1
|
Mills MB, Both S, Jotan P, Huaraca Huasco W, Cruz R, Pillco MM, Burslem DFRP, Maycock C, Malhi Y, Ewers RM, Berrio JC, Kaduk J, Page S, Robert R, Teh YA, Riutta T. From tree to plot: investigating stem CO 2 efflux and its drivers along a logging gradient in Sabah, Malaysian Borneo. THE NEW PHYTOLOGIST 2024; 244:91-103. [PMID: 39148398 DOI: 10.1111/nph.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Stem respiration constitutes a substantial proportion of autotrophic respiration in forested ecosystems, but its drivers across different spatial scales and land-use gradients remain poorly understood. This study quantifies and examines the impact of logging disturbance on stem CO2 efflux (EA) in Malaysian Borneo. EA was quantified at tree- and stand-level in nine 1-ha plots over a logging gradient from heavily logged to old-growth using the static chamber method. Tree-level results showed higher EA per unit stem area in logged vs old-growth plots (37.0 ± 1.1 vs 26.92 ± 1.14 g C m-2 month-1). However, at stand-level, there was no difference in EA between logged and old-growth plots (6.7 ± 1.1 vs 6.0 ± 0.7 Mg C ha-1 yr-1) due to greater stem surface area in old-growth plots. Allocation to growth respiration and carbon use efficiency was significantly higher in logged plots. Variation in EA at both tree- and stand-level was driven by tree size, growth and differences in investment strategies between the forest types. These results reflect different resource allocation strategies and priorities, with a priority for growth in response to increased light availability in logged plots, while old-growth plots prioritise maintenance and cell structure.
Collapse
Affiliation(s)
- Maria B Mills
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Sabine Both
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Palasiah Jotan
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 00, Czech Republic
| | - Walter Huaraca Huasco
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Rudi Cruz
- Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Peru, Lima, 15088, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, 08003, Peru
| | - Milenka M Pillco
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, 08003, Peru
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Colin Maycock
- University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia
| | - Yadvinder Malhi
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Robert M Ewers
- Department of Life Science, Imperial College London, London, SL5 7PY, UK
| | - Juan Carlos Berrio
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Jörg Kaduk
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Susan Page
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Rolando Robert
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, 90715, Malaysia
| | - Yit A Teh
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 4LB, UK
| | - Terhi Riutta
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
- Department of Life Science, Imperial College London, London, SL5 7PY, UK
- UK Centre for Ecology and Hydrology (UK CEH), Lancaster, OX10 8BB, UK
| |
Collapse
|
2
|
Sperling O, Perry A, Ben-Gal A, Yermiyahu U, Hochberg U. Potassium deficiency reduces grapevine transpiration through decreased leaf area and stomatal conductance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108534. [PMID: 38507838 DOI: 10.1016/j.plaphy.2024.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Plants require potassium (K) to support growth and regulate hydraulics. Yet, K's effects on transpiration are still speculated. We hypothesized that K deficiency would limit grapevine water uptake by limiting canopy size and stomatal conductance (gs). Hence, we constructed large (2 m3) lysimeters and recorded vine transpiration for three years (2020-2022) under three fertilization application rates (8, 20, or 58 mg K L-1 in irrigation). Maximal K availability supported transpiration up to 75 L day-1, whereas K-deficient vines transpired only 60 L day-1 in midsummer. Limited vine growth and canopy size mainly accounted for reduced transpiration under low K conditions. Hence, considering K demand in addition to supply, we compared K deficiency effects on vines bearing 20 or 50 fruit clusters and found that reduced gs further limited transpiration when yields were high. Although fruits were strong K sinks, high yields did not alter K uptake because lower vegetative growth countered the additional K demands. Potassium deficiency leads to lower transpiration and productivity. Yet, internal mineral allocation compensates for fruit K uptake and masks biochemical indices or physiological proxies for K deficiency. Thus, decision support tools should integrate mineral availability, seasonal growth, and yield projections to determine grapevine water demands.
