1
|
Zhang F, Du T, Huang L, Li M, Li M, Zhang X, Wang J. Overall and subgroup prevalence of self-reported asthma in US adults: a nationally representative cross-sectional study. J Asthma 2025; 62:36-44. [PMID: 39082805 DOI: 10.1080/02770903.2024.2385985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The purpose of this study is to determine the variations in the prevalence of self-reported asthma among the adult population in the United States of America (USA), analyzing demographic characteristics, physical indicators, living habits, and sarcopenia. METHODS 10,566 participants from the 2009 to 2018 National Health and Nutrition Examination Survey (NHANES) of the USA who were 20 years of age or older and not pregnant were included in the study. RESULTS The prevalence of patients with asthma varies by age, gender, and race. The weighted prevalence is 15.5%, estimated to represent 19.36 million people in the USA (95% CI, 14.5% to 16.6%). The prevalence of self-reported asthma decreases with age, with the highest prevalence among young adults aged 20-25 for both males and females. Females were also more susceptible to asthma compared to males. The increase in asthma prevalence attributed to smoking was most pronounced among African American and Caucasian participants (p < 0.05), while its effect on Mexican American and Asian participants was relatively minor. Notably, the prevalence of asthma was significantly higher in African American and Caucasian participants with sarcopenia compared to those without sarcopenia. CONCLUSIONS The prevalence of asthma is associated to varying degrees with factors such as age, gender, smoking, and the presence of sarcopenia. The elevated prevalence of asthma among young people and females warrants attention. Intensifying efforts toward smoking cessation and the scientific management of sarcopenia could be instrumental in reducing the incidence of asthma.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tianming Du
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
| | - Letian Huang
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Oncology, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Maomao Li
- Department of General Practice, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Minglin Li
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinglong Zhang
- Department of Hematology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiahe Wang
- Department of Family Medicine, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Barden J, Kosloski O, Jadidian A, Akaaboune M. Regulation of miR-206 in denervated and dystrophic muscles, and its effect on acetylcholine receptor clustering. J Cell Sci 2024; 137:jcs262303. [PMID: 39575567 DOI: 10.1242/jcs.262303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
The muscle-specific microRNA miR-206 has recently emerged as a potential regulator of genes involved in the formation and regeneration of the neuromuscular junction (NMJ). This study investigated miR-206-3p (miR-206) expression in synaptic and non-synaptic regions of denervated mice and α-dystrobrevin (Dtna)-knockout mice, as well as its impact on the formation and/or maintenance of agrin-induced acetylcholine receptor (AChR) clusters. In denervated, Dtna-deficient and crushed muscles, miR-206 expression significantly increased compared to what was seen for innervated muscles. Although miR-206 expression was slightly elevated in the synaptic regions of innervated muscles, it was dramatically increased in non-synaptic areas of denervated muscles. miR-206 targets transcripts of essential NMJ proteins, such as Dtna, α-syntrophin (Snta1) and rapsyn, but not the AChRα subunit (encoded by Chrna1) or Lrp4 in innervated muscles. However, in denervated muscles, AChRα transcripts, which increased significantly, become a target of miR-206. Co-expression of miR-206 with rapsyn, Dtna and Snta1 in C2C12 myoblasts significantly reduced their protein levels, and overexpression of miR-206 in myotubes disrupted agrin-induced AChR clustering. These results indicate that miR-206 fine-tunes NMJ signaling proteins by regulating transcripts of various proteins with different localizations under normal and pathological conditions.
Collapse
Affiliation(s)
- Joseph Barden
- Department of Molecular, Cellular and Developmental Biology, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Olivia Kosloski
- Department of Molecular, Cellular and Developmental Biology, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Amir Jadidian
- Department of Molecular, Cellular and Developmental Biology, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Mohammed Akaaboune
- Department of Molecular, Cellular and Developmental Biology, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute and Program in Neuroscience, 205 Zina Pitcher Pl, Ann Arbor, MI 48109-5720, USA
| |
Collapse
|
3
|
Wang Z, Deng M, Xu W, Li C, Zheng Z, Li J, Liao L, Zhang Q, Bian Y, Li R, Miao J, Wang K, Yin Y, Li Y, Zhou X, Hou G. DKK3 as a diagnostic marker and potential therapeutic target for sarcopenia in chronic obstructive pulmonary disease. Redox Biol 2024; 78:103434. [PMID: 39571512 PMCID: PMC11617289 DOI: 10.1016/j.redox.2024.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024] Open
Abstract
Sarcopenia, characterized by the progressive loss of muscle mass and function, significantly affects patients with chronic obstructive pulmonary disease (COPD) and worsens their morbidity and mortality. The pathogenesis of muscle atrophy in patients with COPD involves complex mechanisms, including protein imbalance and mitochondrial dysfunction, which have been identified in the muscle tissues of patients with COPD. DKK3 (Dickkopf-3) is a secreted glycoprotein involved in the process of myogenesis. However, the role of DKK3 in the regulation of muscle mass is largely unknown. This study investigated the role of DKK3 in COPD-related sarcopenia. DKK3 was found to be overexpressed in cigarette smoking-induced muscle atrophy and in patients with COPD. Importantly, plasma DKK3 levels in COPD patients with sarcopenia were significantly higher than those without sarcopenia, and plasma DKK3 levels could effectively predict sarcopenia in patients with COPD based on two independent cohorts. Mechanistically, DKK3 is secreted by skeletal muscle cells that acts in autocrine and paracrine manners and interacts with the cell surface-activated receptor cytoskeleton-associated protein 4 (CKAP4) to induce mitochondrial dysfunction and myotube atrophy. The inhibition of DKK3 by genetic ablation prevented cigarette smoking-induced skeletal muscle dysfunction. These results suggest that DKK3 is a potential target for the diagnosis and treatment of sarcopenia in patients with COPD.
