presence. Byssus analysis showed significant alterations. In conclusion, our study underscores Cpz-induced physiological and histological changes in M. galloprovincialis, posing potential implications for mussel health and confirming the utilisation of this mussel as an indication of Cpz ecotoxicity.
Collapse
Affiliation(s)
- Federica Impellitteri
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Giovanna Calabrese
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Miriam Porretti
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- I.Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Vincenzo Nava
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Angela Giorgia Potortì
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Giuseppe Piccione
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine; Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Caterina Faggio
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
8
|
Hodkovicova N, Hollerova A, Blahova J, Mikula P, Crhanova M, Karasova D, Franc A, Pavlokova S, Mares J, Postulkova E, Tichy F, Marsalek P, Lanikova J, Faldyna M, Svobodova Z. Non-steroidal anti-inflammatory drugs caused an outbreak of inflammation and oxidative stress with changes in the gut microbiota in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157921. [PMID: 35952865 DOI: 10.1016/j.scitotenv.2022.157921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
One of the main contributors to pharmaceutical pollution of surface waters are non-steroidal anti-inflammatory drugs (NSAIDs) that contaminate the food chain and affect non-target water species. As there are not many studies focusing on toxic effects of NSAIDs on freshwater fish species and specially effects after dietary exposure, we selected rainbow trout (Oncorhynchus mykiss) as the ideal model to examine the impact of two NSAIDs - diclofenac (DCF) and ibuprofen (IBP). The aim of our study was to test toxicity of environmentally relevant concentrations of these drugs together with exposure doses of 100× higher, including their mixture; and to deepen knowledge about the mechanism of toxicity of these drugs. This study revealed kidneys as the most affected organ with hyalinosis, an increase in oxidative stress markers, and changes in gene expression of heat shock protein 70 to be signs of renal toxicity. Furthermore, hepatotoxicity was confirmed by histopathological analysis (i.e. dystrophy, congestion, and inflammatory cell increase), change in biochemical markers, increase in heat shock protein 70 mRNA, and by oxidative stress analysis. The gills were locally deformed and showed signs of inflammatory processes and necrotic areas. Given the increase in oxidative stress markers and heat shock protein 70 mRNA, severe impairment of oxygen transport may be one of the toxic pathways of NSAIDs. Regarding the microbiota, an overgrowth of Gram-positive species was detected; in particular, significant dysbiosis in the Fusobacteria/Firmicutes ratio was observed. In conclusion, the changes observed after dietary exposure to NSAIDs can influence the organism homeostasis, induce ROS production, potentiate inflammations, and cause gut dysbiosis. Even the environmentally relevant concentration of NSAIDs pose a risk to the aquatic ecosystem as it changed O. mykiss health parameters and we assume that the toxicity of NSAIDs manifests itself at the level of mitochondria and proteins.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic.
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - J Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - P Mikula
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Crhanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - D Karasova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - A Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - S Pavlokova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - J Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - E Postulkova
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - F Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - P Marsalek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - J Lanikova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
9
|
Vanadium Modulates Proteolytic Activities and MMP-14-Like Levels during Paracentrotus lividus Embryogenesis. Int J Mol Sci 2022; 23:ijms232214238. [PMID: 36430713 PMCID: PMC9697301 DOI: 10.3390/ijms232214238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The increasing industrial use of vanadium (V), as well as its recent medical use in various pathologies has intensified its environmental release, making it an emerging pollutant. The sea urchin embryo has long been used to study the effects induced by metals, including V. In this study we used an integrated approach that correlates the biological effects on embryo development with proteolytic activities of gelatinases that could better reflect any metal-induced imbalances. V-exposure caused morphological/morphometric aberrations, mainly concerning the correct distribution of embryonic cells, the development of the skeleton, and the embryo volume. Moreover, V induced a concentration change in all the gelatinases expressed during embryo development and a reduction in their total proteolytic activity. The presence of three MMP-like gelatinases (MMP-2, -9, and -14) was also demonstrated and their levels depended on V-concentration. In particular, the MMP-14-like protein modified its expression level during embryo development in a time- and dose-dependent manner. This enzyme also showed a specific localization on filopodia, suggesting that primary mesenchyme cells (PMCs) could be responsible for its synthesis. In conclusion, these results indicate that an integrated study among morphology/morphometry, proteolytic activity, and MMP-14 expression constitutes an important response profile to V-action.
Collapse
|
10
|
Effects of Sulfamethoxazole on Fertilization and Embryo Development in the Arbacia lixula Sea Urchin. Animals (Basel) 2022; 12:ani12182483. [PMID: 36139342 PMCID: PMC9495157 DOI: 10.3390/ani12182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Drugs released into the aquatic environment create serious problems for the organisms that live there. For this reason, the present study investigates the in vitro effects of the antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the Arbacia lixula sea urchin. The results showed a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations, together with an increase in anomalies and delays in the development of the embryo. Therefore, the data obtained suggest urgent intervention on the release of these drugs in order to prevent important alterations in the species’ development and to preserve biodiversity. Abstract To date, drugs released into the aquatic environment are a real problem, and among antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of its toxicity on marine organisms is very important. This study, for the first time, investigates the in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L) on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations. Moreover, an increase in anomalies and delays in embryo development following the treatment with the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development of marine organisms, making it urgent to act to reduce their release and to determine the concentration range with the greatest impact.
Collapse
|