1
|
Cvjetinovic J, Bedoshvili YD, Davidovich NA, Maksimov EG, Prikhozhdenko ES, Todorenko DA, Bodunova DV, Davidovich OI, Sergeev IS, Gorin DA. Exploring salinity induced adaptations in marine diatoms using advanced photonic techniques. Sci Rep 2024; 14:32007. [PMID: 39738413 DOI: 10.1038/s41598-024-83640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Photonic-based methods are crucial in biology and medicine due to their non-invasive nature, allowing remote measurements without affecting biological specimens. The study of diatoms using advanced photonic methods remains a relatively underexplored area, presenting significant opportunities for pioneering discoveries. This research provides a comprehensive analysis of marine diatoms, specifically Nitzschia sp., across varying salinity levels, integrating fluorescence lifetime imaging microscopy (FLIM), combined photoacoustic and fluorescence tomographies (PAFT), and ultrastructural examinations using transmission electron microscopy. Key findings include a systematic shift in the mean fluorescence lifetime from 570 ps at 20‰ to 940 ps at 80‰, indicating functional adaptations in chlorophyll molecules within light-harvesting complexes. At 60‰ salinity, anomalies are observed in the development of silica valves and polysaccharide layers, suggesting abnormalities in valve morphogenesis. Lipid droplets within the cells display a minimum diameter at 40‰, indicating metabolic adjustments to osmotic stress. The intensity of both fluorescence and photoacoustic signals increases with increasing salinity levels. These insights enhance understanding of the ecological implications of salinity stress on diatom communities and pave the way for future research on leveraging the unique adaptive mechanisms of microalgae for environmental monitoring and sustainable biotechnological applications.
Collapse
Affiliation(s)
- Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia.
| | - Yekaterina D Bedoshvili
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya str, Irkutsk, 664033, Russia
| | - Nickolai A Davidovich
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
- T. I. Vyazemsky Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 298188, Feodosiya, Russia
| | - Eugene G Maksimov
- Department of Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | | | - Daria A Todorenko
- Department of Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Daria V Bodunova
- Department of Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Olga I Davidovich
- T. I. Vyazemsky Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 298188, Feodosiya, Russia
| | - Igor S Sergeev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia
| |
Collapse
|
2
|
Chelliah DS, Ray AE, Zhang E, Terauds A, Ferrari BC. The Vestfold Hills are alive: characterising microbial and environmental dynamics in Old Wallow, eastern Antarctica. Front Microbiol 2024; 15:1443491. [PMID: 39376700 PMCID: PMC11457671 DOI: 10.3389/fmicb.2024.1443491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Old Wallow is an underexplored, hyper-arid coastal desert in Antarctica's Vestfold Hills. Situated near an elephant seal wallow, we examined how stochastic nutrient inputs from the seal wallow affect soil communities amid environmental changes along a spatially explicit sampling transect. We hypothesized that nutrient levels would be elevated due to proximity to the seal wallow, influencing community distributions. While the soil bacterial and eukaryotic communities at the phylum level were similar to other terrestrial environments, analysis at class and family levels revealed a dominance of unclassified taxa that are often linked to marine environments. Elevated nutrient concentrations (NO3 -, SO4 2-, SO3) were found at Old Wallow, with conductivity and Cl- levels up to 10-fold higher at the lowest elevation soils, correlating with significantly (p < 0.05) higher abundances of halophilic (Halomonadaceace) and uncultivated lineages (Ca Actinomarinales, unclassified Bacillariophyta and unclassified Opisthonkonta). An improved Gradient Forest model was used to quantify microbial responses to 26 soil gradients at OW, revealing variable responses to environmental predictors and identifying critical environmental thresholds or drivers of community turnover. Major tipping points were projected for eukaryotes with SO4 2-, pH, and SO3, and for bacteria with moisture, Na2O, and Cl-. Thus, the Old Wallow ecosystem is primarily shaped by salt, sulphate, and moisture and is dominated by uncultivated taxa, which may be sensitive to environmental changes once critical tipping points are reached. This study provides critical baseline data for future regional monitoring under threats of environmental change.