Collapse
Affiliation(s)
- Zilin Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mingming Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Weidong Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chang Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ziwen Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiaye Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liwei Liao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yiding Bian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ruixia Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jinrui Miao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yanxia Li
- Respiratory Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Hou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
4
|
Karim A, Waheed A, Ahmad F, Qaisar R. Metformin effects on plasma zonulin levels correlate with enhanced physical performance in osteoarthritis patients with diabetes. Inflammopharmacology 2024; 32:3195-3203. [PMID: 39158775 DOI: 10.1007/s10787-024-01558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Metformin (MTF) shows promise in protecting against physical decline in osteoarthritis (OA), but how it works remains unclear. We studied MTF's effects on gut permeability and its link to physical performance in OA patients. METHODS We studied four groups: control (n = 72), OA non-diabetic (n = 58), OA diabetic on MTF (n = 55), and OA diabetic on other anti-diabetics (n = 57). We measured zonulin levels, as intestinal permeability marker, hand-grip strength (HGS), Oxford knee scoring (OKS) to determine OA severity, and short performance physical battery (SPPB) to determine physical functions. RESULTS Patients suffering from OA showed a reduction in HGS and SPPB scores with raised plasma zonulin than controls, irrespective of disease severity. MTF decreased plasma zonulin levels and improved OKS, gait speed, HGS, and SPPB scores in OA patients. However, OA patients taking other anti-diabetic medications demonstrated higher levels of plasma zonulin, reduced HGS, and SPPB scores. Furthermore, a robust correlation of plasma zonulin and HGS, OKS, gait speed, and SPPB scores in OA patients on MTF was observed. Moreover, we found reduced oxidative stress and inflammation associated with these alterations in OA patients treated with MTF. CONCLUSION MTF improves HGS and physical performance by lowering zonulin levels, preserving gut permeability in OA patients.
Collapse
Affiliation(s)
- Asima Karim
- Basic Medical Sciences, Department of Basic Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Abdul Waheed
- Trauma and Orthopaedics, Department of Orthopaedics, Rehman Medical Institute, Peshawar, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, Department of Basic Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Rizwan Qaisar
- Basic Medical Sciences, Department of Basic Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Qaisar R, Karim A, Iqbal MS, Ahmad F, Hussain MA. Tracking the Plasma C-Terminal Agrin Fragment as a Biomarker of Neuromuscular Decline in 18- to 87-Year-Old Men. Mol Diagn Ther 2024; 28:611-620. [PMID: 38961032 DOI: 10.1007/s40291-024-00724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES Plasma C-terminal agrin-fragment-22 (CAF22), a breakdown product of neuromuscular junction, is a potential biomarker of muscle loss. However, its levels from adolescence to octogenarians are unknown. METHODS We evaluated young (18-34 years, n = 203), middle-aged (35-59 years, n = 163), and old men (60-87 years, n = 143) for CAF22, handgrip strength (HGS), appendicular skeletal-mass index (ASMI), and gait speed. RESULTS We found an age-associated increase in CAF22 from young (100.9 ± 29 pmol) to middle-aged (128.3 ± 38.7 pmol) and older men (171.5 ± 35.5 pmol) (all p<0.05). This was accompanied by a gradual reduction in HGS (37.7 ± 6.1 kg, 30.2 ± 5.2 kg, and 26.6 ± 4.7 kg, for young, middle-aged, and old men, respectively), ASMI (8.02 ± 1.02 kg/m2, 7.65 ± 0.92 kg/m2, 6.87 ± 0.93 kg/m2, for young, middle-aged, and old men, respectively), and gait speed (1.29 ± 0.24 m/s, 1.05 ± 0.16 m/s, and 0.81 ± 0.13 m/s, for young, middle-aged, and old men, respectively). After adjustment for age, we found negative regressions of CAF22 with HGS (- 0.0574, p < 0.001) and gait speed (- 0.0162, p < 0.001) in the cumulative cohort. The receiver operating characteristics analysis revealed significant efficacy of plasma CAF22 in diagnosing muscle weakness (HGS < 27 kg) (middle-aged men; AUC = 0.731, 95% CI = 0.629-0.831, p < 0.001, Older men; AUC = 0.816, 95% CI = 0.761-0.833, p < 0.001), and low gait speed (0.8 m/s) (middle-aged men; AUC = 0.737, 95% CI = 0.602-0.871, p < 0.001, older men; AUC = 0.829, 95% CI = 0.772-0.886, p < 0.001), and a modest efficacy in diagnosing sarcopenia (middle-aged men; AUC = 0.701, 95% CI = 0.536-0.865, p = 0.032, older men; AUC = 0.822, 95% CI = 0.759-0.884, p < 0.001) in middle-aged and older men. CONCLUSION Altogether, CAF22 increases with advancing age and may be a reliable marker of muscle weakness and low gait speed.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, 25124, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - M Azhar Hussain
