1
|
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3101. [PMID: 37687348 PMCID: PMC10490045 DOI: 10.3390/plants12173101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
2
|
Spinoso-Castillo JL, Moreno-Hernández MDR, Mancilla-Álvarez E, Sánchez-Segura L, Sánchez-Páez R, Bello-Bello JJ. Arbuscular Mycorrhizal Symbiosis Improves Ex Vitro Acclimatization of Sugarcane Plantlets ( Saccharum spp.) under Drought Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:687. [PMID: 36771771 PMCID: PMC9921674 DOI: 10.3390/plants12030687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The symbiotic associations between arbuscular mycorrhizal fungi (AMF) and plants can induce drought stress tolerance. In this study, we evaluated the effect of Glomus intraradices, a mycorrhizal fungus, on the ex vitro development and survival of sugarcane plantlets subjected to drought stress during the acclimatization stage of micropropagation. In vitro obtained sugarcane plantlets (Saccharum spp. cv Mex 69-290) were inoculated with different doses of G. intraradices (0, 100, and 200 spores per plantlet) during greenhouse acclimatization. Sixty days after inoculation, plantlets were temporarily subjected to drought stress. We evaluated the survival rate, total chlorophyll, total protein, carotenoids, proline, betaine glycine, soluble phenolic content, and antioxidant capacity every 3 days for 12 days. Symbiotic interaction was characterized by microscopy. Our results showed that the survival rate of inoculated plants was higher in 45% than the treatment without mycorrhizae. Total chlorophyll, protein, proline, betaine glycine content, and antioxidant capacity were increased in AMF inoculated plants. The soluble phenolic content was higher in non-inoculated plants than the treatment with mycorrhizae during the drought stress period. Microscopy showed the symbiotic relationship between plant and AMF. The early inoculation of 100 spores of G. intraradices per sugarcane plantlet during the acclimatization stage could represent a preconditioning advantage before transplanting into the field and establishing basic seedbeds.
Collapse
Affiliation(s)
- José Luis Spinoso-Castillo
- Postgraduate College-Campus Cordoba, Km 348 Cordoba-Veracruz Federal Highway, Amatlan de los Reyes, Veracruz 94953, Mexico
| | | | - Eucario Mancilla-Álvarez
- Postgraduate College-Campus Cordoba, Km 348 Cordoba-Veracruz Federal Highway, Amatlan de los Reyes, Veracruz 94953, Mexico
| | - Lino Sánchez-Segura
- CINVESTAV, Department of Biotechnology and Biochemistry, Irapuato Unit, Km 9.6 North Beltway Highway Irapuato-Leon, Irapuato, Guanajuato 36821, Mexico
| | - Ricardo Sánchez-Páez
- Postgraduate College-Campus Cordoba, Km 348 Cordoba-Veracruz Federal Highway, Amatlan de los Reyes, Veracruz 94953, Mexico
| | - Jericó Jabín Bello-Bello
- CONACYT-Postgraduate College-Campus Cordoba, Km 348 Cordoba-Veracruz Federal Highway, Amatlan de los Reyes, Veracruz 94953, Mexico
| |
Collapse
|
3
|
Karima B, Amima H, Ahlam M, Zoubida B, Benoît T, Yolande D, Anissa LHS. Native Arbuscular Mycorrhizal Inoculum Modulates Growth, Oxidative Metabolism and Alleviates Salinity Stresses in Legume Species. Curr Microbiol 2023; 80:66. [PMID: 36604346 DOI: 10.1007/s00284-022-03145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
Soil salinity constitutes a major abiotic stress that contributes to soil degradation and crop yield reduction. Using arbuscular mycorrhizal fungi (AMF) inoculation can help to alleviate these deleterious effects. Most researches on AMF application are dealing with ecological restoration, whereas little consideration has been given to agriculture and legume production. The comparison of the efficacy of two AMF inoculums, one native originating from Algerian semiarid saline soils and one commercial inoculum, was carried out regarding their effects on the growth and the mineral nutrition of several legumes species, Medicago sativa, Medicago falcata, Trifolium repens and Trifolium alexandrinum, cultivated in semiarid Algerian saline soil under greenhouse conditions. Our results showed that native mycorrhizal inoculum enhanced shoot biomasses by 20%, mycorrhizal rate by 30%, shoot phosphorus content by 25% and K+/Na+ ratio by 45% for studied plants when compared with commercial inoculum. The best efficiency of the native AMF inoculum is probably due to the complementarity between the AMF strains which composed the inoculum. Funneliformis geosporum was the most abundant species recorded at the end of the experience in all plant roots especially with native inoculum. Our findings pointed out the effectiveness of native AMF inoculum application to promote agricultural production in semiarid saline soils.
