1
|
Jagannivasan A, Gopakumar ST, Sharma S R K, Suresh G, Raveendranathan DN, Peter R, Gop AP, Achamveetil G. Profiling the antioxidant biomarkers in marine fish larvae: a comparative assessment of different storage conditions to select the optimal strategy. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:557-574. [PMID: 38193995 DOI: 10.1007/s10695-023-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Research on antioxidant biomarkers can generate profound insights into the defense mechanisms of fish larvae against different stressors and can reveal manipulation strategies for improved growth and survival. However, the number of samples to process and unavailability of required infrastructure in larval-rearing facilities limit the immediate processing, requiring the preservation of specimens. Silver pompano (Trachinotus blochii), a potential marine aquaculture species, shows a low larval survival rate due to poorly developed antioxidant mechanism. In this context, 39 storage conditions, including three storage temperatures and different buffers, were scrutinized to select the most suitable preservation strategy for five important antioxidant biomarkers of fish larvae, viz. catalase activity, superoxide dismutase (SOD) activity, measurement of lipid peroxidation, reduced glutathione (GSH), and ascorbic acid contents. The paper proposes the optimum larval storage conditions for these five evaluated antioxidant biomarkers to generate similar results in preserved and non-preserved larval samples. Larval samples preserved in PBS at lower temperatures (- 20 °C and - 80 °C) are recommended for evaluating catalase activity and ascorbic acid content. Catalase activity can also be evaluated by preserving the larval samples at - 20 °C or - 80 °C without buffers. Larval samples held in PBS or without any buffers at - 20 °C and at - 80 °C were found to be suitable for SOD and GSH evaluation, respectively. Preservation in 50% glacial acetic acid at - 80 °C or - 20 °C was preferred for the lipid peroxidation assays. Apart from methodological perspectives, the paper provides insights into the dynamics of larval antioxidant profiles of T. blochii, for the first time.
Collapse
Affiliation(s)
- Amritha Jagannivasan
- Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682018, India
- Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Sumithra Thangalazhy Gopakumar
- Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682018, India
| | - Krupesha Sharma S R
- Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682018, India.
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682018, India
- Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Dhanutha Nikathil Raveendranathan
- Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682018, India
| | - Reynold Peter
- Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682018, India
| | - Ambarish Purackattu Gop
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Vizhinjam P.O, Thiruvananthapuram, Kerala, 692521, India
| | - Gopalakrishnan Achamveetil
- Marine Biotechnology, Fish Nutrition & Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Post Box No. 1603, Ernakulam North P.O, Kochi, 682018, India
| |
Collapse
|
2
|
Karakas E, Ferrante P, Schafleitner R, Giuliano G, Fernie AR, Alseekh S. Plant Sample Collection and Shipment for Multi-omic Analyses and Phytosanitary Evaluation. Curr Protoc 2023; 3:e952. [PMID: 38131272 DOI: 10.1002/cpz1.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Plant sample preparation for analyses is a fundamental step in high-throughput omics strategies. Especially for plant metabolomics, quenching of hydrolytic enzymes able to affect metabolite concentrations is crucial for the accuracy of results. Given that DNA is usually less labile than metabolites, most sampling and shipment procedures able to preserve the metabolome are also suitable for preventing the degradation of plant DNA or of DNA of pathogens in the plant tissue. In this article, we describe all the steps of sample collection, shipment (including the phytosanitary issues of moving plant samples), and processing for combined genomics and metabolomics from a single sample, as well as the protocols used in our laboratories for downstream approaches for crop plants, allowing collection of multi-omic datasets in large experimental setups. The protocols have been adjusted to apply to both freeze-dried and fresh-frozen material to allow the processing of crop plant samples that will require long-distance transport. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of freeze-dried leaf disks for multiplexed PCR or DArT-Seq genotyping Basic Protocol 2: Medium-throughput preparation of pathogen-free nucleic acids for most genotyping-resequencing applications or pathogen detection Alternate Protocol: Low-throughput extraction of high-quality DNA for resequencing using commercial kits Support Protocol: DNA quality control Basic Protocol 3: Preparation of freeze-dried plant material for metabolomics Basic Protocol 4: Preparation of fresh-frozen plant material for metabolomics Basic Protocol 5: Preparation and shipment of metabolite extracts for metabolomic analyses Basic Protocol 6: Sample shipping and long-term storage.