- Department of Finance and Economics, College of Business Administration, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Social Sciences and Business, Roskilde University, 4000, Roskilde, Denmark
| |
Collapse
|
6
|
Qaisar R, Burki A, Karim A, Ustrana S, Ahmad F. The Association of Intestinal Leak with Sarcopenia and Physical Disability in Patients with Various Stages of Chronic Kidney Disease. Calcif Tissue Int 2024; 115:132-141. [PMID: 38829421 DOI: 10.1007/s00223-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Abstract
Sarcopenia is related to disease severity in chronic kidney disease (CKD) patients; however, its pathophysiology remains poorly known. We investigated the associations of biomarkers of intestinal leak with sarcopenia in various stages of CKD. We recruited 61-76-year-old male controls and patients with various stages of CKD (n = 36-57/group) for measuring plasma lipopolysaccharide-binding protein (LBP) and zonulin (markers of intestinal leak), handgrip strength (HGS), skeletal mass index (SMI), and gait speed (markers of sarcopenia), and short physical performance battery (SPPB; marker of physical capacity). CKD stages 4 and 5 were associated with lower HGS, SMI, gait speed, and cumulative SPPB scores and a higher sarcopenia prevalence than controls and patients with CKD stages 1 and 2 (all p < 0.05). CKD patients (stages 1 and 2) had elevated plasma zonulin and LBP when compared with CKD stages 4 and 5. Plasma zonulin and LBP exhibited significant correlations with renal function, HGS, gait speed, SPPB scores, and oxidative stress markers in CKD stages 4 and 5 (all p < 0.05). However, similar relations were not found in early CKD. Collectively, intestinal leak may be contributing to sarcopenia and physical disability in the advanced stages of CKD.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Ayousha Burki
- Department of Nephrology, Divisional Headquarter Hospital, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shahjahan Ustrana
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Chan SMH, Selemidis S, Vlahos R. The Double-Edged Sword of ROS in Muscle Wasting and COPD: Insights from Aging-Related Sarcopenia. Antioxidants (Basel) 2024; 13:882. [PMID: 39061950 PMCID: PMC11274264 DOI: 10.3390/antiox13070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
An elevation in reactive oxygen species (ROS) is widely accepted to be a key mechanism that drives chronic obstructive pulmonary disease (COPD) and its major co-morbidity, skeletal muscle wasting. However, it will be perhaps a surprise to many that an elevation in ROS in skeletal muscle is also a critical process for normal skeletal muscle function and in the adaptations to physical exercise. The key message here is that ROS are not solely detrimental. This duality of ROS suggests that the mere use of a broad-acting antioxidant is destined to fail in alleviating skeletal muscle wasting in COPD because it will also be influencing critical physiological ROS-dependent processes. Here, we take a close look at this duality of ROS in skeletal muscle physiology and pathophysiology pertaining to COPD and will aim to gain critical insights from other skeletal muscle wasting conditions due to aging such as sarcopenia.
Collapse
Affiliation(s)
- S. M. H. Chan
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3001, Australia; (S.S.); (R.V.)
| | | | | |
Collapse
|
8
|
Qaisar R, Hussain S, Burki A, Karim A, Muhammad T, Ahmad F. Plasma levels of Neurofilament light chain correlate with handgrip strength and sarcopenia in patients with chronic obstructive pulmonary disease. Respir Investig 2024; 62:566-571. [PMID: 38663300 DOI: 10.1016/j.resinv.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Age-associated muscle decline, termed sarcopenia, is a common systemic effect of chronic obstructive pulmonary disease (COPD). Circulating Neurofilament light chain (NfL) levels reflect neuronal degradation and may be relevant to sarcopenia phenotype. However, such an association in COPD patients remains elusive. METHODS We investigated male, 60-76 years old controls (n = 50) and COPD patients (n = 139) for plasma NfL levels in relation to sarcopenia and physical capacity markers. We measured handgrip strength (HGS), body composition, and short physical performance battery (SPPB) to evaluate sarcopenia and physical capacity. RESULTS COPD patients had higher plasma NfL and lower HGS and SPPB performance than controls. Plasma NfL levels demonstrated negative associations with HGS and gait speed in COPD patients (all p < 0.05). Further, NfL levels were negatively associated with total SPPB scores in controls and patients with advanced COPD (p < 0.05). Plasma NfL also demonstrated an acceptable accuracy in diagnosing sarcopenia in controls (AUC = 0.757, p < 0.05) and COPD (AUC = 0.806, p < 0.05) patients. CONCLUSION Collectively, plasma NfL may be helpful in evaluating sarcopenia phenotype and physical capacity in geriatric patients with COPD.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Room # M27-122, 27272, Sharjah, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Room # M31-105, 27272, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Room # M31-105, 27272, Sharjah, United Arab Emirates.
