1
|
Agarwal V, Sonnet V, Inomura K, Ciochetto AB, Mouw CB. Image-derived indicators of phytoplankton community responses to Pseudo-nitzschia blooms. HARMFUL ALGAE 2024; 138:102702. [PMID: 39244237 DOI: 10.1016/j.hal.2024.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
Phytoplankton populations in the natural environment interact with each other. Despite rising global concern with Pseudo-nitzschia blooms, which can produce the potent neurotoxin domoic acid, we still do not fully understand how other phytoplankton genera respond to the presence of Pseudo-nitzschia. Here, we used a 4-year high-resolution imaging dataset for 9 commonly found phytoplankton genera in Narragansett Bay, alongside environmental data, to identify potential interactions between phytoplankton genera and their response to elevated Pseudo-nitzschia abundance. Our results indicate that Pseudo-nitzschia tends to bloom either concurrently with or right after other phytoplankton genera. Such bloom periods coincide with higher water temperatures and lower salinity. Pseudo-nitzschia image abundance tends to increase the most from March-May and peaks during May-Jun, whereas the image-derived biovolume and width of Pseudo-nitzschia chains increase the most during Jan-Feb. For most phytoplankton genera, their relationship with Pseudo-nitzschia abundance is noticeably different from their relationship with Pseudo-nitzschia image features. Despite the complexity in the phytoplankton community, our analysis suggests several ecological indicators that may be used to determine the risk of harmful algal blooms.
Collapse
Affiliation(s)
- Vitul Agarwal
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| | - Virginie Sonnet
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA; Laboratoire d'Océanographie de Villefanche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Audrey B Ciochetto
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Colleen B Mouw
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| |
Collapse
|
2
|
Borbee EM, Puspa IA, Gelis ERE, Setiawan F, Maduppa H, Humphries AT, Lane CE. Surface currents shape protist community structure across the Indo-Pacific. JOURNAL OF PHYCOLOGY 2024; 60:816-833. [PMID: 38817114 DOI: 10.1111/jpy.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
Biogeographic structure in marine protist communities is shaped by a combination of dispersal potential and environmental selection. High-throughput sequencing and global sampling efforts have helped better resolve the composition and functions of these communities in the world's oceans using both molecular and visual methods. However, molecular barcoding data are critically lacking across the Indo-Pacific, a region widely considered the epicenter of marine biodiversity. To fill this gap, we characterized protist communities in four sampling regions across Indonesia that represent the latitudinal, longitudinal, and human population gradients of the region: Lombok, Wakatobi, Misool, and Waigeo. We show high spatial structuring in marine protist communities across Indonesia, and biotic factors appear to play little role in driving this observed structure. Our results appear to be driven by abiotic factors linked to surface current patterns across the Indo-Pacific as a result of: (1) a choke point in circulation at the Indonesian Throughflow leading to low diatom diversity in Lombok, Wakatobi, and Misool; (2) an increase in nutrient availability at the edge of the Halmahera Eddy in Waigeo, leading to an increase in diatom diversity; and/or (3) seasonal variations in protist communities in line with shifts in velocity of the Indonesian Throughflow. Overall, our results highlight the importance of abiotic factors in shaping protist communities on broad geographic scales over biotic, top-down pressures, such as grazing from higher trophic levels.
