1
|
Trovão M, Schüler L, Pedroso H, Reis A, Santo GE, Barros A, Correia N, Ribeiro J, Bombo G, Gama F, Viana C, Costa MM, Ferreira S, Cardoso H, Varela J, Silva J, Freitas F, Pereira H. Isolation and Selection of Protein-Rich Mutants of Chlorella vulgaris by Fluorescence-Activated Cell Sorting with Enhanced Biostimulant Activity to Germinate Garden Cress Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2441. [PMID: 39273926 PMCID: PMC11396921 DOI: 10.3390/plants13172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Microalgae are a promising feedstock with proven biostimulant activity that is enhanced by their biochemical components (e.g., amino acids and phytohormones), which turns them into an appealing feedstock to reduce the use of fertilisers in agriculture and improve crop productivity and resilience. Thus, this work aimed to isolate protein-rich microalgal mutants with increased biostimulant activity. Random mutagenesis was performed with Chlorella vulgaris, and a selection of protein-rich mutants were sorted through fluorescence-activated cell sorting (FACS), resulting in the isolation of 17 protein-rich mutant strains with protein contents 19-34% higher than that of the wildtype (WT). Furthermore, mutant F4 displayed a 38%, 22% and 62% higher biomass productivity, growth rate and chlorophyll content, respectively. This mutant was then scaled up to a 7 L benchtop reactor to produce biomass and evaluate the biostimulant potential of this novel strain towards garden cress seeds. Compared to water (control), the germination index and the relative total growth increased by 7% and 19%, respectively, after the application of 0.1 g L-1 of this bioproduct, which highlights its biostimulant potential.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Lisa Schüler
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Humberto Pedroso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Ana Reis
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | | | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Nádia Correia
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Joana Ribeiro
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Gabriel Bombo
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Florinda Gama
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Catarina Viana
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Monya M Costa
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Sara Ferreira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - João Varela
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joana Silva
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hugo Pereira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Ruales E, Gómez-Serrano C, Morillas-España A, González-López C, Escolà Casas M, Matamoros V, Garfí M, Ferrer I. Resource recovery and contaminants of emerging concern mitigation by microalgae treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121950. [PMID: 39068780 DOI: 10.1016/j.jenvman.2024.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to investigate the recovery of agricultural biostimulants and biogas from microalgae treating wastewater, in the framework of a circular bioeconomy. To this end, municipal wastewater was treated in demonstrative raceway ponds, and microalgal biomass (Scenedesmus sp.) was then harvested and downstream processed to recover biostimulants and biogas in a biorefinery approach. The effect of microalgal biostimulants on plants was evaluated by means of bioassays, while the biogas produced was quantified in biochemical methane potential (BMP) tests. Furthermore, the fate of contaminants of emerging concern (CECs) over the process was also assessed. Bioassays confirmed the biostimulant effect of microalgae, which showed gibberellin-, auxin- and cytokinin-like activity in watercress seed germination, mung bean rooting, and wheat leaf chlorophyll retention. In addition, the downstream process applied to raw biomass acted as a pre-treatment to enhance anaerobic digestion performance. After biostimulant extraction, the residual biomass represented 91% of the methane yield from the raw biomass (276 mLCH4·g-1VS). The kinetic profile of the residual biomass was 43% higher than that of the unprocessed biomass. Co-digestion with primary sludge further increased biogas production by 24%. Finally, the concentration of CECs in wastewater was reduced by more than 80%, and only 6 out of 22 CECs analyzed were present in the biostimulant obtained. Most importantly, the concentration of those contaminants was lower than in biosolids that are commonly used in agriculture, ensuring environmental safety.