Collapse
Affiliation(s)
- Or Sperling
- Plant Sciences, ARO-Volcani (Agriculture Research Organization), Israel.
| | - Aviad Perry
- Kreitman School for Graduate Studies, Ben-Gurion University of the Negev, Israel
| | - Alon Ben-Gal
- Soil Water and Environmental Sciences, ARO-Volcani, Israel
| | - Uri Yermiyahu
- Soil Water and Environmental Sciences, ARO-Volcani, Israel
| | - Uri Hochberg
- Soil Water and Environmental Sciences, ARO-Volcani, Israel
| |
Collapse
|
3
|
Meng X, Bai S, Wang S, Pan Y, Chen K, Xie K, Wang M, Guo S. The sensitivity of photosynthesis to magnesium deficiency differs between rice ( Oryza sativa L.) and cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1164866. [PMID: 37123833 PMCID: PMC10141327 DOI: 10.3389/fpls.2023.1164866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Magnesium is an essential macronutrient for plant photosynthesis, and in response to Mg deficiency, dicots appear more sensitive than monocots. Under Mg deficiency, we investigated the causes of differing photosynthetic sensitivities in a dicot and a monocot species. Rice (Oryza sativa L.) and cucumber (Cucumis sativus L.) were grown in hydroponic culture to explore their physiological responses to Mg deficiency stress. Both Mg-deficient rice and cucumber plants exhibited lower biomass, leaf area, Mg concentration, and chlorophyll content (Chl) compared with Mg-sufficient plants. However, a more marked decline in Chl and carotenoid content (Car) occurred in cucumber. A lower CO2 concentration in chloroplasts (C c) was accompanied by a decrease in the maximum rate of electron transport (J max) and the maximum rate of ribulose 1,5-bisphosphate carboxylation (V cmax), restricting CO2 utilization in Mg-deficient plants. Rice and cucumber photorespiration rate (P r) increased under Mg deficiency. Additionally, for cucumber, Car and non-photochemical quenching (NPQ) were reduced under lower Mg supply. Meanwhile, cucumber Mg deficiency significantly increased the fraction of absorbed light energy dissipated by an additional quenching mechanism (Φf,D). Under Mg deficiency, suppressed photosynthesis was attributed to comprehensive restrictions of mesophyll conductance (g m), J max, and V cmax. Cucumber was more sensitive to Mg deficiency than rice due to lower NPQ, higher rates of electron transport to alternative pathways, and subsequently, photooxidation damage.
Collapse
Affiliation(s)
- Xusheng Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Song Bai
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shiyu Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yonghui Pan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Kehao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Kailiu Xie
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Bortolami G, Ferrer N, Baumgartner K, Delzon S, Gramaje D, Lamarque LJ, Romanazzi G, Gambetta GA, Delmas CEL. Esca grapevine disease involves leaf hydraulic failure and represents a unique premature senescence process. TREE PHYSIOLOGY 2023; 43:441-451. [PMID: 36416206 DOI: 10.1093/treephys/tpac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/05/2022] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
Xylem anatomy may change in response to environmental or biotic stresses. Vascular occlusion, an anatomical modification of mature xylem, contributes to plant resistance and susceptibility to different stresses. In woody organs, xylem occlusions have been examined as part of the senescence process, but their presence and function in leaves remain obscure. In grapevine, many stresses are associated with premature leaf senescence inducing discolorations and scorched tissue in leaves. However, we still do not know whether the leaf senescence process follows the same sequence of physiological events and whether leaf xylem anatomy is affected in similar ways. In this study, we quantified vascular occlusions in midribs from leaves with symptoms of the grapevine disease esca, magnesium deficiency and autumn senescence. We found higher amounts of vascular occlusions in leaves with esca symptoms (in 27% of xylem vessels on average), whereas the leaves with other symptoms (as well as the asymptomatic controls) had far fewer occlusions (in 3% of vessels). Therefore, we assessed the relationship between xylem occlusions and esca leaf symptoms in four different countries (California in the USA, France, Italy and Spain) and eight different cultivars. We monitored the plants over the course of the growing season, confirming that vascular occlusions do not evolve with symptom age. Finally, we investigated the hydraulic integrity of leaf xylem vessels by optical visualization of embolism propagation during dehydration. We found that the occlusions lead to hydraulic dysfunction mainly in the peripheral veins compared with the midribs in esca symptomatic leaves. These results open new perspectives on the role of vascular occlusions during the leaf senescence process, highlighting the uniqueness of esca leaf symptoms and its consequence on leaf physiology.