Collapse
Affiliation(s)
- Erin M Borbee
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Inna Ayu Puspa
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | | | - Fahkrizal Setiawan
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Hawis Maduppa
- Department of Marine Science and Technology, Institut Pertainian Bogor, Bogor, Indonesia
| | - Austin T Humphries
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
3
|
Martens N, Russnak V, Woodhouse J, Grossart HP, Schaum CE. Metabarcoding reveals potentially mixotrophic flagellates and picophytoplankton as key groups of phytoplankton in the Elbe estuary. ENVIRONMENTAL RESEARCH 2024; 252:119126. [PMID: 38734293 DOI: 10.1016/j.envres.2024.119126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
In estuaries, phytoplankton are faced with strong environmental forcing (e.g. high turbidity, salinity gradients). Taxa that appear under such conditions may play a critical role in maintaining food webs and biological carbon pumping, but knowledge about estuarine biota remains limited. This is also the case in the Elbe estuary where the lower 70 km of the water body are largely unexplored. In the present study, we investigated the phytoplankton composition in the Elbe estuary via metabarcoding. Our aim was to identify key taxa in the unmonitored reaches of this ecosystem and compare our results from the monitored area with available microscopy data. Phytoplankton communities followed distinct seasonal and spatial patterns. Community composition was similar across methods. Contributions of key classes and genera were correlated to each other (p < 0.05) when obtained from reads and biovolume (R2 = 0.59 and 0.33, respectively). Centric diatoms (e.g. Stephanodiscus) were the dominant group - comprising on average 55 % of the reads and 66-69 % of the biovolume. However, results from metabarcoding imply that microscopy underestimates the prevalence of picophytoplankton and flagellates with a potential for mixotrophy (e.g. cryptophytes). This might be due to their small size and sensitivity to fixation agents. We argue that mixotrophic flagellates are ecologically relevant in the mid to lower estuary, where, e.g., high turbidity render living conditions rather unfavorable, and skills such as phagotrophy provide fundamental advantages. Nevertheless, further findings - e.g. important taxa missing from the metabarcoding dataset - emphasize potential limitations of this method and quantitative biases can result from varying numbers of gene copies in different taxa. Further research should address these methodological issues but also shed light on the causal relationship of taxa with the environmental conditions, also with respect to active mixotrophic behavior.
Collapse
Affiliation(s)
- Nele Martens
- Institute of Marine Ecosystem and Fishery Science, Olbersweg 24, 22767, Hamburg, Germany.
| | - Vanessa Russnak
- Helmholtz-Zentrum hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
| | - Jason Woodhouse
- Institute of Cell and Systems Biology of Animals, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775, Stechlin, Germany; Institute of Biochemistry and Biology, Maulbeerallee 2, 14469, Potsdam, Germany.
| | - C-Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, Olbersweg 24, 22767, Hamburg, Germany; Center for Earth System Research and Sustainability, Bundesstraße 53-55, 20146, Hamburg, Germany.
| |
Collapse
|
4
|
Thibodeau PS, Puggioni G, Strock J, Borkman DG, Rynearson TA. Long-term declines in chlorophyll a and variable phenology revealed by a 60-year estuarine plankton time series. Proc Natl Acad Sci U S A 2024; 121:e2311086121. [PMID: 38739806 PMCID: PMC11127012 DOI: 10.1073/pnas.2311086121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/16/2024] [Indexed: 05/16/2024] Open
Abstract
Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.
Collapse
Affiliation(s)
| | - Gavino Puggioni
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI02881
| | - Jacob Strock
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - David G. Borkman
- Rhode Island Department of Environmental Management, Office of Water Resources–Shellfish, Providence, RI02908
| | - Tatiana A. Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| |
Collapse
|
5
|
Liu K, Liu S, Cui Z, Zhao Y, Chen N. Rich diversity and active spatial-temporal dynamics of Thalassiosira species revealed by time-series metabarcoding analysis. ISME COMMUNICATIONS 2024; 4:ycad009. [PMID: 38313810 PMCID: PMC10837834 DOI: 10.1093/ismeco/ycad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024]
Abstract
Thalassiosira is a species-rich genus in Bacillariophyta that not only contributes positively as primary producer, but also poses negative impacts on ecosystems by causing harmful algal blooms. Although taxonomical studies have identified a large number of Thalassiosira species, however, the composition of Thalassiosira species and their geographical distribution in marine ecosystems were not well understood due primarily to the lack of resolution of morphology-based approaches used previously in ecological expeditions. In this study, we systematically analyzed the composition and spatial-temporal dynamic distributions of Thalassiosira in the model marine ecosystem Jiaozhou Bay by applying metabarcoding analysis. Through analyzing samples collected monthly from 12 sampling sites, 14 Thalassiosira species were identified, including five species that were not previously reported in Jiaozhou Bay, demonstrating the resolution and effectiveness of metabarcoding analysis in ecological research. Many Thalassiosira species showed prominent temporal preferences in Jiaozhou Bay, with some displaying spring-winter preference represented by Thalassiosira tenera, while others displaying summer-autumn preference represented by Thalassiosira lundiana and Thalassiosira minuscula, indicating that the temperature is an important driving factor in the temporal dynamics. The application of metabarcoding analysis, equipped with appropriate molecular markers with high resolution and high specificity and databases of reference molecular marker sequences for potential all Thalassiosira species, will revolutionize ecological research of Thalassiosira species in Jiaozhou Bay and other marine ecosystems.