Collapse
Affiliation(s)
- Evelyn Ruales
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Cintia Gómez-Serrano
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Ainoa Morillas-España
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Cynthia González-López
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
3
|
Ferrera E, Ruigómez I, Vela-Bastos C, Ferreira A, Gouveia L, Vera L. Resources recovery from domestic wastewater by a combined process: anaerobic digestion and membrane photobioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49560-49573. [PMID: 39080174 PMCID: PMC11324692 DOI: 10.1007/s11356-024-34468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Anaerobic and membrane technologies are a promising combination to decrease the energy consumption associated with wastewater treatment, allowing the recovery of resources: organic matter as biomethane, nutrient assimilation by microalgae and reclaimed water. In this study, domestic wastewater was treated using a combination of an upflow anaerobic sludge blanket sludge reactor (UASB) and a membrane photobioreactor (MPBR). The outdoor facilities were operated continuously for three months under unfavourable environmental conditions such as lack of temperature control, winter season with lower solar irradiation and lower daylight hours which was a challenge for the present work, not previously described. The energetic valorisation of the organic matter present in the wastewater by biomethane produced in the UASB would contribute to reducing overall facilities' energy requirements. The ultrafiltration (UF) membrane facilitated the harvesting of biomass, operating at 10 L·h-1·m-2 during the experimental period. Although the main contribution to fouling was irreversible, chemical cleanings were not necessary due to effective fouling control, which prevented the final TMP from exceeding 25 kPa. In addition, microalgae-bacterial consortium developed without prior inoculation were harvested from the MPBR using membrane assistance. The obtained biomass was also successfully tested as a biostimulant for corn germination/growth, as well as a biopesticide against Rhizoctonia solani and Fusarium oxysporum.
Collapse
Affiliation(s)
- Elvira Ferrera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain
| | - Ignacio Ruigómez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain
| | - Carolina Vela-Bastos
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
- GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Faro, Portugal
| | - Alice Ferreira
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Luisa Gouveia
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
- GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Faro, Portugal
| | - Luisa Vera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain.
| |
Collapse
|
4
|
Liu XY, Hong Y, Zhang YW, Li LH. Valorization of treated swine wastewater and generated biomass by microalgae: Their effects and salt tolerance mechanisms on wheat seedling growth. ENVIRONMENTAL RESEARCH 2024; 251:118664. [PMID: 38499222 DOI: 10.1016/j.envres.2024.118664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The extensive use of mineral fertilizers has a negative impact on the environment, whereas wastewater and microalgal biomass can provide crops with nutrients such as nitrogen, phosphorus, and potassium, and have the potential to be used as a source of fertilizers in circular agriculture. In this study, a step-by-step resource utilization study of algae-containing wastewater generated from microalgae treatment of swine wastewater was carried out. When wheat seedlings were cultivated in the effluent after microalgae separation, the root fresh weight, seedling fresh weight, and total seedling length were increased by 3.44%, 14.45%, and 13.64%, respectively, compared with that of the algae-containing wastewater, and there was no significant difference in seedling fresh weight, total seedling length, maximum quantum yields of PSII photochemistry (Fv/Fm), and performance index (PIABS) from that of the Hogland solution group, which has the potential to be an alternative liquid fertilizer. Under salt stress, microalgae extract increased the contents of GA3, IAA, ABA, and SA in wheat seedlings, antioxidant enzymes maintained high activity, and the PIABS value increased. Low-dose microalgae extract (1 mL/L) increased the root fresh weight, seedling fresh weight, longest seedling length, and total seedling length by 30.73%, 31.28%, 16.43%, and 28.85%, respectively. Algae extract can act as a plant biostimulant to regulate phytohormone levels to attenuate the damage of salt stress and promote growth.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yue-Wen Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li-Hua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Miranda AM, Hernandez-Tenorio F, Villalta F, Vargas GJ, Sáez AA. Advances in the Development of Biofertilizers and Biostimulants from Microalgae. BIOLOGY 2024; 13:199. [PMID: 38534468 DOI: 10.3390/biology13030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Microalgae have commercial potential in different sectors of the industry. Specifically in modern agriculture, they can be used because they have the ability to supply nutrients to the soil and produce plant growth hormones, polysaccharides, antimicrobial compounds, and other metabolites that improve agricultural productivity. Therefore, products formulated from microalgae as biofertilizers and biostimulants turn out to be beneficial for agriculture and are positioned as a novel and environmentally friendly strategy. However, these bioproducts present challenges in preparation that affect their shelf life due to the rapid degradation of bioformulated products. Therefore, this work aimed to provide a comprehensive review of biofertilizers and biostimulants from microalgae, for which a bibliometric analysis was carried out to establish trends using scientometric indicators, technological advances were identified in terms of formulation methods, and the global market for these bioproducts was analyzed.