| | - Shah Hussain
- Department of Medical Oncology, Hayatabad Medical Complex, 25124, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ayousha Burki
- Department of Nephrology, Divisional Headquarter Hospital, Gomal Medical College, 30130, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Room # M27-122, 27272, Sharjah, United Arab Emirates; Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Room # M31-018, 27272, Sharjah, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, 30130, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Room # M27-122, 27272, Sharjah, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Room # M31-105, 27272, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Room # M31-105, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Mellen RH, Girotto OS, Marques EB, Laurindo LF, Grippa PC, Mendes CG, Garcia LNH, Bechara MD, Barbalho SM, Sinatora RV, Haber JFDS, Flato UAP, Bueno PCDS, Detregiachi CRP, Quesada K. Insights into Pathogenesis, Nutritional and Drug Approach in Sarcopenia: A Systematic Review. Biomedicines 2023; 11:136. [PMID: 36672642 PMCID: PMC9856128 DOI: 10.3390/biomedicines11010136] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is a multifactorial condition related to the loss of muscle mass and strength due to aging, eating habits, physical inactivity, or even caused by another disease. Affected individuals have a higher risk of falls and may be associated with heart disease, respiratory diseases, cognitive impairment, and consequently an increased risk of hospitalization, in addition to causing an economic impact due to the high cost of care during the stay in hospitals. The standardization of appropriate treatment for patients with sarcopenia that could help reduce pathology-related morbidity is necessary. For these reasons, this study aimed to perform a systematic review of the role of nutrition and drugs that could ameliorate the health and quality of life of sarcopenic patients and PRISMA guidelines were followed. Lifestyle interventions have shown a profound impact on sarcopenia treatment but using supplements and different drugs can also impact skeletal muscle maintenance. Creatine, leucine, branched-chain amino acids, omega 3, and vitamin D can show benefits. Although with controversial results, medications such as Metformin, GLP-1, losartan, statin, growth hormone, and dipeptidyl peptidase 4 inhibitors have also been considered and can alter the sarcopenic's metabolic parameters, protect against cardiovascular diseases and outcomes, while protecting muscles.
Collapse
Affiliation(s)
- Rodrigo Haber Mellen
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Otávio Simões Girotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Eduarda Boni Marques
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lorena Natalino Haber Garcia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Uri Adrian P. Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Patricia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| |
Collapse
|
10
|
James E, Goodall S, Nichols S, Walker K, Carroll S, O'Doherty AF, Ingle L. Serum transthyretin and aminotransferases are associated with lean mass in people with coronary heart disease: Further insights from the CARE-CR study. Front Med (Lausanne) 2023; 10:1094733. [PMID: 36891188 PMCID: PMC9986330 DOI: 10.3389/fmed.2023.1094733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Background Low muscle mass disproportionately affects people with coronary heart disease compared to healthy controls but is under-researched and insufficiently treated. Inflammation, poor nutrition, and neural decline might contribute to low muscle mass. This study aimed to assess circulatory biomarkers related to these mechanisms [albumin, transthyretin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and C-terminal agrin fragment] and their relationship with muscle mass in people with coronary heart disease. Our findings could be beneficial to indicate mechanisms of sarcopenia, detect sarcopenia, and evaluate treatment. Methods Serum blood samples from people with coronary heart disease were analysed for biomarker concentrations using enzyme-linked immunosorbent assays. Skeletal muscle mass was estimated using dual X-ray absorptiometry derived appendicular lean mass and reported as skeletal muscle index (SMI; kg m-2), and as a proportion of total body mass [appendicular skeletal mass (ASM%)]. Low muscle mass was defined as a SMI <7.0 and <6.0 kg m-2, or ASM% <25.72 and <19.43% for men and women, respectively. Associations between biomarkers and lean mass were adjusted for age and inflammation. Results Sixty-four people were assessed; 14 (21.9%) had low muscle mass. People with low muscle mass had lower transthyretin (effect size 0.34, p = 0.007), ALT (effect size 0.34, p = 0.008), and AST (effect size 0.26, p = 0.037) concentrations, compared to those with normal muscle mass. SMI was associated with inflammation-corrected ALT (r = 0.261, p = 0.039) and with inflammation- and age-adjusted AST/ALT ratio (r = -0.257, p = 0.044). Albumin and C-terminal agrin fragment were not associated with muscle mass indices. Conclusion Circulatory transthyretin, ALT and AST were associated with low muscle mass in people with coronary heart disease. Low concentrations of these biomarkers might indicate that low muscle mass is partially explained by poor nutrition and high inflammation in this cohort. Targeted treatments to address these factors could be considered for people with coronary heart disease.