Collapse
Affiliation(s)
- Bencherif Karima
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria. .,Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 50 Rue Ferdinand Buisson, 62228, Calais Cedex, France.
| | - Hasbaya Amima
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria
| | - Misoumi Ahlam
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria
| | - Bouzekri Zoubida
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria
| | - Tisserant Benoît
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 50 Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Dalpé Yolande
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Lounés-Hadj Sahraoui Anissa
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 50 Rue Ferdinand Buisson, 62228, Calais Cedex, France
| |
Collapse
|
4
|
Rehman B, Javed J, Rauf M, Khan SA, Arif M, Hamayun M, Gul H, Khilji SA, Sajid ZA, Kim WC, Lee IJ. ACC deaminase-producing endophytic fungal consortia promotes drought stress tolerance in M.oleifera by mitigating ethylene and H 2O 2. FRONTIERS IN PLANT SCIENCE 2022; 13:967672. [PMID: 36618664 PMCID: PMC9814162 DOI: 10.3389/fpls.2022.967672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Introduction Drought has become more prevalent due to dramatic climate change worldwide. Consequently, the most compatible fungal communities collaborate to boost plant development and ecophysiological responses under environmental constraints. However, little is known about the specific interactions between non-host plants and endophytic fungal symbionts that produce growth-promoting and stress-alleviating hormones during water deficits. Methods The current research was rationalized and aimed at exploring the influence of the newly isolated, drought-resistant, ACC deaminase enzyme-producing endophytic fungi Trichoderma gamsii (TP), Fusarium proliferatum (TR), and its consortium (TP+TR) from a xerophytic plant Carthamus oxycantha L. on Moringa oleifera L. grown under water deficit induced by PEG-8000 (8% osmoticum solution). Results The current findings revealed that the co-inoculation promoted a significant enhancement in growth traits such as dry weight (217%), fresh weight (123%), root length (65%), shoot length (53%), carotenoids (87%), and chlorophyll content (76%) in comparison to control plants under water deficit. Total soluble sugars (0.56%), proteins (132%), lipids (43%), flavonoids (52%), phenols (34%), proline (55%), GA3 (86%), IAA (35%), AsA (170%), SA (87%), were also induced, while H2O2 (-45%), ABA (-60%) and ACC level (-77%) was decreased by co-inoculation of TP and TR in M. oleifera plants, compared with the non-inoculated plants under water deficit. The co-inoculum (TP+TR) also induced the antioxidant potential and enzyme activities POX (325%), CAT activity (166%), and AsA (21%), along with a lesser decrease (-2%) in water potential in M. oleifera plants with co-inoculation under water deficit compared with non-inoculated control. The molecular analysis for gene expression unraveled the reduced expression of ethylene biosynthesis and signaling-related genes up to an optimal level, with an induction of antioxidant enzymatic genes by endophytic co-inoculation in M. oleifera plants under water deficit, suggesting their role in drought stress tolerance as an essential regulatory function. Conclusion The finding may alert scientists to consider the impacts of optimal reduction of ethylene and induction of antioxidant potential on drought stress tolerance in M. oleifera. Hence, the present study supports the use of compatible endophytic fungi to build a bipartite mutualistic symbiosis in M. oleifera non-host plants to mitigate the negative impacts of water scarcity in arid regions throughout the world.
