1
|
Che H, Selig M, Lauer JC, Hart ML, Rolauffs B. Simple Methodology to Score Micropattern Quality and Effectiveness. Tissue Eng Part C Methods 2024; 30:501-511. [PMID: 39212725 DOI: 10.1089/ten.tec.2024.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Micropatterns (MPs) are widely used as a powerful tool to control cell morphology and phenotype. However, methods for determining the effectiveness of how well cells are controlled by the shape of MPs have been inconsistently used and studies rarely report on this topic, indicating lack of standardization. We introduce an evaluation score that quantitatively assesses the MP fabrication quality and effectiveness, which can be broadly used in conjunction with all currently available MP design types. This score uses four simple and quick steps: (i) scoring MP and (ii) background fabrication quality, (iii) defining the type(s) of MP of interest, and (iv) assigning so-called efficiency descriptors describing cell behavior. These steps are based on visual inspection and quick categorization of various aspects of MP fabrication quality and cell behavior, presented in illustrations and microscopy image examples intended to serve as a reference "atlas." To illustrate the advantage of using this score, we determined differences in cell morphology and F-actin intensity between scored versus nonscored cells. These measurements, which could be different in other studies, were chosen because both are understood as markers of cell phenotype and function. We combined intensity-calibrated immunofluorescence microscopy and image-based single cell protein analysis. Most important, significant differences in cell morphology and cytoskeletal protein content between scored versus nonscored cells were noted: the unconditional inclusion of all experimental read-outs (i.e., all MP data regardless of MP quality and effectiveness) into the final results significantly misjudged the experimental readouts versus only including experimental read-outs of quality-controlled and effective MPs, identified by scoring. Specifically, nonscoring underestimated the F-actin intensity per cell and quantitative cellular morphometric descriptors circularity and solidity and overestimated aspect ratio. Scoring improved the precision of cellular readouts, advocating the use of a MP quality and efficiency score as a quantitative decision-supporting tool in deciding whether or not particular MPs should be used for experiments, saving time and money. This simple scoring methodology can be used for improving MP fabrication, comparing results across studies, benefiting basic science studies and potential future clinical use of MPs by introducing standardization.
Collapse
Affiliation(s)
- Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Mischa Selig
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jasmin C Lauer
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Girard V, Fragnières L, Chapuis H, Brosse N, Marchal-Heussler L, Canilho N, Parant S, Ziegler-Devin I. The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro- to Nanoscale on the Performances of Next-Generation Sunscreen. Polymers (Basel) 2024; 16:1901. [PMID: 39000756 PMCID: PMC11244244 DOI: 10.3390/polym16131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
In recent years, concerns about the harmful effects of synthetic UV filters on the environment have highlighted the need for natural sun blockers. Lignin, the most abundant aromatic renewable biopolymer on Earth, is a promising candidate for next-generation sunscreen due to its inherent UV absorbance and its green, biodegradable, and biocompatible properties. Lignin's limitations, such as its dark color and poor dispersity, can be overcome by reducing particle size to the nanoscale, enhancing UV protection and formulation. In this study, 100-200 nm lignin nanoparticles (LNPs) were prepared from various biomass by-products (hardwood, softwood, and herbaceous material) using an eco-friendly anti-solvent precipitation method. Pure lignin macroparticles (LMPs) were extracted from beech, spruce, and wheat straw using an ethanol-organosolv treatment and compared with sulfur-rich kraft lignin (KL). Sunscreen lotions made from these LMPs and LNPs at various concentrations demonstrated novel UV-shielding properties based on biomass source and particle size. The results showed that transitioning from the macro- to nanoscale increased the sun protection factor (SPF) by at least 2.5 times, with the best results improving the SPF from 7.5 to 42 for wheat straw LMPs and LNPs at 5 wt%. This study underscores lignin's potential in developing high-quality green sunscreens, aligning with green chemistry principles.
Collapse
Affiliation(s)
- Victor Girard
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Léane Fragnières
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Hubert Chapuis
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Nicolas Brosse
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Laurent Marchal-Heussler
- Ecole Nationale Supérieure des Industries Chimique (ENSIC), University of Lorraine, F-54000 Nancy, France;
| | - Nadia Canilho
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (N.C.); (S.P.)
| | - Stéphane Parant
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (N.C.); (S.P.)
| | - Isabelle Ziegler-Devin
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| |
Collapse
|
3
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
4
|
Selig M, Walz K, Lauer JC, Rolauffs B, Hart ML. Therapeutic Modulation of Cell Morphology and Phenotype of Diseased Human Cells towards a Healthier Cell State Using Lignin. Polymers (Basel) 2023; 15:3041. [PMID: 37514430 PMCID: PMC10385073 DOI: 10.3390/polym15143041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Despite lignin's global abundance and its use in biomedical studies, our understanding of how lignin regulates disease through modulation of cell morphology and associated phenotype of human cells is unknown. We combined an automated high-throughput image cell segmentation technique for quantitatively measuring a panel of cell shape descriptors, droplet digital Polymerase Chain Reaction for absolute quantification of gene expression and multivariate data analyses to determine whether lignin could therapeutically modulate the cell morphology and phenotype of inflamed, degenerating diseased human cells (osteoarthritic (OA) chondrocytes) towards a healthier cell morphology and phenotype. Lignin dose-dependently modified all aspects of cell morphology and ameliorated the diseased shape of OA chondrocytes by inducing a less fibroblastic healthier cell shape, which correlated with the downregulation of collagen 1A2 (COL1A2, a major fibrosis-inducing gene), upregulation of collagen 2A1 (COL2A1, a healthy extracellular matrix-inducing gene) and downregulation of interleukin-6 (IL-6, a chronic inflammatory cytokine). This is the first study to show that lignin can therapeutically target cell morphology and change a diseased cells' function towards a healthier cell shape and phenotype. This opens up novel opportunities for exploiting lignin in modulation of disease, tissue degeneration, fibrosis, inflammation and regenerative medical implants for therapeutically targeting cell function and outcome.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Kathrin Walz
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany
| | - Jasmin C Lauer
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany
| | - Melanie L Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany
| |
Collapse
|