Collapse
Affiliation(s)
- Emily James
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom.,Diabetes Research Centre, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Simon Nichols
- Sport and Physical Activity Research Group, Sheffield Hallam University, Sheffield, United Kingdom.,Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Karen Walker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Sean Carroll
- School of Sport, Exercise and Rehabilitation Sciences, University of Hull, Hull, United Kingdom
| | - Alasdair F O'Doherty
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Lee Ingle
- School of Sport, Exercise and Rehabilitation Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
11
|
Karim A, Muhammad T, Iqbal MS, Qaisar R. Elevated plasma CAF22 are incompletely restored six months after COVID-19 infection in older men. Exp Gerontol 2023; 171:112034. [PMID: 36423404 PMCID: PMC9677556 DOI: 10.1016/j.exger.2022.112034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The long-term complications of COVID-19 appear as significant health problems. However, the long-term muscle decline in these patients is poorly characterized. METHODS We investigated the age-related muscle decline, termed sarcopenia, before and following the COVID-19 infection in older male patients (n = 87). We evaluated handgrip strength (HGS) and functional capacity (short physical performance battery; SPPB) in COVID-19 patients 7-42 days before and one week and 6-month after COVID-19 infection. We used ELISA tests to measure plasma c-terminal agrin fragment-22 (CAF22), c-reactive protein (CRP), and 8-isoprostanes as markers of degraded neuromuscular junctions, inflammation, and oxidative stress, respectively. RESULTS Before the COVID-19 infection, 54 patients were non-sarcopenic, and 25 patients were sarcopenic, while eight patients subsequently developed sarcopenia. All patients exhibited reduced HGS and SPPB, while elevated CAF22, CRP, and 8-isoprostane levels one week post-COVID-19 infection (all p < 0.05). At six months post-COVID-19 infection, the HGS, SPPB, CAF22, CRP, and 8-isoprostanes were partly restored to baseline levels (all p < 0.05). Correlation analysis revealed that the plasma CAF22 had a significant correlation with HGS, SPPB, and COVID-19 disease severity. CAF22 also demonstrated significant areas under the curves in diagnosing sarcopenia at all three time-points. CONCLUSION Altogether, the muscle detriment due to COVID-19 persists six months post-infection, and plasma CAF22 may be helpful to detect muscle and functional decline in these patients. Timely evaluation and intervention of sarcopenia may be critical in COVID-19 treatment.
Collapse
Affiliation(s)
- Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Gomal University, Dera Ismail Khan 30130, Pakistan
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar 25124, Pakistan
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
He N, Zhang Y, Zhang Y, Feng B, Zheng Z, Ye H. Circulating miR-29b decrease in response to sarcopenia in patients with cardiovascular risk factors in older Chinese. Front Cardiovasc Med 2022; 9:1094388. [PMID: 36606278 PMCID: PMC9810340 DOI: 10.3389/fcvm.2022.1094388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Sarcopenia is a clinical syndrome characterized by a progressive and extensive decline in skeletal muscle mass, muscle strength, and function. Sarcopenia and cardiovascular diseases (CVDs) can coexist, which further decreases the quality of life of patients, and increases the mortality rate. MicroRNAs (miRNAs) are unique posttranscriptional regulators of gene expression whose function in aging-related sarcopenia and CVDs has recently begun to unravel. The aim of the present study is to investigate the relationship between sarcopenia and cardiovascular risk factors (CVRF) in the Chinese elderly and describe the circulating miRNAs in sarcopenia patients with the intention of identifying novel diagnostic and therapeutic tools. Methods The well-established CVRF of diabetes, hypertension, and dyslipidemia were assessed. Multiple logistic regression analyses and linear regressions were used to evaluate the components of CVRF and the number of CVRF in elderly patients with sarcopenia. Moreover, we used real-time RT-PCR to measure the abundance of the CVRF-related miRNAs in the plasma of a cohort of 93 control and sarcopenia individuals, including miR-29b, miR-181a, and miR-494. Results We found that CVRF was associated with a high prevalence of sarcopenia in elderly Chinese populations After adjusting for potential confounders. Furthermore, hypertension and dyslipidemia, but not diabetes, were found to be significantly associated with sarcopenia. A linear increase in the prevalence of sarcopenia was found to be associated with the number of CVRF components in the elderly population. We found that plasma miR-29b levels were significantly down-regulated in response to sarcopenia in the elderly with CVRF. In particular, there was a remarkable correlation between miR-29b and appendicular skeletal muscle mass (ASM)/height2. Collectively, knowledge of CVRF, particularly hypertension and dyslipidemia, may help predict the risk of sarcopenia in the elderly. Our data also show that circulating miR-29b can be considered as possible biomarkers for sarcopenia, which may also be used in the CVD assessment of these patients. Discussion We found that the prevalence of sarcopenia was significantly proportional to the number of CVRF components. In particular, hypertension and dyslipidemia were significantly associated with a higher risk of sarcopenia in the adjusted models. Moreover, our study has been proven that c-miRNAs may be considered as possible biomarkers for sarcopenia as a new diagnostic tool to monitor response to treatment. There is also a pressing need for further research on sarcopenia and CVRF to understand their relationship and mechanism. These can provide more evidence to develop potential interventions to improve clinical outcomes.