Collapse
Affiliation(s)
- Alejandra M Miranda
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Villalta
- Centro de Investigación de Biotecnología, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Gabriel J Vargas
- I&D Cementos Argos S.A, Centro de Argos para la Innovación, Medellín 050022, Colombia
| | - Alex A Sáez
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| |
Collapse
|
6
|
Morillas-España A, Pérez-Crespo R, Villaró-Cos S, Rodríguez-Chikri L, Lafarga T. Integrating microalgae-based wastewater treatment, biostimulant production, and hydroponic cultivation: a sustainable approach to water management and crop production. Front Bioeng Biotechnol 2024; 12:1364490. [PMID: 38425996 PMCID: PMC10902165 DOI: 10.3389/fbioe.2024.1364490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
A natural appearing microalgae-bacteria consortium was used to process urban wastewater. The process was done in an 80 m2 raceway reactor and the results were compared to an identical reactor operated using freshwater supplemented with commercial fertilisers. The biomass harvesting was done using commercial ultrafiltration membranes to reduce the volume of culture centrifuged. The membrane allowed achieving a biomass concentration of ∼9-10 g L-1. The process proposed avoids the use of centrifuges and the drying of the biomass, two of the most energy consuming steps of conventional processes. The specific growth rate in freshwater and the wastewater-based media was estimated as 0.30 ± 0.05 and 0.24 ± 0.02 days-1, respectively (p < 0.05). The maximum concentration reached at the end of the batch phase was 0.96 ± 0.03 and 0.83 ± 0.07 g L-1 when the biomass was produced using freshwater and wastewater, respectively (p < 0.05). The total nitrogen removal capacity of the system was on average 1.35 g m-2·day-1; nitrogen assimilation into biomass represented 60%-95% of this value. Furthermore, the P-PO4 3- removal capacity of the system varied from 0.15 to 0.68 g m-2·day-1. The outlet effluent of the reactor was used as a nutrient source in the hydroponic production of zucchini seedlings, leading to an increase in the root dry weight and the stem diameter compared to the water alone. The produced biomass showed potential for use as feedstock to produce plant biostimulants with positive effects on root development and chlorophyll retention.
Collapse
Affiliation(s)
- Ainoa Morillas-España
- Department of Chemical Engineering, University of Almeria, Almeria, Spain
- CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, Almeria, Spain
| | - Raúl Pérez-Crespo
- Department of Chemical Engineering, University of Almeria, Almeria, Spain
| | - Silvia Villaró-Cos
- Department of Chemical Engineering, University of Almeria, Almeria, Spain
- CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, Almeria, Spain
| | | | - Tomas Lafarga
- Department of Chemical Engineering, University of Almeria, Almeria, Spain
- CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, Almeria, Spain
| |
Collapse
|
7
|
Álvarez-González A, Greque de Morais E, Planas-Carbonell A, Uggetti E. Enhancing sustainability through microalgae cultivation in urban wastewater for biostimulant production and nutrient recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166878. [PMID: 37678521 DOI: 10.1016/j.scitotenv.2023.166878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Microalgae can produce biostimulants in form of phytohormones, which are compounds that, even if applied in low concentrations, can have stimulant effects on plants growth and can enhance their quality and their resistance to stress. Considering that microalgal biomass can grow recovering nutrients from wastewater, this circular approach allows to use residues for the production of high added value compounds (such as phytohormones) at low cost. The interest on biostimulants production from microalgae have recently raised. Scientists are focused on the direct application of these cellular extracts on plants, while the number of studies on the identification of bioactive molecules, such as phytohormones, is very scarce. Two cyanobacteria strains (Synechocystis sp. (SY) and Phormidium sp. (PH)) and a chlorophyte (Scenedesmus sp. (SC)) were cultured in laboratory-scale PBRs with a working volume of 2.5 L in secondary urban wastewater varying N:P ratio in the cultures to obtain the highest productivity. The variation of N:P ratio affects microalgae growth, and SY and PH presented higher productivities (73 and 48 mg L-1 d, respectively) under higher N:P ratio (> 22:1). Microalgal biomass was freeze-dried and phytohormones content was measured with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The three microalgae showed similar phytohormones profiles, being the auxin (indole-3-acetic acid, IAA) the most abundant (72 ng g-1DW in SY). Proteins were major macronutrient for all strains, reaching 48 %DW in PH culture. To optimize the biostimulants production, a balance between the production of such compounds, biomass productivity and nutrients removal should be taken into consideration. In this sense, SC was the most promising strain, showing the highest N and P removal rates (73 % and 59 %, respectively) while producing phytohormones.