Collapse
Affiliation(s)
- Giovanni Bortolami
- INRAE, BSA, ISVV, SAVE, 33882 Villenave d'Ornon, France
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| | | | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA
| | | | - David Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, Logroño 26007, Spain
| | - Laurent J Lamarque
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 33882 Villenave d'Ornon, France
| | | |
Collapse
|
5
|
Ahammed GJ, Chen Y, Liu C, Yang Y. Light regulation of potassium in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:316-324. [PMID: 34954566 DOI: 10.1016/j.plaphy.2021.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Essential macronutrient potassium (K) and environmental signal light regulate a number of vital plant biological processes related to growth, development, and stress response. Recent research has shown connections between the perception of light and the regulation of K in plants. Photoreceptors-mediated wavelength-specific light perception activates signaling cascades which mediate stomatal movement by altering K+influx/efflux via K+ channels in the guard cells. The quality, intensity, and duration of light affect the regulation of K nutrition and crop quality. Blue/red illumination or red combined blue light treatment increases the expression levels of K transporter genes, K uptake and accumulation, leading to increased lycopene synthesis and improved fruit color in tomato. Despite the commonalities of light and K in multiple functions, our understanding of light regulation of K and associated physiological and molecular processes is fragmentary. In this review, we take a look at the light-controlled K uptake and utilization in plants and propose working models to show potential mechanisms. We discuss major light signaling components, their possible involvement in K nutrition, stomatal movement and crop quality by linking the perception of light signal and subsequent regulation of K. We also pose some outstanding questions to guide future research. Our analysis suggests that the enhancement of K utilization efficiency by manipulation of light quality and light signaling components can be a promising strategy for K management in crop production.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yue Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chaochao Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212021, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
6
|
Gutiérrez-Gamboa G, Mengyuan W, Moreno-Simunovic Y, Sun X, Fang Y. Potential opportunities of thinned clusters in viticulture: a mini review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4435-4443. [PMID: 33611788 DOI: 10.1002/jsfa.11170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Crop thinning is a common practice performed in the vineyard consisting of whole clusters or individual fruits being removed after flowering is attained. Current studies have reported that unripe grape products as verjuice and sour grape sauce contain high content of bioactive compounds such as polyphenols, sugars, organic acids, nitrogenous compounds and sterols. This mini-review overviewed the bioactive components obtained from thinned unripe grapes such as phenolic compounds, sugars, organic acids, minerals, nitrogen compounds and sterols, and their use as antibrowning and whitening agents, natural catalysts, food preservative and food additive. In addition, their beneficial effects for human health also were reviewed, as well as the practices to maximize the extraction of antioxidant compounds. Therefore, revalorizing the waste from this management practice in viticulture can increase the vineyard sustainability and farmers' economic profits. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gastón Gutiérrez-Gamboa
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Wei Mengyuan
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | | | - XiangYu Sun
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| | - Yulin Fang
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Diez-Zamudio F, Laytte R, Grallert C, Gutiérrez-Gamboa G. Nutritional status differentially affect yield and must composition of hybrids and V. vinifera varieties established under cold climate conditions. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2021. [DOI: 10.1051/ctv/20213601089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nova Scotia is characterized by cold climate and acidic soils and high organic matter for viticultural development. There is little scientific information available about the nutritional management of grapevine varieties cultivated under cold climate conditions even in Nova Scotia. This study carried out in three seasons aimed to find correlations between tissue nutrients with yield and must composition in order to provide better nutritional management for a given variety. The yield of “L’Acadie” variety was correlated with B, K and Mg. In this variety, Ca to Mg ratio could be an interesting indicator of yield. The yield of “New York Muscat” variety was correlated with Zn, while N, P and K was related to bunch weight and weight of berries. Interspecific hybrids presented lower accumulation of B in their tissues than V. vinifera varieties. Zn and Fe were found as determinant micronutrients in “Chardonnay” variety. “Riesling” variety accumulated high levels of K in their tissues even over the optimal values recommended for grapevines. K to Ca ratio could be an important indicator of yield in “Pinot Noir” variety. A strong correlation between the petiole and blade analysis was found in macro and micro-nutrients. These results may contribute to improve the nutritional management of grapevines grown under cold climate conditions, mostly in Nova Scotia.
Collapse
|