Collapse
Affiliation(s)
- Nana He
- Medical Data Center, Ningbo City First Hospital, Ningbo, Zhejiang, China,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yuelin Zhang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yue Zhang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Beili Feng
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zaixing Zheng
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Honghua Ye
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo, Zhejiang, China,*Correspondence: Honghua Ye,
| |
Collapse
|
13
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Karakousis ND, Kotsiou OS, Gourgoulianis KI. Bronchial Asthma and Sarcopenia: An Upcoming Potential Interaction. J Pers Med 2022; 12:1556. [PMID: 36294694 PMCID: PMC9605248 DOI: 10.3390/jpm12101556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Sarcopenia seems to be an emerging health issue worldwide, concerning the progressive loss of skeletal muscle mass, accompanied by adverse outcomes. Asthma is a chronic inflammatory respiratory condition that is widespread in the world, affecting approximately 8% of adults. Although data are scarce, we aim to shed light on the potential association between low muscle mass and asthma and point out any probable negative feedback on each other. METHODS We searched within the PubMed, Scopus, MEDLINE, and Google Scholar databases. STUDY SELECTIONS Three studies were included in our analysis. Only original studies written in English were included, while the references of the research articles were thoroughly examined for more relevant studies. Moreover, animal model studies were excluded. RESULTS 2% to 17% of asthmatics had sarcopenia according to the existent literature. Sarcopenic asthmatic patients seem to have reduced lung function, while their mortality risk may be increased. Furthermore, patients with asthma- chronic obstructive pulmonary disease (COPD) overlap syndrome phenotype and sarcopenia might have a higher risk of osteopenia and osteoporosis progression, leading consequently to an increased risk of fractures and disability. CONCLUSIONS Emerging data support that pulmonologists should be aware of the sarcopenia concept and be prepared to evaluate the existence of low muscle mass in their asthmatic patients.
Collapse
Affiliation(s)
| | - Ourania S. Kotsiou
- Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | | |
Collapse
|
15
|
Hu Z, Tian Y, Song X, Zeng F, Yang A. Associations between sarcopenia with asthmatic prevalence, lung function and comorbidity. BMC Geriatr 2022; 22:703. [PMID: 36002808 PMCID: PMC9404581 DOI: 10.1186/s12877-022-03394-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Sarcopenia is listed as a treatment trait in behavioral/risk factors for severe asthma, but studies on asthma and sarcopenia are lacking. This study aimed to determine the associations between sarcopenia with asthmatic prevalence, symptoms, lung function and comorbidities. Methods Fifteen thousand four hundred four individuals from the China Health and Retirement Longitudinal Study(CHARLS) and 10,263 individuals from the Study on global AGEing and adult health(SAGE) in China were included in this study. Four components of this study were used to assess the bidirectional association in the prevalence between sarcopenia with asthma, and estimate the relationships between sarcopenia with asthmatic symptoms, lung function and comorbidities via generalized additive models. The 10-item Center for Epidemiological Studies–Depression Scale ≥ 12 scores was classified as depression. Results In the CHARLS and SAGE, the prevalence of sarcopenia in asthmatics was higher than those without asthma. Asthmatics with sarcopenia had a significantly increased prevalence of severe shortness of breath(sarcopenia yes vs. no, adjusted OR = 3.71, 95%CI: 1.43–9.60) and airway obstruction in the SAGE(sarcopenia yes vs. no, adjusted OR = 6.82, 95%CI: 2.54–18.34) and an obvious reduction of PEF in the CHARLS and SAGE(sarcopenia yes vs. no, adjusted RR = 0.86, 95%CI: 0.82–0.91) compared to asthmatics without sarcopenia. The presence of sarcopenia was positively associated with the prevalence of chronic obstructive pulmonary disease(sarcopenia yes vs no, adjusted OR = 5.76, 95%CI:2.01–16.5) and depression(sarcopenia yes vs no, adjusted OR = 1.87, 95%CI:1.11–3.14) in asthmatics. Conclusions Our findings indicated that sarcopenia partakes in the development of asthma by affecting lung function and comorbidities and maybe considered a treatable trait of asthma management. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-03394-9.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003, People's Republic of China. .,Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital at Zhijiang, NO. 183 Yiling Road, Zhijiang, 443003, People's Republic of China. .,Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China.
| | - Yufeng Tian
- Department of Academic Management, Clinical Research Center, China Three Gorges University, NO. 183 Yiling Road, Yichang, 443003, People's Republic of China
| | - Xinyu Song
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003, People's Republic of China. .,Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China.