Collapse
Affiliation(s)
- Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zongmei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yongfang Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
6
|
Setta SP, Lerch S, Jenkins BD, Dyhrman ST, Rynearson TA. Oligotrophic waters of the Northwest Atlantic support taxonomically diverse diatom communities that are distinct from coastal waters. JOURNAL OF PHYCOLOGY 2023; 59:1202-1216. [PMID: 37737069 DOI: 10.1111/jpy.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023]
Abstract
Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Samantha P Setta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Sarah Lerch
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Bethany D Jenkins
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
7
|
Kling JD, Lee MD, Walworth NG, Webb EA, Coelho JT, Wilburn P, Anderson SI, Zhou Q, Wang C, Phan MD, Fu F, Kremer CT, Litchman E, Rynearson TA, Hutchins DA. Dual thermal ecotypes coexist within a nearly genetically identical population of the unicellular marine cyanobacterium Synechococcus. Proc Natl Acad Sci U S A 2023; 120:e2315701120. [PMID: 37972069 PMCID: PMC10665897 DOI: 10.1073/pnas.2315701120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacterium Synechococcus isolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.
Collapse
Affiliation(s)
- Joshua D. Kling
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Michael D. Lee
- ZOLL Medical Corporation, Chelmsford, MA01824
- Blue Marble Space Institute of Science, Seattle, WA98154
| | - Nathan G. Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Eric A. Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Jordan T. Coelho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Paul Wilburn
- ZOLL Medical Corporation, Chelmsford, MA01824
- Kellogg Biological Station, College of Natural Science, Michigan State University, Hickory Corners, MI49060
| | - Stephanie I. Anderson
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI02882
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Qianqian Zhou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian361005, China
| | - Chunguang Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian361005, China
| | - Megan D. Phan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Feixue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Colin T. Kremer
- Kellogg Biological Station, College of Natural Science, Michigan State University, Hickory Corners, MI49060
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT06269
| | - Elena Litchman
- Kellogg Biological Station, College of Natural Science, Michigan State University, Hickory Corners, MI49060
- Department of Global Ecology, Carnegie Institution, Stanford University, Palo Alto, CA94305
| | - Tatiana A. Rynearson
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI02882
| | - David A. Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| |
Collapse
|
8
|
Hammond SW, Lodolo L, Hu SK, Pasulka AL. Methodological 'lenses' influence the characterization of phytoplankton dynamics in a coastal upwelling ecosystem. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:897-906. [PMID: 36071313 DOI: 10.1111/1758-2229.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
New technologies enable the opportunity to improve our monitoring and understanding of marine phytoplankton communities. However, careful consideration for how different methodological approaches, or 'lenses', influence our interpretation of phytoplankton ecology is important, particularly when drawing conclusions about change over time or space. Using both high-throughput 18S rRNA gene sequencing and microscopy, we explored how phytoplankton community structure varied over the course of a year within a nearshore semi-enclosed coastal embayment along the Central Coast of California. The seasonal shift in the relative community dominance (i.e., diatom vs. dinoflagellate dominance) was captured in the microscopy results but not effectively captured in the molecular-based findings. However, the molecular approach explained more of the variability in composition across seasons relative to the microscopy approach. Temporal dynamics of specific bloom-forming taxa also differed between the molecular and microscopy results. Overall, the observed differences between the molecular- and microscopy-derived characterization of phytoplankton dynamics suggest that the approaches are best suited to answer different research questions. Moreover, the approaches complement each other for a more comprehensive perspective of a coastal phytoplankton ecosystem. Therefore, identifying the biases of each approach within natural communities is necessary to effectively and accurately characterize phytoplankton communities.
