1
|
Heydari S, Masoumi N, Esmaeeli E, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F, Ahmadi M. Artificial intelligence in nanotechnology for treatment of diseases. J Drug Target 2024:1-20. [PMID: 39155708 DOI: 10.1080/1061186x.2024.2393417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Nano-based drug delivery systems (DDSs) have demonstrated the ability to address challenges posed by therapeutic agents, enhancing drug efficiency and reducing side effects. Various nanoparticles (NPs) are utilised as DDSs with unique characteristics, leading to diverse applications across different diseases. However, the complexity, cost and time-consuming nature of laboratory processes, the large volume of data, and the challenges in data analysis have prompted the integration of artificial intelligence (AI) tools. AI has been employed in designing, characterising and manufacturing drug delivery nanosystems, as well as in predicting treatment efficiency. AI's potential to personalise drug delivery based on individual patient factors, optimise formulation design and predict drug properties has been highlighted. By leveraging AI and large datasets, developing safe and effective DDSs can be accelerated, ultimately improving patient outcomes and advancing pharmaceutical sciences. This review article investigates the role of AI in the development of nano-DDSs, with a focus on their therapeutic applications. The use of AI in DDSs has the potential to revolutionise treatment optimisation and improve patient care.
Collapse
Affiliation(s)
- Soroush Heydari
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Masoumi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Esmaeeli
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
He S, Nader K, Abarrategi JS, Bediaga H, Nocedo-Mena D, Ascencio E, Casanola-Martin GM, Castellanos-Rubio I, Insausti M, Rasulev B, Arrasate S, González-Díaz H. NANO.PTML model for read-across prediction of nanosystems in neurosciences. computational model and experimental case of study. J Nanobiotechnology 2024; 22:435. [PMID: 39044265 PMCID: PMC11267683 DOI: 10.1186/s12951-024-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Neurodegenerative diseases involve progressive neuronal death. Traditional treatments often struggle due to solubility, bioavailability, and crossing the Blood-Brain Barrier (BBB). Nanoparticles (NPs) in biomedical field are garnering growing attention as neurodegenerative disease drugs (NDDs) carrier to the central nervous system. Here, we introduced computational and experimental analysis. In the computational study, a specific IFPTML technique was used, which combined Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) to select the most promising Nanoparticle Neuronal Disease Drug Delivery (N2D3) systems. For the application of IFPTML model in the nanoscience, NANO.PTML is used. IF-process was carried out between 4403 NDDs assays and 260 cytotoxicity NP assays conducting a dataset of 500,000 cases. The optimal IFPTML was the Decision Tree (DT) algorithm which shown satisfactory performance with specificity values of 96.4% and 96.2%, and sensitivity values of 79.3% and 75.7% in the training (375k/75%) and validation (125k/25%) set. Moreover, the DT model obtained Area Under Receiver Operating Characteristic (AUROC) scores of 0.97 and 0.96 in the training and validation series, highlighting its effectiveness in classification tasks. In the experimental part, two samples of NPs (Fe3O4_A and Fe3O4_B) were synthesized by thermal decomposition of an iron(III) oleate (FeOl) precursor and structurally characterized by different methods. Additionally, in order to make the as-synthesized hydrophobic NPs (Fe3O4_A and Fe3O4_B) soluble in water the amphiphilic CTAB (Cetyl Trimethyl Ammonium Bromide) molecule was employed. Therefore, to conduct a study with a wider range of NP system variants, an experimental illustrative simulation experiment was performed using the IFPTML-DT model. For this, a set of 500,000 prediction dataset was created. The outcome of this experiment highlighted certain NANO.PTML systems as promising candidates for further investigation. The NANO.PTML approach holds potential to accelerate experimental investigations and offer initial insights into various NP and NDDs compounds, serving as an efficient alternative to time-consuming trial-and-error procedures.