| | - Fanjun Zeng
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003, People's Republic of China.,Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China
| | - Ailan Yang
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital at Zhijiang, NO. 183 Yiling Road, Zhijiang, 443003, People's Republic of China
| |
Collapse
|
16
|
Karim A, Iqbal MS, Muhammad T, Ahmad F, Qaisar R. Elevated plasma zonulin and CAF22 are correlated with sarcopenia and functional dependency at various stages of Alzheimer’s diseases. Neurosci Res 2022; 184:47-53. [DOI: 10.1016/j.neures.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022]
|
17
|
Mitigating sarcoplasmic reticulum stress limits disuse-induced muscle loss in hindlimb unloaded mice. NPJ Microgravity 2022; 8:24. [PMID: 35817772 PMCID: PMC9273600 DOI: 10.1038/s41526-022-00211-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/22/2022] [Indexed: 01/31/2023] Open
Abstract
Muscle disuse in the hindlimb unloaded (HU) mice causes significant atrophy and weakness. However, the cellular and molecular mechanisms driving disuse-muscle atrophy remain elusive. We investigated the potential contribution of proteins dysregulation by sarcoplasmic reticulum (SR), a condition called SR stress, to muscle loss during HU. Male, c57BL/6j mice were assigned to ground-based controls or HU groups treated with vehicle or 4-phenylbutyrate (4-PBA), a potent inhibitor of SR stress, once a day for three weeks. We report that the 4-PBA reduced the SR stress and partly reversed the muscle atrophy and weakness in the HU mice. Transcriptome analysis revealed that several genes were switched on (n = 3688) or differentially expressed (n = 1184) due to HU. GO, and KEGG term analysis revealed alterations in pathways associated with the assembly of cilia and microtubules, extracellular matrix proteins regulation, calcium homeostasis, and immune modulation during HU. The muscle restoration with 4-PBA partly reversed these changes along with differential and unique expression of several genes. The analysis of genes among the two comparisons (HU-v vs. control and HU-t vs. HU-v.) shows 841 genes were overlapped between the two comparisons and they may be regulated by 4-PBA. Altogether, our findings suggest that the pharmacological suppression of SR stress may be an effective strategy to prevent disuse-induced muscle weakness and atrophy.
Collapse
|
18
|
Deng M, Bian Y, Zhang Q, Zhou X, Hou G. Growth Differentiation Factor-15 as a Biomarker for Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease. Front Nutr 2022; 9:897097. [PMID: 35845807 PMCID: PMC9282868 DOI: 10.3389/fnut.2022.897097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose Sarcopenia is an important factor contributing to comorbidities in patients with chronic obstructive pulmonary disease (COPD) and is an independent risk factor for increased mortality. The diagnostic process for sarcopenia requires specific equipment and specialized training and is difficult procedurally. A previous study found that GDF15 levels are associated with skeletal muscle mass and function in patients with COPD. However, whether circulating GDF15 levels can be used for the prediction of sarcopenia in patients with COPD is unknown. Methods This study included 235 patients with stable COPD who were divided into a development set (n = 117) and a validation set (n = 118), and we followed the definition of sarcopenia as defined by the guidelines from the Asian Working Group for Sarcopenia. Serum concentrations of GDF15 were measured using an enzyme-linked immunosorbent assay (ELISA), and construction of a nomogram and decision curve analysis were performed using the R package “rms.” Results In this study, serum GDF15 levels were negatively associated with skeletal muscle mass (r = –0.204, p = 0.031), handgrip strength (r = –0.274, p = 0.004), quadriceps strength (r = –0.269, p = 0.029), and the thickness (r = –0.338, p < 0.001) and area (r = –0.335, p < 0.001) of the rectus femoris muscle in patients with COPD. Furthermore, the serum levels of GDF15 in patients with sarcopenia were significantly higher than those in controls. Importantly, serum levels of GDF15 could effectively predict sarcopenia in patients with COPD based on the development set (AUC = 0.827) and validation set (AUC = 0.801). Finally, a nomogram model based on serum GDF15 levels and clinical features showed good predictive ability (AUC > 0.89) in the development and validation sets. Conclusion Serum GDF15 levels could be used to accurately and easily evaluate sarcopenia in patients with COPD.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yiding Bian
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- *Correspondence: Gang Hou,
| |
Collapse
|
19
|
Biogenesis and Function of Extracellular Vesicles in Pathophysiological Processes Skeletal Muscle Atrophy. Biochem Pharmacol 2022; 198:114954. [DOI: 10.1016/j.bcp.2022.114954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
20
|