Collapse
Affiliation(s)
- S William Hammond
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Laura Lodolo
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Sarah K Hu
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Alexis L Pasulka
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
9
|
Sterling AR, Kirk RD, Bertin MJ, Rynearson TA, Borkman DG, Caponi MC, Carney J, Hubbard KA, King MA, Maranda L, McDermith EJ, Santos NR, Strock JP, Tully EM, Vaverka SB, Wilson PD, Jenkins BD. Emerging harmful algal blooms caused by distinct seasonal assemblages of a toxic diatom. LIMNOLOGY AND OCEANOGRAPHY 2022; 67:2341-2359. [PMID: 36636629 PMCID: PMC9827834 DOI: 10.1002/lno.12189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/09/2022] [Accepted: 06/12/2022] [Indexed: 06/10/2023]
Abstract
Diatoms in the Pseudo-nitzschia genus produce the neurotoxin domoic acid. Domoic acid bioaccumulates in shellfish, causing illness in humans and marine animals upon ingestion. In 2017, high domoic acid levels in shellfish meat closed shellfish harvest in Narragansett Bay, Rhode Island for the first and only time in history, although abundant Pseudo-nitzschia have been observed for over 60 years. To investigate whether an environmental factor altered endemic Pseudo-nitzschia physiology or new domoic acid-producing strain(s) were introduced to Narragansett Bay, we conducted weekly sampling from 2017 to 2019 and compared closure samples. Plankton-associated domoic acid was quantified by LC-MS/MS and Pseudo-nitzschia spp. were identified using a taxonomically improved high-throughput rDNA sequencing approach. Comparison with environmental data revealed a detailed understanding of domoic acid dynamics and seasonal multi-species assemblages. Plankton-associated domoic acid was low throughout 2017-2019, but recurred in fall and early summer maxima. Fall domoic acid maxima contained known toxic species as well as a novel Pseudo-nitzschia genotype. Summer domoic acid maxima included fewer species but also known toxin producers. Most 2017 closure samples contained the particularly concerning toxic species, P. australis, which also appeared infrequently during 2017-2019. Recurring Pseudo-nitzschia assemblages were driven by seasonal temperature changes, and plankton-associated domoic acid correlated with low dissolved inorganic nitrogen. Thus, the Narragansett Bay closures were likely caused by both resident assemblages that become toxic depending on nutrient status as well as the episodic introductions of toxic species from oceanographic and climatic shifts.
Collapse
Affiliation(s)
- Alexa R. Sterling
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
| | - Riley D. Kirk
- Department of Biomedical and Pharmaceutical SciencesCollege of Pharmacy, University of Rhode IslandKingstonRhode Island
| | - Matthew J. Bertin
- Department of Biomedical and Pharmaceutical SciencesCollege of Pharmacy, University of Rhode IslandKingstonRhode Island
| | - Tatiana A. Rynearson
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRhode Island
| | - David G. Borkman
- Rhode Island Department of Environmental ManagementOffice of Water ResourcesProvidenceRhode Island
| | - Marissa C. Caponi
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
| | - Jessica Carney
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRhode Island
| | - Katherine A. Hubbard
- Fish and Wildlife Research InstituteFlorida Fish and Wildlife Conservation CommissionSt. PetersburgFlorida
- Woods Hole Center for Oceans and Human HealthWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Meagan A. King
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
| | - Lucie Maranda
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRhode Island
| | - Emily J. McDermith
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
| | - Nina R. Santos
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRhode Island
| | - Jacob P. Strock
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRhode Island
| | - Erin M. Tully
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
- College of Earth, Ocean and Atmospheric SciencesOregon State UniversityCorvallisOregon
| | - Samantha B. Vaverka
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
| | - Patrick D. Wilson
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
| | - Bethany D. Jenkins
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode Island
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRhode Island
| |
Collapse
|
10
|
Trombetta T, Vidussi F, Roques C, Mas S, Scotti M, Mostajir B. Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon. Sci Rep 2021; 11:17675. [PMID: 34480057 PMCID: PMC8417261 DOI: 10.1038/s41598-021-97173-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
To identify the environmental factors that drive plankton community composition and structure in coastal waters, a shallow northwestern Mediterranean lagoon was monitored from winter to spring in two contrasting years. The campaign was based on high-frequency recordings of hydrological and meteorological parameters and weekly samplings of nutrients and the plankton community. The collected data allowed the construction of correlation networks, which revealed that water temperature was the most important factor governing community composition, structure and succession at different trophic levels, suggesting its ubiquitous food web control. Temperature favoured phytoplanktonic flagellates (Cryptophyceae, Chrysophyceae, and Chlorophyceae) and ciliates during winter and early spring. In contrast, it favoured Bacillariophyceae, dinoflagellates, phytoplankton < 6 µm and aloricate Choreotrichida during spring. The secondary factors were light, which influenced phytoplankton, and wind, which may regulate turbidity and the nutrient supply from land or sediment, thus affecting benthic species such as Nitzschia sp. and Uronema sp. or salinity-tolerant species such as Prorocentrum sp. The central role of temperature in structuring the co-occurrence network suggests that future global warming could deeply modify plankton communities in shallow coastal zones, affecting whole-food web functioning.