Collapse
Affiliation(s)
- Shan He
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Karam Nader
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Julen Segura Abarrategi
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Harbil Bediaga
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Deyani Nocedo-Mena
- Faculty of Physical Mathematical Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza, 66455, Nuevo León, México
| | - Estefania Ascencio
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Idoia Castellanos-Rubio
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Maite Insausti
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Leioa, 48940, Spain
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Biscay, Spain
| |
Collapse
|
3
|
Ren H, Xu N. Forecasting and mapping dengue fever epidemics in China: a spatiotemporal analysis. Infect Dis Poverty 2024; 13:50. [PMID: 38956632 PMCID: PMC11221048 DOI: 10.1186/s40249-024-01219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Dengue fever (DF) has emerged as a significant public health concern in China. The spatiotemporal patterns and underlying influencing its spread, however, remain elusive. This study aims to identify the factors driving these variations and to assess the city-level risk of DF epidemics in China. METHODS We analyzed the frequency, intensity, and distribution of DF cases in China from 2003 to 2022 and evaluated 11 natural and socioeconomic factors as potential drivers. Using the random forest (RF) model, we assessed the contributions of these factors to local DF epidemics and predicted the corresponding city-level risk. RESULTS Between 2003 and 2022, there was a notable correlation between local and imported DF epidemics in case numbers (r = 0.41, P < 0.01) and affected cities (r = 0.79, P < 0.01). With the increase in the frequency and intensity of imported epidemics, local epidemics have become more severe. Their occurrence has increased from five to eight months per year, with case numbers spanning from 14 to 6641 per month. The spatial distribution of city-level DF epidemics aligns with the geographical divisions defined by the Huhuanyong Line (Hu Line) and Qin Mountain-Huai River Line (Q-H Line) and matched well with the city-level time windows for either mosquito vector activity (83.59%) or DF transmission (95.74%). The RF models achieved a high performance (AUC = 0.92) when considering the time windows. Importantly, they identified imported cases as the primary influencing factor, contributing significantly (24.82%) to local DF epidemics at the city level in the eastern region of the Hu Line (E-H region). Moreover, imported cases were found to have a linear promoting impact on local epidemics, while five climatic and six socioeconomic factors exhibited nonlinear effects (promoting or inhibiting) with varying inflection values. Additionally, this model demonstrated outstanding accuracy (hitting ratio = 95.56%) in predicting the city-level risks of local epidemics in China. CONCLUSIONS China is experiencing an increasing occurrence of sporadic local DF epidemics driven by an unavoidably higher frequency and intensity of imported DF epidemics. This research offers valuable insights for health authorities to strengthen their intervention capabilities against this disease.
Collapse
Affiliation(s)
- Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Nankang Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
He S, Segura Abarrategi J, Bediaga H, Arrasate S, González-Díaz H. On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:535-555. [PMID: 38774585 PMCID: PMC11106676 DOI: 10.3762/bjnano.15.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024]
Abstract
Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood-brain barrier. Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP) systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparticle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work, the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was employed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network (ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73% (>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the IFPTML-MLP and IFPTML-DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.
Collapse
Affiliation(s)
- Shan He
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº6, 48940 Leioa, Greater Bilbao, Basque Country, Spain
| | - Julen Segura Abarrategi
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Harbil Bediaga
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº6, 48940 Leioa, Greater Bilbao, Basque Country, Spain
- Painting Department, Fine Arts Faculty, University of the Basque Country UPV/EHU, 48940, Leioa, Biscay, Basque Country, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Instituto Biofisika (UPV/EHU-CSIC), 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
5
|