Collapse
Affiliation(s)
- Ana Álvarez-González
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Etiele Greque de Morais
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Anna Planas-Carbonell
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Enrica Uggetti
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
8
|
Sánchez-Quintero Á, Fernandes SCM, Beigbeder JB. Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO 2 streams towards sustainable agriculture: A review. Microbiol Res 2023; 277:127505. [PMID: 37832502 DOI: 10.1016/j.micres.2023.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
For a long time, marine macroalgae (seaweeds) have been used to produce commercial biostimulants in order to ensure both productivity and quality of agricultural crops under abiotic stress. With similar biological properties, microalgae have slowly attracted the scientific community and the biostimulant industry, in particular because of their ability to be cultivated on non-arable lands with high biomass productivity all year long. Moreover, the recent strategies of culturing these photosynthetic microorganisms using wastewater and CO2 opens the possibility to produce large quantity of biomass at moderate costs while integrating local and circular economy approaches. This paper aims to provide a state of the art review on the development of microalgae and cyanobacteria based biostimulants, focusing on the different cultivation, extraction and application techniques available in the literature. Emphasis will be placed on microalgae and cyanobacteria cultivation using liquid and gaseous effluents as well as emerging green-extraction approaches, taking in consideration the actual European regulatory framework.
Collapse
Affiliation(s)
- Ángela Sánchez-Quintero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France; APESA, Pôle valorisation, 3 chemin de Sers, 64121 Montardon, France
| | - Susana C M Fernandes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France.
| | | |
Collapse
|
9
|
Otálora P, Guzmán JL, Acién FG, Berenguel M, Reul A. An artificial intelligence approach for identification of microalgae cultures. N Biotechnol 2023; 77:58-67. [PMID: 37467926 DOI: 10.1016/j.nbt.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
In this work, a model for the characterization of microalgae cultures based on artificial neural networks has been developed. The characterization of microalgae cultures is essential to guarantee the quality of the biomass, and the objective of this work is to achieve a simple and fast method to address this issue. Data acquisition was performed using FlowCam, a device capable of capturing images of the cells detected in a culture sample, which are used as inputs by the model. The model can distinguish between 6 different genera of microalgae, having been trained with several species of each genus. It was further complemented with a classification threshold to discard unwanted objects while improving the overall accuracy of the model. The model achieved an accuracy of up to 97.27% when classifying a culture. The results demonstrate the effectiveness of the Deep Learning models for the characterization of microalgae cultures, it being a useful tool for the monitoring of microalgae cultures in large-scale production facilities while providing accurate characterization over a wide range of genera.