Collapse
Affiliation(s)
- Devan S. Chelliah
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
| | - Angelique E. Ray
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
- Sydney Informatics Hub, Core Research Facility, University of Sydney, Sydney, NSW, Australia
| | - Aleks Terauds
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, Australia
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
- Evolution and Ecology Research Centre, The University of NSW, Kensington, NSW, Australia
| |
Collapse
|
3
|
Cvjetinovic J, Luchkin SY, Statnik ES, Davidovich NA, Somov PA, Salimon AI, Korsunsky AM, Gorin DA. Revealing the static and dynamic nanomechanical properties of diatom frustules—Nature's glass lace. Sci Rep 2023; 13:5518. [PMID: 37015973 PMCID: PMC10073200 DOI: 10.1038/s41598-023-31487-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
AbstractDiatoms are single cell microalgae enclosed in silica exoskeletons (frustules) that provide inspiration for advanced hybrid nanostructure designs mimicking multi-scale porosity to achieve outstanding mechanical and optical properties. Interrogating the structure and properties of diatoms down to nanometer scale leads to breakthrough advances reported here in the nanomechanical characterization of Coscinodiscus oculus-iridis diatom pure silica frustules, as well as of air-dried and wet cells with organic content. Static and dynamic mode Atomic Force Microscopy (AFM) and in-SEM nanoindentation revealed the peculiarities of diatom response with separate contributions from material nanoscale behavior and membrane deformation of the entire valve. Significant differences in the nanomechanical properties of the different frustule layers were observed. Furthermore, the deformation response depends strongly on silica hydration and on the support from the internal organic content. The cyclic loading revealed that the average compliance of the silica frustule is 0.019 m/N and increases with increasing number of cycles. The structure–mechanical properties relationship has a direct impact on the vibrational properties of the frustule as a complex micrometer-sized mechanical system. Lessons from Nature’s nanostructuring of diatoms open up pathways to new generations of nano- and microdevices for electronic, electromechanical, photonic, liquid, energy storage, and other applications.
Collapse
|
4
|
Rehmanji M, Nesamma AA, Khan NJ, Fatma T, Jutur PP. Media engineering in marine diatom Phaeodactylum tricornutum employing cost-effective substrates for sustainable production of high-value renewables. Biotechnol J 2022; 17:e2100684. [PMID: 35666486 DOI: 10.1002/biot.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
Phaeodactylum tricornutum is a marine diatom, rich in omega-3 polyunsaturated fatty acids especially eicosapentaenoic acid (EPA) and brown pigment, that is, fucoxanthin. These high-value renewables (HVRs) have a high commercial and nutritional relevance. In this study, our focus was to enhance the productivities of such renewables by employing media engineering strategy via., photoautotrophic (P1, P2, P3) and mixotrophic (M1, M2, M3, M4) modes of cultivation with varying substrate combinations of carbon (glycerol: 0.1 m) and nitrogen (urea: 441 mm and/or sodium nitrate: 882 mm). Our results demonstrate that mixotrophic [M4] condition supplemented with glycerol (0.1 m) and urea (441 mm) feed enhanced productivities (mg L-1 day-1 ) as follows: biomass (770.0), total proteins (36.0), total lipids (22.0), total carbohydrates (23.0) with fatty acid methyl esters (9.6), EPA (2.7), and fucoxanthin (1.1), respectively. The overall yield of EPA represents 28% of total fatty acids in the mixotrophic [M4] condition. In conclusion, our improved strategy of feeding urea to a glycerol-supplemented medium defines a new efficient biomass valorization paradigm with cost-effective substrates for the production of HVRs in oleaginous diatoms P. tricornutum.
Collapse
Affiliation(s)
- Mohammed Rehmanji
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Asha Arumugam Nesamma
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
5
|
Dhanker R, Kumar R, Tiwari A, Kumar V. Diatoms as a biotechnological resource for the sustainable biofuel production: a state-of-the-art review. Biotechnol Genet Eng Rev 2022; 38:111-131. [PMID: 35343391 DOI: 10.1080/02648725.2022.2053319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The greenhouse gas emission from fossil fuel and higher economic cost in its transportation are stimulating scientists to explore biomass energy production at the local level. In the present review, the authors have explored the prospects of commercial-scale biofuels production from the microalgal group, diatoms. Insights on suitability of mass cultivation systems for large-scale production of diatoms have been deliberated based on published literature. Diatoms can proliferate extracting nutrients from the wastewater and the same biomass can be harvested for biofuel production. Residues can be further utilized for the formation of other bioproducts and biofertilizers. The residual applications of diatoms from mass culture are estimated to compensate for the additional costs incurred in the removal of impurities. Well-planned research is required to optimize the commercial-scale production of biofuels from diatoms. The aim of this review is therefore, to demonstrate the economically feasible, hygienically safe cultivation of diatoms on nutrients from wastewater, limitations in using diatoms for biofuel production, and how these limitations can be shorted out for optimum utilization of diatom for biofuel production.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Ram Kumar
- Ecosystem Research Laboratory, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Fatehpur, Gaya, Bihar, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Vineet Kumar
- Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)Waste Re-processing, Nehru Marg, Nagpur, Maharashtra, India
| |
Collapse
|
6
|
Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Energy is a major driving force for the economic development. Due to the scarcity of fossil fuels and negative impact on the environment, it is important to develop renewable and sustainable energy sources for humankind. Microalgae as the primary feedstock for biodiesel has shown great application potential. However, lipid yield from microalgae is limited by the upstream cost, which restrain the realization of large-scale biofuel production. The modification of lipid-rich microalgae cell has become the focus over the last few decades to improve the lipid content and productivity of microalgae. Carbon is a vital nutrient that regulates the growth and metabolism of microalgae. Different carbon sources are assimilated by microalgae cells via different pathways. Inorganic carbon sources are mainly used through the CO2-concentrating mechanisms (CCMs), while organic carbon sources are absorbed by microalgae mainly through the Pentose Phosphate (PPP) Pathway and the Embden-Meyerhof-Pranas (EMP) pathway. Therefore, the addition of carbon source has a significant impact on the production of microalgae biomass and lipid accumulation. In this paper, mechanisms of lipid synthesis and carbon uptake of microalgae were introduced, and the effects of different carbon conditions (types, concentrations, and addition methods) on lipid accumulation in microalgal biomass production and biodiesel production were comprehensively discussed. This review also highlights the recent advances in microalgae lipid cultivation with large-scale commercialization and the development prospects of biodiesel production. Current challenges and constructive suggestions are proposed on cost-benefit concerns in large-scale production of microalgae biodiesel.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, China
| | - Yuwei Mi
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chen Zhao
- China Construction Fifth Engineering Division Corp., Ltd, 9 Kaixuan Rd, Liangqing District, Nanning, Guangxi 530000, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
7
|
Chasapis CT, Peana M, Bekiari V. Structural Identification of Metalloproteomes in Marine Diatoms, an Efficient Algae Model in Toxic Metals Bioremediation. Molecules 2022; 27:378. [PMID: 35056698 PMCID: PMC8779346 DOI: 10.3390/molecules27020378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The biosorption of pollutants using microbial organisms has received growing interest in the last decades. Diatoms, the most dominant group of phytoplankton in oceans, are (i) pollution tolerant species, (ii) excellent biological indicators of water quality, and (iii) efficient models in assimilation and detoxification of toxic metal ions. Published research articles connecting proteomics with the capacity of diatoms for toxic metal removal are very limited. In this work, we employed a structural based systematic approach to predict and analyze the metalloproteome of six species of marine diatoms: Thalassiosira pseudonana, Phaeodactylum tricornutum, Fragilariopsis cylindrus, Thalassiosira oceanica, Fistulifera solaris, and Pseudo-nitzschia multistriata. The results indicate that the metalloproteome constitutes a significant proportion (~13%) of the total diatom proteome for all species investigated, and the proteins binding non-essential metals (Cd, Hg, Pb, Cr, As, and Ba) are significantly more than those identified for essential metals (Zn, Cu, Fe, Ca, Mg, Mn, Co, and Ni). These findings are most likely related to the well-known toxic metal tolerance of diatoms. In this study, metalloproteomes that may be involved in metabolic processes and in the mechanisms of bioaccumulation and detoxification of toxic metals of diatoms after exposure to toxic metals were identified and described.
Collapse
Affiliation(s)
- Christos T. Chasapis
- Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
| |
Collapse
|
8
|
Butler TO, Padmaperuma G, Lizzul AM, McDonald J, Vaidyanathan S. Towards a Phaeodactylum tricornutum biorefinery in an outdoor UK environment. BIORESOURCE TECHNOLOGY 2022; 344:126320. [PMID: 34780906 DOI: 10.1016/j.biortech.2021.126320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
A series of commercial powdered media (Cell-Hi F2P, JWP and WP) and a hydroponics medium (FloraMicroBloom) were investigated for the cultivation of P. tricornutum, and compared with f/2 (a commonly employed laboratory cultivation medium; costlier to scale). Cell-Hi JWP showed good performance characteristics including cost-effectiveness. Outdoor cultivation of P. tricornutum in an airlift photobioreactor, using Cell-Hi JWP in the United Kingdom (UK) during September and October (average daily temperature ranging between 8 and 18 °C and natural sunlight) was comparable to cultivation indoors under controlled temperature and lighting. A strong positive correlation between fucoxanthin and chlorophyll a content, and a weak inverse correlation between eicosapentaenoic (EPA) content and temperature were observed. Commensal bacterial counts revealed a sinusoidal growth profile with a change in community dominance from Halomonas sp. to Marinobacter sp. This investigation reveals for the first time that a multi-product approach can be adopted with P. tricornutum in a UK outdoor environment using commercially viable powdered media.
Collapse
Affiliation(s)
- Thomas O Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Gloria Padmaperuma
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK
| | - Alessandro M Lizzul
- Varicon Aqua Solutions Ltd., Ball Mill Top Business Park, Unit 12, Hallow WR2 6PD, UK
| | - Joe McDonald
- Varicon Aqua Solutions Ltd., Ball Mill Top Business Park, Unit 12, Hallow WR2 6PD, UK
| | | |
Collapse
|