Arora S, Chettri S, Percha V, Kumar D, Latwal M. Artifical intelligence: a virtual chemist for natural product drug discovery. J Biomol Struct Dyn 2024; 42:3826-3835. [PMID: 37232451 DOI: 10.1080/07391102.2023.2216295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Nature is full of a bundle of medicinal substances and its product perceived as a prerogative structure to collaborate with protein drug targets. The natural product's (NPs) structure heterogeneity and eccentric characteristics inspired scientists to work on natural product-inspired medicine. To gear NP drug-finding artificial intelligence (AI) to confront and excavate unexplored opportunities. Natural product-inspired drug discoveries based on AI to act as an innovative tool for molecular design and lead discovery. Various models of machine learning produce quickly synthesizable mimetics of the natural products templates. The invention of novel natural products mimetics by computer-assisted technology provides a feasible strategy to get the natural product with defined bio-activities. AI's hit rate makes its high importance by improving trail patterns such as dose selection, trail life span, efficacy parameters, and biomarkers. Along these lines, AI methods can be a successful tool in a targeted way to formulate advanced medicinal applications for natural products. 'Prediction of future of natural product based drug discovery is not magic, actually its artificial intelligence'Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sukanya Chettri
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Versha Percha
- Department of Pharmaceutical Chemistry, Dolphin(PG) Institute of Biomedical and Natural Sciences, Dehradun, Uttarakhand, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, Dolphin(PG) Institute of Biomedical and Natural Sciences, Dehradun, Uttarakhand, India
| | - Mamta Latwal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
Kleandrova VV, Cordeiro MNDS, Speck-Planche A. Optimizing drug discovery using multitasking models for quantitative structure-biological effect relationships: an update of the literature. Expert Opin Drug Discov 2023; 18:1231-1243. [PMID: 37639708 DOI: 10.1080/17460441.2023.2251385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Drug discovery has provided modern societies with the means to fight against many diseases. In this sense, computational methods have been at the forefront, playing an important role in rationalizing the search for novel drugs. Yet, tackling phenomena such as the multi-genic nature of diseases and drug resistance are limitations of the current computational methods. Multi-tasking models for quantitative structure-biological effect relationships (mtk-QSBER) have emerged to overcome such limitations. AREAS COVERED The present review describes an update on the fundamentals and applications of the mtk-QSBER models as tools to accelerate multiple stages/substages of the drug discovery process. EXPERT OPINION Computational approaches are extremely important for the rationalization of the search for novel and efficacious therapeutic agents. However, they need to focus more on the multi-target drug discovery paradigm. In this sense, mtk-QSBER models are particularly suited for multi-target drug discovery, offering encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Russian Biotechnological University, Moscow, Russian Federation
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Alejandro Speck-Planche
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Speck-Planche A, Kleandrova VV. Multi-Condition QSAR Model for the Virtual Design of Chemicals with Dual Pan-Antiviral and Anti-Cytokine Storm Profiles. ACS OMEGA 2022; 7:32119-32130. [PMID: 36120024 PMCID: PMC9476185 DOI: 10.1021/acsomega.2c03363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are infectious agents, which can cause pandemics. Although nowadays the danger associated with respiratory viruses continues to be evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the virus responsible for the current COVID-19 pandemic, other viruses such as SARS-CoV-1, the influenza A and B viruses (IAV and IBV, respectively), and the respiratory syncytial virus (RSV) can lead to globally spread viral diseases. Also, from a biological point of view, most of these viruses can cause an organ-damaging hyperinflammatory response known as the cytokine storm (CS). Computational approaches constitute an essential component of modern drug development campaigns, and therefore, they have the potential to accelerate the discovery of chemicals able to simultaneously inhibit multiple molecular and nonmolecular targets. We report here the first multicondition model based on quantitative structure-activity relationships and an artificial neural network (mtc-QSAR-ANN) for the virtual design and prediction of molecules with dual pan-antiviral and anti-CS profiles. Our mtc-QSAR-ANN model exhibited an accuracy higher than 80%. By interpreting the different descriptors present in the mtc-QSAR-ANN model, we could retrieve several molecular fragments whose assembly led to new molecules with drug-like properties and predicted pan-antiviral and anti-CS activities.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Grupo
de Química Computacional y Teórica (QCT-USFQ), Departamento
de Ingeniería Química, Universidad
San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - Valeria V. Kleandrova
- Laboratory
of Fundamental and Applied Research of Quality and Technology of Food