Collapse
Affiliation(s)
- P Otálora
- University of Almería, CIESOL, ceiA3, Department of Informatics, 04120 Almería, Spain
| | - J L Guzmán
- University of Almería, CIESOL, ceiA3, Department of Informatics, 04120 Almería, Spain.
| | - F G Acién
- University of Almería, CIESOL, ceiA3, Department of Chemical Engineering, 04120 Almería, Spain
| | - M Berenguel
- University of Almería, CIESOL, ceiA3, Department of Informatics, 04120 Almería, Spain
| | - A Reul
- University of Málaga, Campus de Teatinos, Department of Ecology and Geology, 29071 Málaga, Spain
| |
Collapse
|
10
|
Torzillo G, Álvarez-Gómez F, Celis-Plá PSM, Rearte A, Gómez-Serrano C, Silva Benavides AM, Štěrbová K, Caporgno M, Touloupakis E, Masojídek J, Figueroa FL. Photosynthesis and biochemical characterization of the green alga Chlamydopodium fusiforme (Chlorophyta) grown in a thin-layer cascade. Photochem Photobiol Sci 2023; 22:2231-2245. [PMID: 37329434 DOI: 10.1007/s43630-023-00444-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Photosynthesis, growth and biochemical composition of the biomass of the freshwater microalga Chlamydopodium fusiforme cultures outdoors in a thin-layer cascade were investigated. Gross oxygen production measured off-line in samples taken from the outdoor cultures was correlated with the electron transport rate estimated from chlorophyll a fluorescence measurements. According to photosynthesis measurements, a mean of 38.9 ± 10.3 mol of photons were required to release one mole of O2, which is 4.86 times higher than the theoretical value (8 photons per 1 O2). In contrast, according to the fluorescence measurements, a mean of 11.7 ± 0.74 mol of photons were required to release 1 mol of O2. These findings indicate that fluorescence-based photosynthesis rates may not be fully replace oxygen measurements to evaluate the performance of an outdoor culture. Daily gross biomass productivity was 0.3 g DW L-1 day-1 consistently for 4 days. Biomass productivity was strongly affected by the suboptimal concentration at which the culture was operated and by the respiration rate, as the substantial volume of culture was kept in the dark (about 45% of the total volume). As the cells were exposed to excessive light, the photosynthetic activity was mainly directed to the synthesis of carbohydrates in the biomass. In the morning, carbohydrate content decreased because of the dark respiration. Per contra, protein content in the biomass was lower at the end of the day and higher in the morning due to carbohydrate consumption by respiration. The data gathered in these trials are important for the future exploitation of Chlamydopodium fusiforme as a potential novel species in the field of microalgae for the production of bio-based compounds.
Collapse
Affiliation(s)
- Giuseppe Torzillo
- CNR - Institute of Bioeconomy, Sesto Fiorentino, Florence, Italy.
- CIMAR - Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, Costa Rica.
| | - Félix Álvarez-Gómez
- Department of Ecology, Faculty of Sciences, Malaga University, Malaga, Spain
| | - Paula S M Celis-Plá
- Laboratory of Coastal Environmental Research, Center of Advanced Studies, University of Playa Ancha, Viña del Mar, Chile
- Vicerrectoría de Investigación Postgrado E Innovación, HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, 2340000, Valparaíso, Chile
| | - Agustín Rearte
- Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | | | - Ana Margarita Silva Benavides
- CIMAR - Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Karolína Štěrbová
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Agriculture, University of South Bohemia, České Budějovice, Czech Republic
| | - Martín Caporgno
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Felix L Figueroa
- Institute for Blue Biotechnology and Development. Department of Ecology, Malaga University, Malaga, Spain Malaga, Spain
| |
Collapse
|
11
|
Masojídek J, Štěrbová K, Serrano CG, da Silva JC, Grivalský T, Figueroa FL, Fernández FGA. Photosynthetic performance of Chlamydopodium (Chlorophyta) cultures grown in outdoor bioreactors. Appl Microbiol Biotechnol 2023; 107:2249-2262. [PMID: 36905416 DOI: 10.1007/s00253-023-12428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 03/12/2023]
Abstract
