1
|
Park T, Burin G, Lazo-Cancino D, Rees JPG, Rule JP, Slater GJ, Cooper N. Charting the course of pinniped evolution: insights from molecular phylogeny and fossil record integration. Evolution 2024; 78:1212-1226. [PMID: 38644688 DOI: 10.1093/evolut/qpae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Pinnipeds (seals, sea lions, walruses, and their fossil relatives) are one of the most successful mammalian clades to live in the oceans. Despite a well-resolved molecular phylogeny and a global fossil record, a complete understanding of their macroevolutionary dynamics remains hampered by a lack of formal analyses that combine these 2 rich sources of information. We used a meta-analytic approach to infer the most densely sampled pinniped phylogeny to date (36 recent and 93 fossil taxa) and used phylogenetic paleobiological methods to study their diversification dynamics and biogeographic history. Pinnipeds mostly diversified at constant rates. Walruses, however, experienced rapid turnover in which extinction rates ultimately exceeded speciation rates from 12 to 6 Ma, possibly due to changing sea levels and/or competition with otariids (eared seals). Historical biogeographic analyses, including fossil data, allowed us to confidently identify the North Pacific and the North Atlantic (plus or minus Paratethys) as the ancestral ranges of Otarioidea (eared seals + walrus) and crown phocids (earless seals), respectively. Yet, despite the novel addition of stem pan-pinniped taxa, the region of origin for Pan-Pinnipedia remained ambiguous. These results suggest further avenues of study in pinnipeds and provide a framework for investigating other groups with substantial extinct and extant diversity.
Collapse
Affiliation(s)
- Travis Park
- School of Biological Sciences, Monash University, Melbourne, Australia
- Science Group, Natural History Museum London, London, United Kingdom
- Sciences, Museums Victoria, Melbourne, Australia
| | - Gustavo Burin
- Science Group, Natural History Museum London, London, United Kingdom
| | - Daniela Lazo-Cancino
- Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Joseph P G Rees
- Science Group, Natural History Museum London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James P Rule
- School of Biological Sciences, Monash University, Melbourne, Australia
- Science Group, Natural History Museum London, London, United Kingdom
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Natalie Cooper
- Science Group, Natural History Museum London, London, United Kingdom
| |
Collapse
|
2
|
Machado FA, Mongle CS, Slater G, Penna A, Wisniewski A, Soffin A, Dutra V, Uyeda JC. Rules of teeth development align microevolution with macroevolution in extant and extinct primates. Nat Ecol Evol 2023; 7:1729-1739. [PMID: 37652997 DOI: 10.1038/s41559-023-02167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Macroevolutionary biologists have classically rejected the notion that higher-level patterns of divergence arise through microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of quantitative genetics models to correctly predict the behaviour of evolutionary processes at the scale of millions of years. Developmental studies (evo-devo) have been proposed to reconcile micro- and macroevolution. However, there has been little progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here we reframe this issue by asking whether using evo-devo models to quantify biological variation can improve the explanatory power of comparative models, thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that biologically informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro- and macroscales, whereas biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is corridor like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution.
Collapse
Affiliation(s)
- Fabio A Machado
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Graham Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Penna
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Anna Wisniewski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Soffin
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Vitor Dutra
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL, USA
| | - Josef C Uyeda
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
3
|
Spear JK, Grabowski M, Sekhavati Y, Costa CE, Goldstein DM, Petrullo LA, Peterson AL, Lee AB, Shattuck MR, Gómez-Olivencia A, Williams SA. Evolution of vertebral numbers in primates, with a focus on hominoids and the last common ancestor of hominins and panins. J Hum Evol 2023; 179:103359. [PMID: 37099927 DOI: 10.1016/j.jhevol.2023.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/28/2023]
Abstract
The primate vertebral column has been extensively studied, with a particular focus on hominoid primates and the last common ancestor of humans and chimpanzees. The number of vertebrae in hominoids-up to and including the last common ancestor of humans and chimpanzees-is subject to considerable debate. However, few formal ancestral state reconstructions exist, and none include a broad sample of primates or account for the correlated evolution of the vertebral column. Here, we conduct an ancestral state reconstruction using a model of evolution that accounts for both homeotic (changes of one type of vertebra to another) and meristic (addition or loss of a vertebra) changes. Our results suggest that ancestral primates were characterized by 29 precaudal vertebrae, with the most common formula being seven cervical, 13 thoracic, six lumbar, and three sacral vertebrae. Extant hominoids evolved tail loss and a reduced lumbar column via sacralization (homeotic transition at the last lumbar vertebra). Our results also indicate that the ancestral hylobatid had seven cervical, 13 thoracic, five lumbar, and four sacral vertebrae, and the ancestral hominid had seven cervical, 13 thoracic, four lumbar, and five sacral vertebrae. The last common ancestor of humans and chimpanzees likely either retained this ancestral hominid formula or was characterized by an additional sacral vertebra, possibly acquired through a homeotic shift at the sacrococcygeal border. Our results support the 'short-back' model of hominin vertebral evolution, which postulates that hominins evolved from an ancestor with an African ape-like numerical composition of the vertebral column.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Paleoecology, Liverpool John Moores University, Liverpool, UK; Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Yeganeh Sekhavati
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Christina E Costa
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Deanna M Goldstein
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Lauren A Petrullo
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Amy L Peterson
- Smithsonian Institution, National Museum of Natural History, Washington DC, USA
| | - Amanda B Lee
- Data Scientist, Jellyfish, Suite 3033, 220 N Green St, Chicago, IL, USA
| | | | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena S/n, 48940 Bilbao, Spain; Sociedad de Ciencias Aranzadi, Zorroagagaina 11, 20014 Donostia-San Sebastián, Spain; Centro UCM-ISCIII de Investigación Sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
4
|
Schweitzer MH. Paleontology in the 21st Century. BIOLOGY 2023; 12:biology12030487. [PMID: 36979178 PMCID: PMC10045828 DOI: 10.3390/biology12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
For much of its 300+ year history, "modern" paleontology has been a descriptive science, firmly housed within geological sciences [...].
Collapse
Affiliation(s)
- Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Geology, Lund University, 223 62 Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|