Production, Moscow State University of Food
Production, Volokolamskoe
shosse 11, 125080, Moscow, Russian Federation
| |
Collapse
|
9
|
Hu RS, Hesham AEL, Zou Q. Machine Learning and Its Applications for Protozoal Pathogens and Protozoal Infectious Diseases. Front Cell Infect Microbiol 2022; 12:882995. [PMID: 35573796 PMCID: PMC9097758 DOI: 10.3389/fcimb.2022.882995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, massive attention has been attracted to the development and application of machine learning (ML) in the field of infectious diseases, not only serving as a catalyst for academic studies but also as a key means of detecting pathogenic microorganisms, implementing public health surveillance, exploring host-pathogen interactions, discovering drug and vaccine candidates, and so forth. These applications also include the management of infectious diseases caused by protozoal pathogens, such as Plasmodium, Trypanosoma, Toxoplasma, Cryptosporidium, and Giardia, a class of fatal or life-threatening causative agents capable of infecting humans and a wide range of animals. With the reduction of computational cost, availability of effective ML algorithms, popularization of ML tools, and accumulation of high-throughput data, it is possible to implement the integration of ML applications into increasing scientific research related to protozoal infection. Here, we will present a brief overview of important concepts in ML serving as background knowledge, with a focus on basic workflows, popular algorithms (e.g., support vector machine, random forest, and neural networks), feature extraction and selection, and model evaluation metrics. We will then review current ML applications and major advances concerning protozoal pathogens and protozoal infectious diseases through combination with correlative biology expertise and provide forward-looking insights for perspectives and opportunities in future advances in ML techniques in this field.
Collapse
Affiliation(s)
- Rui-Si Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- *Correspondence: Quan Zou,
| |
Collapse
|
10
|
Similarity-Based Method with Multiple-Feature Sampling for Predicting Drug Side Effects. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9547317. [PMID: 35401786 PMCID: PMC8993545 DOI: 10.1155/2022/9547317] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
Abstract
Drugs can treat different diseases but also bring side effects. Undetected and unaccepted side effects for approved drugs can greatly harm the human body and bring huge risks for pharmaceutical companies. Traditional experimental methods used to determine the side effects have several drawbacks, such as low efficiency and high cost. One alternative to achieve this purpose is to design computational methods. Previous studies modeled a binary classification problem by pairing drugs and side effects; however, their classifiers can only extract one feature from each type of drug association. The present work proposed a novel multiple-feature sampling scheme that can extract several features from one type of drug association. Thirteen classification algorithms were employed to construct classifiers with features yielded by such scheme. Their performance was greatly improved compared with that of the classifiers that use the features yielded by the original scheme. Best performance was observed for the classifier based on random forest with MCC of 0.8661, AUROC of 0.969, and AUPR of 0.977. Finally, one key parameter in the multiple-feature sampling scheme was analyzed.
Collapse
|
11
|
PTML Modeling for Pancreatic Cancer Research: In Silico Design of Simultaneous Multi-Protein and Multi-Cell Inhibitors. Biomedicines 2022; 10:biomedicines10020491. [PMID: 35203699 PMCID: PMC8962338 DOI: 10.3390/biomedicines10020491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PANC) is a dangerous type of cancer that is a major cause of mortality worldwide and exhibits a remarkably poor prognosis. To date, discovering anti-PANC agents remains a very complex and expensive process. Computational approaches can accelerate the search for anti-PANC agents. We report for the first time two models that combined perturbation theory with machine learning via a multilayer perceptron network (PTML-MLP) to perform the virtual design and prediction of molecules that can simultaneously inhibit multiple PANC cell lines and PANC-related proteins, such as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and the insulin-like growth factor 1 receptor (IGF1R). Both PTML-MLP models exhibited accuracies higher than 78%. Using the interpretation from one of the PTML-MLP models as a guideline, we extracted different molecular fragments desirable for the inhibition of the PANC cell lines and the aforementioned PANC-related proteins and then assembled some of those fragments to form three new molecules. The two PTML-MLP models predicted the designed molecules as potentially versatile anti-PANC agents through inhibition of the three PANC-related proteins and multiple PANC cell lines. Conclusions: This work opens new horizons for the application of the PTML modeling methodology to anticancer research.