The microalga Chlamydopodium fusiforme MACC-430 was cultured in two types of outdoor pilot cultivation units-a thin-layer cascade (TLC) and a raceway pond (RWP) placed in a greenhouse. This case study aimed to test their potential suitability for cultivation scale-up to produce biomass for agriculture purposes (e.g., as biofertilizer or biostimulant). The culture response to the alteration of environmental conditions was evaluated in "exemplary" situations of good and bad weather conditions using several photosynthesis measuring techniques, namely oxygen production, and chlorophyll (Chl) fluorescence. Validation of their suitability for online monitoring in large-scale plants has been one of the objectives of the trials. Both techniques were found fast and robust reliable to monitor microalgae activity in large-scale cultivation units. In both bioreactors, Chlamydopodium cultures grew well in the semi-continuous regime using daily dilution (0.20-0.25 day-1). The biomass productivity calculated per volume was significantly (about 5 times) higher in the RWPs compared to the TLCs. The measured photosynthesis variables showed that the build-up of dissolved oxygen concentration in the TLC was higher, up to 125-150% of saturation (%sat) as compared to the RWP (102-104%sat). As only ambient CO2 was available, its shortage was indicated by a pH increase due to photosynthetic activity in the thin-layer bioreactor at higher irradiance intensities. In this setup, the RWP was considered more suitable for scale-up due to higher areal productivity, lower construction and maintenance costs, the smaller land area required to maintain large culture volumes, as well as lower carbon depletion and dissolved oxygen build-up. KEY POINTS: • Chlamydopodium was grown in both raceways and thin-layer cascades in pilot-scale. • Various photosynthesis techniques were validated for growth monitoring. • In general, raceway ponds were evaluated as more suitable for cultivation scale-up.
Collapse
Affiliation(s)
- Jiří Masojídek
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Karolína Štěrbová
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Cintia Gómez Serrano
- Department of Chemical Engineering, University of Almería, Almería, Spain
- CIESOL Solar Energy Research Centre, Joint Centre University ofAlmería-CIEMAT, Almería, Spain
| | - Jaqueline Carmo da Silva
- Department of Botany, Center of Biological Studies, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Tomáš Grivalský
- Centre Algatech, Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Félix Lopez Figueroa
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), University of Málaga, Málaga, Spain
| | - Francisco Gabriel Acién Fernández
- Department of Chemical Engineering, University of Almería, Almería, Spain
- CIESOL Solar Energy Research Centre, Joint Centre University ofAlmería-CIEMAT, Almería, Spain
| |
Collapse
|
12
|
Nordic microalgae produce biostimulant for the germination of tomato and barley seeds. Sci Rep 2023; 13:3509. [PMID: 36864186 PMCID: PMC9981563 DOI: 10.1038/s41598-023-30707-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
Microalgal biomass may have biostimulating effects on plants and seeds due to its phytohormonal content, and harnessing this biostimulating effect could contribute to sustainable agriculture. Two Nordic strains of freshwater microalgae species Chlorella vulgaris and Scenedesmus obliquus were each cultivated in a photobioreactor receiving untreated municipal wastewater. The algal biomass and the supernatant after algal cultivation were tested on tomato and barley seeds for biostimulating effects. Intact algal cells, broken cells, or harvest supernatant were applied to the seeds, and germination time, percentage and germination index were evaluated. Seeds treated with C. vulgaris, in particular intact cells or supernatant, had up to 25 percentage units higher germination percentage after 2 days and an overall significantly faster germination time (germinated on average between 0.5 and 1 day sooner) than seeds treated with S. obliquus or the control (water). The germination index was higher in C. vulgaris treatments than in the control for both tomato and barley, and this was observed for both broken and intact cells as well as supernatant. The Nordic strain of C. vulgaris cultivated in municipal wastewater thus shows potential for use as biostimulant in agriculture, adding novel economic and sustainability benefits.