Collapse
Affiliation(s)
- Esra Karakas
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Paola Ferrante
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | | | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
3
|
Biru FN, Cazzonelli CI, Elbaum R, Johnson SN. Silicon-mediated herbivore defence in a pasture grass under reduced and Anthropocene levels of CO 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1268043. [PMID: 38023935 PMCID: PMC10646432 DOI: 10.3389/fpls.2023.1268043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The uptake and accumulation of silicon (Si) in grass plants play a crucial role in alleviating both biotic and abiotic stresses. Si supplementation has been reported to increase activity of defence-related antioxidant enzyme, which helps to reduce oxidative stress caused by reactive oxygen species (ROS) following herbivore attack. Atmospheric CO2 levels are known to affect Si accumulation in grasses; reduced CO2 concentrations increase Si accumulation whereas elevated CO2 concentrations often decrease Si accumulation. This can potentially affect antioxidant enzyme activity and subsequently insect herbivory, but this remains untested. We examined the effects of Si supplementation and herbivory by Helicoverpa armigera on antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD; and ascorbate peroxidase, APX) activity in tall fescue grass (Festuca arundinacea) grown under CO2 concentrations of 200, 410, and 640 ppm representing reduced, ambient, and elevated CO2 levels, respectively. We also quantified foliar Si, carbon (C), and nitrogen (N) concentrations and determined how changes in enzymes and elemental chemistry affected H. armigera relative growth rates and plant consumption. Rising CO2 concentrations increased plant mass and foliar C but decreased foliar N and Si. Si supplementation enhanced APX and SOD activity under the ranging CO2 regimes. Si accumulation and antioxidant enzyme activity were at their highest level under reduced CO2 conditions and their lowest level under future levels of CO2. The latter corresponded with increased herbivore growth rates and plant consumption, suggesting that some grasses could become more susceptible to herbivory under projected CO2 conditions.
Collapse
Affiliation(s)
- Fikadu N. Biru
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
4
|
Fonteles T, Leite AK, Miguel T, Fernandes F, Pinheiro S, Miguel E, Rodrigues S. Optimization of Sonication Parameters to Produce a Cashew Apple Bagasse Puree Rich in Superoxide Dismutase. Foods 2022; 11:foods11172694. [PMID: 36076881 PMCID: PMC9455690 DOI: 10.3390/foods11172694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of ultrasound processing parameters on the extraction of antioxidative enzymes and a toxicity assessment of cashew apple bagasse puree were investigated. Ultrasound directly affects the formation of reactive oxygen species such as H2O2, and consequently, superoxide dismutase, catalase, and ascorbate peroxidase activities. S.O.D. activity increased up to 280% after U.S. processing at 75 W/cm2, 1:3 bagasse: water ratio, and 10 min compared to non-processed bagasse. Therefore, the effect of ultrasound in delaying browning could be correlated to the enhanced antioxidant enzyme activity and decrease in peroxidase activity. At center point conditions (226 W/cm2, 1:3 bagasse: water ratio; 6 min), a decrease of 20% and 50% on POD and PPO activities was observed, respectively. No significant acute toxicity or protective effect was observed in unprocessed and sonicated cashew apple bagasse. Although cashew bagasse processed at 75 W/cm2 prevented nauplii death after 24 h of exposure, this data cannot assure the protective effect once the number of dead nauplii on 100 μg/mL was similar. However, these data indicate a possible protective effect, especially in higher cashew bagasse concentrations. The results suggest that sonicated cashew apple bagasse puree, a coproduct obtained from a traditional valued fruit in Brazil, may be used as a source of antioxidative enzymes, which further has great importance in therapeutics.
Collapse
Affiliation(s)
- Thatyane Fonteles
- Department of Food Engineering, Federal University of Ceara, Fortaleza 60440900, Brazil
| | - Ana Karoline Leite
- Department of Chemical Engineering, Federal University of Ceara, Fortaleza 60455760, Brazil
| | - Thaiz Miguel
- Department of Food Engineering, Federal University of Ceara, Fortaleza 60440900, Brazil
| | - Fabiano Fernandes
- Department of Chemical Engineering, Federal University of Ceara, Fortaleza 60455760, Brazil
| | - Sergimar Pinheiro
- Department of Metallurgical and Materials Engineering, Federal University of Ceara, Fortaleza 60440554, Brazil
| | - Emílio Miguel
- Department of Metallurgical and Materials Engineering, Federal University of Ceara, Fortaleza 60440554, Brazil
| | - Sueli Rodrigues
- Department of Food Engineering, Federal University of Ceara, Fortaleza 60440900, Brazil
- Correspondence: ; Tel.: +55-85-3366-9656
| |
Collapse
|
5
|
Ardila-Leal LD, Monterey-Gutiérrez PA, Poutou-Piñales RA, Quevedo-Hidalgo BE, Galindo JF, Pedroza-Rodríguez AM. Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC Biotechnol 2021; 21:37. [PMID: 34088291 PMCID: PMC8178886 DOI: 10.1186/s12896-021-00698-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. Methods A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. Results In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an Ed value of 41.40 KJ mol− 1, a low variation of KM and Vmax, at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. Conclusions Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00698-3.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| | - Pedro A Monterey-Gutiérrez
- Vicerrectoría Académica. Universidad Antonio Nariño, Programa de Maestría y Doctorado en Educación Matemática, Bogotá, D.C, Colombia
| | - Raúl A Poutou-Piñales
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Balkys E Quevedo-Hidalgo
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ), Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Johan F Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| | - Aura M Pedroza-Rodríguez
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| |
Collapse
|