Collapse
|
12
|
Roy J, Roy K. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Escherichia coli: categorization and data gap filling for untested metal oxides. Nanotoxicology 2022; 16:152-164. [PMID: 35166631 DOI: 10.1080/17435390.2022.2038299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Metal oxide nanoparticles (MeOxNPs) production is expected to increase every year exponentially, and their potential to cause adverse effect to the environment and human health will also expand rapidly. Hence, risk assessment of nanoparticles (NPs) is necessary to design ecosafe products. However, experimental ecotoxicological assessments are time-consuming requiring a lot of resources. Therefore, researchers rely on alternative in silico approaches to predict the behavior of NPs in the biological system. Quantitative structure - toxicity relationship (QSTR) has been adopted as a potential method to predict the cytotoxicity of untested NPs. Hence, in the present study, multiple linear regression (MLR) models were developed using 17 MeOxNPs on Escherichia coli (E. coli) bacteria cells under both light and dark conditions. The models were developed applying Small Dataset Modeler software, version 1.0.0 (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/) which generates models with a limited number of data points. Periodic table-based descriptors (both 1st and 2nd generation) were used for the modeling purpose. Two statistically significant MLR models based on photo-induced toxicity (Q(LOO)2= 0.612, R2 = 0.726) and dark-based toxicity (Q(LOO)2= 0.627, R2 = 0.770) were developed. From the developed models, we interpreted that increase in valency and oxidation state of the metal will decrease the cytotoxicity whereas the atomic radius of the metal and electronegativity of MeOxNPs influence the toxicity toward E. coli cells. The MLR models were validated using different internal validation metrics. Additionally, we have collected 42 MeOxNPs as an external set to observe the predictive power of the two developed MLR models and categorize them into toxic and non-toxic classes. The chemical features selected in the developed models are important for understanding the mechanisms of nanotoxicity. Thus, the developed models can be a scientific basis for designing safer NPs.
Collapse
Affiliation(s)
- Joyita Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
13
|
Oguike OE, Ugwuishiwu CH, Asogwa CN, Nnadi CO, Obonga WO, Attama AA. Systematic review on the application of machine learning to quantitative structure-activity relationship modeling against Plasmodium falciparum. Mol Divers 2022; 26:3447-3462. [PMID: 35064444 PMCID: PMC8782692 DOI: 10.1007/s11030-022-10380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Malaria accounts for over two million deaths globally. To flatten this curve, there is a need to develop new and high potent drugs against Plasmodium falciparum. Some major challenges include the dearth of suitable animal models for anti-P. falciparum assays, resistance to first-line drugs, lack of vaccines and the complex life cycle of Plasmodium. Gladly, newer approaches to antimalarial drug discovery have emerged due to the release of large datasets by pharmaceutical companies. This review provides insights into these new approaches to drug discovery covering different machine learning tools, which enhance the development of new compounds. It provides a systematic review on the use and prospects of machine learning in predicting, classifying and clustering IC50 values of bioactive compounds against P. falciparum. The authors identified many machine learning tools yet to be applied for this purpose. However, Random Forest and Support Vector Machines have been extensively applied though on a limited dataset of compounds.
Collapse
Affiliation(s)
- Osondu Everestus Oguike
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chikodili Helen Ugwuishiwu
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Caroline Ngozi Asogwa
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Okeke Nnadi
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria. .,Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Wilfred Ofem Obonga
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
14
|
Furxhi I. Health and environmental safety of nanomaterials: O Data, Where Art Thou? NANOIMPACT 2022; 25:100378. [PMID: 35559884 DOI: 10.1016/j.impact.2021.100378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
Nanotechnology keeps drawing attention due to the great tunable properties of nanomaterials in comparison to their bulk conventional materials. The growth of nanotechnology in combination with the digitization era has led to an increased need of safety related data. In addition to safety, new data-driven paradigms on safe and sustainable by design materials are stressing the necessity of data even more. Data is a fundamental asset to the scientific community in studying and analysing the entire life-cycle of nanomaterials. Unfortunately, data exist in a scattered fashion, in different sources and formats. To our knowledge, there is no study focusing on aspects of actual data-structure knowledge that exists in literature and databases. The purpose of this review research is to transparently and comprehensively, display to the nanoscience community the datasets readily available for machine learning purposes making it convenient and more efficient for the next users such as modellers or data curators to retrieve information. We systematically recorded the features and descriptors available in the datasets and provide synopsised information on their ranges, forms and metrics in the supplementary material.