Collapse
|
13
|
Clagnan E, D'Imporzano G, Dell'Orto M, Bani A, Dumbrell AJ, Parati K, Acién-Fernández FG, Portillo-Hahnefeld A, Martel-Quintana A, Gómez-Pinchetti JL, Adani F. Centrate as a sustainable growth medium: Impact on microalgal inocula and bacterial communities in tubular photobioreactor cultivation systems. BIORESOURCE TECHNOLOGY 2022; 363:127979. [PMID: 36126844 DOI: 10.1016/j.biortech.2022.127979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Centrate is a low-cost alternative to synthetic fertilizers for microalgal cultivation, reducing environmental burdens and remediation costs. Adapted microalgae need to be selected and characterised to maximise biomass production and depuration efficiency. Here, the performance and composition of six microalgal communities cultivated both on synthetic media and centrate within semi-open tubular photobioreactors were investigated through Illumina sequencing. Biomass grown on centrate, exposed to a high concentration of ammonium, showed a higher quantity of nitrogen (5.6% dry weight) than the biomass grown on the synthetic media nitrate (3.9% dry weight). Eukaryotic inocula were replaced by other microalgae while cyanobacterial inocula were maintained. Communities were generally similar for the same inoculum between media, however, inoculation with cyanobacteria led to variability within the eukaryotic community. Where communities differed, centrate resulted in a higher richness and diversity. The higher nitrogen of centrate possibly led to higher abundance of genes coding for N metabolism enzymes.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy.
| | - Marta Dell'Orto
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Alessia Bani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy; School of Life Science, University of Essex, Wivenhoe Park, Colchester, Essex CO3 4SQ, UK; Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia, 2602 Rivolta d'Adda, CR, Italy
| | - Alex J Dumbrell
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, Essex CO3 4SQ, UK
| | - Katia Parati
- Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia, 2602 Rivolta d'Adda, CR, Italy
| | - Francisco Gabriel Acién-Fernández
- Department of Chemical Engineering, CIESOL Solar Energy Research Centre, University of Almeria, Cañada San Urbano, s/n, 04120 Almeria, Spain
| | - Agustín Portillo-Hahnefeld
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Antera Martel-Quintana
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Juan Luis Gómez-Pinchetti
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Fabrizio Adani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| |
Collapse
|
14
|
Simulation and Techno-Economical Evaluation of a Microalgal Biofertilizer Production Process. BIOLOGY 2022; 11:biology11091359. [PMID: 36138838 PMCID: PMC9495801 DOI: 10.3390/biology11091359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The world’s population is expected to increase to almost 10,000 million by 2025, thus requiring an increase in agricultural production to meet the demand for food. Hence, an increase in fertilizer production will be needed, but with more environmentally sustainable fertilizers than those currently used. Traditional nitrogenous fertilizers (TNFs, inorganic compounds, for example nitrates and ammonium) are currently the most consumed. Biofertilizers concentrated in amino acids (BCAs) are a more sustainable alternative to TNF and could reduce the demand for TNFs. BCAs are widely used in intensive agriculture as growth and fruit formation enhancers, as well as in situations of stress for the plant, helping it to recover its vigor. In addition, BCAs minimize or contribute to reducing the damage caused by pests and diseases, have an immediate action, giving a full utilization and, lastly and most importantly, they produce savings in the crop. The objective of this work is to propose a process for the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant and to carry out techno-economic evaluation in such a way as to determine the viability of the proposal. Abstract Due to population growth in the coming years, an increase in agricultural production will soon be mandatory, thus requiring fertilizers that are more environmentally sustainable than the currently most-consumed fertilizers since these are important contributors to climate change and water pollution. The objective of this work is the techno-economic evaluation of the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant, to determine its economic viability. A process proposal has been made in six stages that have been modelled and simulated with the ASPEN Plus simulator. A profitability analysis has been carried out using a Box–Behnken-type response surface statistical design with three factors—the cost of the biomass sludge, the cost of the enzymes, and the sale price of the biofertilizer. It was found that the most influential factor in profitability is the sale price of the biofertilizer. According to a proposed representative base case, in which the cost of the biomass sludge is set to 0.5 EUR/kg, the cost of the enzymes to 20.0 EUR/kg, and the sale price of the biofertilizer to 3.5 EUR/kg, which are reasonable costs, it is concluded that the production of the biofertilizer would be economically viable.
Collapse
|