Collapse
Affiliation(s)
- Bushra Rehman
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Javeria Javed
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sumera Afzal Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sheza Ayaz Khilji
- Department of Botany, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | | | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Loo WT, Chua KO, Mazumdar P, Cheng A, Osman N, Harikrishna JA. Arbuscular Mycorrhizal Symbiosis: A Strategy for Mitigating the Impacts of Climate Change on Tropical Legume Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:2875. [PMID: 36365329 PMCID: PMC9657156 DOI: 10.3390/plants11212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Climate change is likely to have severe impacts on food security in the topics as these regions of the world have both the highest human populations and narrower climatic niches, which reduce the diversity of suitable crops. Legume crops are of particular importance to food security, supplying dietary protein for humans both directly and in their use for feed and forage. Other than the rhizobia associated with legumes, soil microbes, in particular arbuscular mycorrhizal fungi (AMF), can mitigate the effects of biotic and abiotic stresses, offering an important complementary measure to protect crop yields. This review presents current knowledge on AMF, highlights their beneficial role, and explores the potential for application of AMF in mitigating abiotic and biotic challenges for tropical legumes. Due to the relatively little study on tropical legume species compared to their temperate growing counterparts, much further research is needed to determine how similar AMF-plant interactions are in tropical legumes, which AMF species are optimal for agricultural deployment and especially to identify anaerobic AMF species that could be used to mitigate flood stress in tropical legume crop farming. These opportunities for research also require international cooperation and support, to realize the promise of tropical legume crops to contribute to future food security.
Collapse
Affiliation(s)
- Wan Teng Loo
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kah-Ooi Chua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Acga Cheng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Normaniza Osman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
Endophytic Fungal Consortia Enhance Basal Drought-Tolerance in Moringa oleifera by Upregulating the Antioxidant Enzyme (APX) through Heat Shock Factors. Antioxidants (Basel) 2022; 11:antiox11091669. [PMID: 36139743 PMCID: PMC9495891 DOI: 10.3390/antiox11091669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Global climate change has imposed harsh environmental conditions such as drought. Naturally, the most compatible fungal consortia operate synergistically to enhance plant growth and ecophysiological responses against abiotic strains. Yet, little is known about the interactions between phytohormone-producing endophytic fungal symbionts and plant growth under drought stress. The existing research was rationalized to recognize the role of newly isolated drought-resistant, antioxidant-rich endophytic fungal consortia hosting a xerophytic plant, Carthamus oxycantha L., inoculated to Moringa oleifera L. grown under drought stress of 8% PEG (polyethylene glycol-8000). Under drought stress, the combined inoculation of endophytic strain Microdochium majus (WA), Meyerozyma guilliermondi (TG), and Aspergillus aculeatus (TL3) exhibited a significant improvement in growth attributes such as shoot fresh weight (1.71-fold), shoot length (0.86-fold), root length (0.65-fold), dry weight (2.18-fold), total chlorophyll (0.46-fold), and carotenoids (0.87-fold) in comparison to control (8% PEG). Primary and secondary metabolites were also increased in M. oleifera inoculated with endophytic consortia, under drought stress, such as proteins (1.3-fold), sugars (0.58-fold), lipids (0.41-fold), phenols (0.36-fold), flavonoids (0.52-fold), proline (0.6-fold), indole acetic acid (IAA) (4.5-fold), gibberellic acid (GA) (0.7-fold), salicylic acid (SA) (0.8-fold), ascorbic acid (ASA) (1.85-fold), while abscisic acid (ABA) level was decreased (−0.61-fold) in comparison to the control (8% PEG). Under drought stress, combined inoculation (WA, TG, TL3) also promoted the antioxidant activities of enzymes such as ascorbate peroxidase (APX) (3.5-fold), catalase (CAT) activity (1.7-fold), and increased the total antioxidant capacity (TAC) (0.78-fold) with reduced reactive oxygen species (ROS) such as H2O2 production (-0.4-fold), compared to control (8% PEG), and stomatal aperture was larger (3.5-fold) with a lesser decrease (-0.02-fold) in water potential. Moreover, combined inoculation (WA, TG, TL3) up regulated the expression of MolHSF3, MolHSF19, and MolAPX genes in M. oleifera under drought stress, compared to the control (8% PEG), is suggestive of an important regulatory role for drought stress tolerance governed by fungal endophytes. The current research supports the exploitation of the compatible endophytic fungi for establishing the tripartite mutualistic symbiosis in M. oleifera to alleviate the adverse effects of drought stress through strong antioxidant activities.
Collapse
|