1
|
Xu DW, Tate MD. Taking AIM at Influenza: The Role of the AIM2 Inflammasome. Viruses 2024; 16:1535. [PMID: 39459869 PMCID: PMC11512208 DOI: 10.3390/v16101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A viruses (IAV) are dynamic and highly mutable respiratory pathogens that present persistent public health challenges. Inflammasomes, as components of the innate immune system, play a crucial role in the early detection and response to infections. They react to viral pathogens by triggering inflammation to promote immune defences and initiate repair mechanisms. While a strong response is necessary for early viral control, overactivation of inflammasomes can precipitate harmful hyperinflammatory responses, a defining characteristic observed during severe influenza infections. The Absent in Melanoma 2 (AIM2) inflammasome, traditionally recognised for its role as a DNA sensor, has recently been implicated in the response to RNA viruses, like IAV. Paradoxically, AIM2 deficiency has been linked to both enhanced and reduced vulnerability to IAV infection. This review synthesises the current understanding of AIM2 inflammasome activation during IAV and explores its clinical implications. Understanding the nuances of AIM2's involvement could unveil novel therapeutic avenues for mitigating severe influenza outcomes.
Collapse
Affiliation(s)
- Dianne W. Xu
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Pulito-Cueto V, Sebastián Mora-Gil M, Ferrer-Pargada D, Remuzgo-Martínez S, Genre F, Lera-Gómez L, Alonso-Lecue P, Batista-Liz JC, Tello-Mena S, Abascal-Bolado B, Izquierdo S, Ruiz-Cubillán JJ, Armiñanzas-Castillo C, Blanco R, González-Gay MA, López-Mejías R, Cifrián JM. Inflammasome-Related Genetic Polymorphisms as Severity Biomarkers of COVID-19. Int J Mol Sci 2024; 25:3731. [PMID: 38612539 PMCID: PMC11011752 DOI: 10.3390/ijms25073731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The most critical forms of coronavirus disease 2019 (COVID-19) are associated with excessive activation of the inflammasome. Despite the COVID-19 impact on public health, we still do not fully understand the mechanisms by which the inflammatory response influences disease prognosis. Accordingly, we aimed to elucidate the role of polymorphisms in the key genes of the formation and signaling of the inflammasome as biomarkers of COVID-19 severity. For this purpose, a large and well-defined cohort of 377 COVID-19 patients with mild (n = 72), moderate (n = 84), severe (n = 100), and critical (n = 121) infections were included. A total of 24 polymorphisms located in inflammasome-related genes (NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, IL18, NFKB1, ATG16L1, and MIF) were genotyped in all of the patients and in the 192 healthy controls (HCs) (who were without COVID-19 at the time of and before the study) by RT-qPCR. Our results showed that patients with mild, moderate, severe, and critical COVID-19 presented similar allelic and genotypic distribution in all the variants studied. No statistically significant differences in the haplotypic distribution of NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, and ATG16L1 were observed between COVID-19 patients, who were stratified by disease severity. Each stratified group of patients presented a similar genetic distribution to the HCs. In conclusion, our results suggest that the inflammasome polymorphisms studied are not associated with the worsening of COVID-19.
Collapse
Affiliation(s)
- Verónica Pulito-Cueto
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - María Sebastián Mora-Gil
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Diego Ferrer-Pargada
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | | | - Fernanda Genre
- Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (S.R.-M.); (F.G.)
| | - Leticia Lera-Gómez
- Department of Microbiology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - Pilar Alonso-Lecue
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Joao Carlos Batista-Liz
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Sandra Tello-Mena
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Beatriz Abascal-Bolado
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Sheila Izquierdo
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Juan José Ruiz-Cubillán
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | | | - Ricardo Blanco
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Miguel A. González-Gay
- School of Medicine, University of Cantabria, 39011 Santander, Spain;
- Department of Rheumatology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Raquel López-Mejías
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - José M. Cifrián
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
- School of Medicine, University of Cantabria, 39011 Santander, Spain;
| |
Collapse
|
4
|
Xia C, Ou S, Yang Y, Zhang W, Wu W, Chen Q, Li W, Lu H, Wang Y, Qi Y, Xu C. ELP2-NLRP3-GSDMD/GSDME-mediated pyroptosis is induced by TNF-α in MC3T3-E1 cells during osteogenic differentiation. J Cell Mol Med 2023; 27:4093-4106. [PMID: 37830762 PMCID: PMC10746952 DOI: 10.1111/jcmm.17994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Tumour necrosis factor-α (TNF-α) is a cytokine involved in systemic inflammation. TNF-α slows down osteogenic differentiation, which may contribute to poor bone development in the inflammatory microenvironment. TNF-α inhibits osteogenic differentiation by activating the JAK-STAT3 pathway, of which Signal transducer and activator of transcription 3 (STAT3)-interacting protein 1 (StIP1, also known as elongator complex protein 2, ELP2) is a key protein in the JAK-STAT3 pathway. We investigated whether and how ELP2 activation mediates the TNF-α-induced pyroptosis during osteoblastic differentiation. Using in vitro cell cultures of preosteoblastic MC3T3-E1 cells, we found that TNF-α exposure causes cell pyroptosis in an inflammatory microenvironment during osteoblastic differentiation. Bioinformatics, protein docking model and co-immunoprecipitation analysis revealed an association between ELP2, STAT3 and NLRP3. Forced ELP2 expression promoted MC3T3-E1 cells pyroptosis, with an increase in the expression of STAT3, NLRP3 inflammasome, GSDMD/GSDME, osteoblast marker genes, and the activity of alkaline phosphatase. In contrast, ELP2 silencing ameliorated MC3T3-E1 cells pyroptosis, and osteogenic differentiation, especially after TNF-α stimulation. The TNF-α-induced cells pyroptosis during osteoblastic differentiation was therefore mediated by ELP2. These results suggest that ELP2 is upregulated at the pyroptosis of MC3T3-E1 cells and inhibits osteogenic differentiation in response to TNF-α through NLRP3-GSDMD/GSDME activation.
Collapse
Affiliation(s)
- Changliang Xia
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Shuanji Ou
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Yang Yang
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Wei Zhang
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Wenjiao Wu
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Qi Chen
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Wenjun Li
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Hanyu Lu
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Yeyang Wang
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Yong Qi
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Changpeng Xu
- Department of OrthopaedicsThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
5
|
Fragkou PC, Dimopoulou D, De Angelis G, Menchinelli G, Chemaly RF, Skevaki C. Editorial: Immune response to respiratory viruses and respiratory viral infections in susceptible populations. Front Med (Lausanne) 2023; 10:1330265. [PMID: 38046413 PMCID: PMC10693325 DOI: 10.3389/fmed.2023.1330265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Affiliation(s)
- Paraskevi C. Fragkou
- 1st Department of Critical Care Medicine and Pulmonary Services, Evaggelismos General Hospital, Athens, Greece
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- 2nd University Department of Pediatrics, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Giulia De Angelis
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Menchinelli
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roy F. Chemaly
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center, Marburg, Germany
| |
Collapse
|