Collapse
Affiliation(s)
- Thomas Trombetta
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Francesca Vidussi
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Cécile Roques
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sébastien Mas
- grid.121334.60000 0001 2097 0141MEDIMEER (Mediterranean Platform for Marine Ecosystems Experimental Research), OSU OREME, Univ Montpellier, CNRS, IRD, IRSTEA, Sète, France
| | - Marco Scotti
- grid.15649.3f0000 0000 9056 9663GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Behzad Mostajir
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
11
|
Cabrerizo MJ, Marañón E. Grazing Pressure Is Independent of Prey Size in a Generalist Herbivorous Protist: Insights from Experimental Temperature Gradients. MICROBIAL ECOLOGY 2021; 81:553-562. [PMID: 32829442 DOI: 10.1007/s00248-020-01578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Grazing by herbivorous protists contributes to structuring plankton communities through its effect on the growth, biomass, and competitiveness of prey organisms and also impacts the transfer of primary production towards higher trophic levels. Previous evidence shows that heterotrophic processes (grazing rates, g) are more sensitive to temperature than autotrophic ones (phytoplankton growth rates, μ) and also that small cells tend to be more heavily predated than larger ones; however, it remains unresolved how the interplay between changes in temperature and cell size modulates grazing pressure (i.e., g:μ ratio). We addressed this problem by conducting an experiment with four phytoplankton populations, from pico- to microphytoplankton, over a 12 °C gradient and in the presence/absence of a generalist herbivorous protist, Oxyrrhis marina. We found that highest g rates coincided with highest μ rates, which corresponded to intermediate cell sizes. There were no significant differences in either μ or g between the smallest and largest cell sizes considered. The g:μ ratio was largely independent of cell size and C:N ratios, and its thermal dependence was low although species-specific differences were large. We suggest that the similar g:μ found could be the consequence that the energetic demand imposed by rising temperatures would be a more important issue than the mechanical constriction to ingestion derived from prey cell size. Despite the difficulty of quantifying μ and g in natural planktonic communities, we suggest that the g:μ ratio is a key response variable to evaluate thermal sensitivity of food webs because it gives a more integrative view of trophic functioning than both rates separately.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain.
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain.
| | - Emilio Marañón
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain
| |
Collapse
|
12
|
Dutkiewicz S, Boyd PW, Riebesell U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. GLOBAL CHANGE BIOLOGY 2021; 27:1196-1213. [PMID: 33342048 PMCID: PMC7986797 DOI: 10.1111/gcb.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/01/2023]
Abstract
Climate-change-induced alterations of oceanic conditions will lead to the ecological niches of some marine phytoplankton species disappearing, at least regionally. How will such losses affect the ecosystem and the coupled biogeochemical cycles? Here, we couch this question in terms of ecological redundancy (will other species be able to fill the ecological roles of the extinct species) and biogeochemical redundancy (can other species replace their biogeochemical roles). Prior laboratory and field studies point to a spectrum in the degree of redundancy. We use a global three-dimensional computer model with diverse planktonic communities to explore these questions further. The model includes 35 phytoplankton types that differ in size, biogeochemical function and trophic strategy. We run two series of experiments in which single phytoplankton types are either partially or fully eliminated. The niches of the targeted types were not completely reoccupied, often with a reduction in the transfer of matter from autotrophs to heterotrophs. Primary production was often decreased, but sometimes increased due to reduction in grazing pressure. Complex trophic interactions (such as a decrease in the stocks of a predator's grazer) led to unexpected reshuffling of the community structure. Alterations in resource utilization may cause impacts beyond the regions where the type went extinct. Our results suggest a lack of redundancy, especially in the 'knock on' effects on higher trophic levels. Redundancy appeared lowest for types on the edges of trait space (e.g. smallest) or with unique competitive strategies. Though highly idealized, our modelling findings suggest that the results from laboratory or field studies often do not adequately capture the ramifications of functional redundancy. The modelled, often counterintuitive, responses-via complex food web interactions and bottom-up versus top-down controls-indicate that changes in planktonic community will be key determinants of future ocean global change ecology and biogeochemistry.
Collapse
Affiliation(s)
- Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Global Change ScienceMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Philip W. Boyd
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| |
Collapse
|