Collapse
Affiliation(s)
- Irini Furxhi
- Transgero Limited, Cullinagh, Newcastle West, Co. Limerick, Ireland; Dept. of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93, Ireland.
| |
Collapse
|
15
|
Yang Y, Chen L. Identification of Drug-Disease Associations by Using Multiple Drug and
Disease Networks. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210825115406] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Drug repositioning is a new research area in drug development. It aims to discover
novel therapeutic uses of existing drugs. It could accelerate the process of designing novel drugs
for some diseases and considerably decrease the cost. The traditional method to determine novel therapeutic
uses of an existing drug is quite laborious. It is alternative to design computational methods to
overcome such defect.
Objective:
This study aims to propose a novel model for the identification of drug–disease associations.
Method:
Twelve drug networks and three disease networks were built, which were fed into a powerful
network-embedding algorithm called Mashup to produce informative drug and disease features. These
features were combined to represent each drug–disease association. Classic classification algorithm,
random forest, was used to build the model.
Results:
Tenfold cross-validation results indicated that the MCC, AUROC, and AUPR were 0.7156,
0.9280, and 0.9191, respectively.
Conclusion:
The proposed model showed good performance. Some tests indicated that a small dimension
of drug features and a large dimension of disease features were beneficial for constructing the
model. Moreover, the model was quite robust even if some drug or disease properties were not available.
Collapse
Affiliation(s)
- Ying Yang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
16
|
Speck-Planche A, Kleandrova VV, Scotti MT. In Silico Drug Repurposing for Anti-Inflammatory Therapy: Virtual Search for Dual Inhibitors of Caspase-1 and TNF-Alpha. Biomolecules 2021; 11:biom11121832. [PMID: 34944476 PMCID: PMC8699067 DOI: 10.3390/biom11121832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation involves a complex biological response of the body tissues to damaging stimuli. When dysregulated, inflammation led by biomolecular mediators such as caspase-1 and tumor necrosis factor-alpha (TNF-alpha) can play a detrimental role in the progression of different medical conditions such as cancer, neurological disorders, autoimmune diseases, and cytokine storms caused by viral infections such as COVID-19. Computational approaches can accelerate the search for dual-target drugs able to simultaneously inhibit the aforementioned proteins, enabling the discovery of wide-spectrum anti-inflammatory agents. This work reports the first multicondition model based on quantitative structure–activity relationships and a multilayer perceptron neural network (mtc-QSAR-MLP) for the virtual screening of agency-regulated chemicals as versatile anti-inflammatory therapeutics. The mtc-QSAR-MLP model displayed accuracy higher than 88%, and was interpreted from a physicochemical and structural point of view. When using the mtc-QSAR-MLP model as a virtual screening tool, we could identify several agency-regulated chemicals as dual inhibitors of caspase-1 and TNF-alpha, and the experimental information later retrieved from the scientific literature converged with our computational results. This study supports the capabilities of our mtc-QSAR-MLP model in anti-inflammatory therapy with direct applications to current health issues such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Correspondence:
| | - Valeria V. Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe shosse 11, 125080 Moscow, Russia;
| | - Marcus T. Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
17
|
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning. Int J Mol Sci 2021; 22:ijms222111519. [PMID: 34768951 PMCID: PMC8584266 DOI: 10.3390/ijms222111519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors.
Collapse
|
18
|
Toma M, Concu R. Computational Biology: A New Frontier in Applied Biology. BIOLOGY 2021; 10:biology10050374. [PMID: 33925472 PMCID: PMC8145007 DOI: 10.3390/biology10050374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
All living things are related to one another [...].
Collapse
Affiliation(s)
- Milan Toma
- Serota Academic Center (Room 138), New York Institute of Technology, Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA
- Correspondence: (M.T.); (R.C.)
| | - Riccardo Concu
- Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Correspondence: (M.T.); (R.C.)
| |
Collapse
|