Deng M, Zhou X, Li Y, Yin Y, Liang C, Zhang Q, Lu J, Wang M, Wang Y, Sun Y, Li R, Yan L, Wang Q, Hou G. Ultrasonic Elastography of the Rectus Femoris, a Potential Tool to Predict Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease. Front Physiol 2022; 12:783421. [PMID: 35069243 PMCID: PMC8766419 DOI: 10.3389/fphys.2021.783421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: Skeletal muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD) and is associated with a poor prognosis. Abnormal muscle quantity of the lower limbs is a manifestation of skeletal muscle dysfunction in patients with COPD. Shear wave ultrasound elastography (SWE) is a novel and possible tool to evaluate qualitative muscle parameters. This study explores the feasibility of SWE to measure the stiffness of the rectus femoris and evaluates its value in predicting sarcopenia in patients with COPD. Methods: Ultrasound examination of the rectus femoris was performed to determine the mean elasticity index (SWEmean), cross-sectional area (RFcsa), and thickness (RFthick) using grayscale ultrasonography (US) and SWE in 53 patients with COPD and 23 age-matched non-COPD healthy controls. The serum levels of circulating biomarkers (GDF15, resistin, and TNF-α) were measured using ELISA. The definition of sarcopenia followed the guidelines from the Asian Working Group for Sarcopenia. Receiver operating characteristic (ROC) curve analysis of the SWEmean, RFthick, and RFcsa was used to evaluate their predictive ability for sarcopenia. Results: The intraobserver and interobserver repeatability of SWE performance was excellent (all correlation coefficients > 0.95; p < 0.05). The SWEmean of the rectus femoris in patients with COPD (8.98 ± 3.12 kPa) was decreased compared with that in healthy controls (17.00 ± 5.14 kPa) and decreased with advanced global initiative for chronic obstructive lung disease (GOLD) stage. Furthermore, SWEmean was found to be independent of sex, height, and body mass, and a lower SWEmean in patients with COPD was positively associated with reduced pulmonary function, worse physical function, poor exercise tolerance, decreased muscle strength, and worse dyspnea index score. The correlation between physical function [five-repetition sit-to-stand test (5STST)], muscle function, and SWEmean was higher than those of RFthick and RFcsa. In addition, SWEmean was negatively correlated with serum GDF15 levels (r = −0.472, p < 0.001), serum resistin levels (r = −0.291, p = 0.035), and serum TNF-α levels (r = −0.433, p = 0.001). Finally, the predictive power of SWEmean [area under the curve (AUC): 0.863] in the diagnosis of sarcopenia was higher than that of RFthick (AUC: 0.802) and RFcsa (AUC: 0.816). Conclusion: Compared with grayscale US, SWE was not affected by the patient’s height, weight, or BMI and better represented skeletal muscle function and physical function. Furthermore, SWE is a promising potential tool to predict sarcopenia in patients with COPD.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Yanxia Li
- Respiratory Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Chaonan Liang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Jingwen Lu
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Mengchan Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yue Sun
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Ruixia Li
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Liming Yan
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital Affiliated to Capital Medical University Beijing, Beijing, China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
21
|
Evaluation of Sarcopenia Using Biomarkers of the Neuromuscular Junction in Parkinson's Disease. J Mol Neurosci 2022; 72:820-829. [PMID: 35044622 DOI: 10.1007/s12031-022-01970-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
Abstract
Patients with Parkinson's disease (PD) present with an advanced form of age-related muscle loss or sarcopenia. However, the search for a biomarker to accurately predict muscle loss in PD remains elusive. We evaluated the biomarkers of neuromuscular junction (NMJ) stability, including c-terminal agrin fragment-22 (CAF22), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) as predictors of muscle wasting and physical capacity in PD. Male, 63-78 years patients of PD, were investigated for physical capacity, handgrip strength (HGS), and circulating biomarkers at the diagnosis and follow-up during rehabilitation 6 months apart. Patients with PD presented with elevated CAF22 and reduced BDNF and GDNF levels, which were partially restored to normal levels with rehabilitation. All three biomarkers showed significant dynamic associations with HGS and indexes of sarcopenia. Logistic regression revealed that the combination of biomarkers levels into a cumulative risk score enhanced the diagnostic accuracy of sarcopenia. In brief, measurements of plasma BDNF, GDNF, and CAF22 may be helpful in timely diagnosis and/or evaluation of sarcopenia.
Collapse
|
22
|
A Multifactorial Approach for Sarcopenia Assessment: A Literature Review. BIOLOGY 2021; 10:biology10121354. [PMID: 34943268 PMCID: PMC8698408 DOI: 10.3390/biology10121354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Sarcopenia is characterized by an accelerated decline in skeletal muscle mass and strength, which results in poor quality of life, disability, and death. In the literature, sarcopenia is defined as the progressive breakdown of muscle tissue. The prevalence ranges from 5% to 13% in people 60–70 years old and from 11% to 50% in people older than 80 years. The comparison of risk factors associated with sarcopenia based on the European Working Group on Sarcopenia (1 and 2) in Older People, the Asian Working Group for Sarcopenia (1 and 2), the International Working Group on Sarcopenia, and the Foundation for the National Institutes of Health revealed no consistent patterns. Accordingly, the identification of a single risk factor for sarcopenia is unpredictable. Due to its “multifactorial” pathogenesis related to the involvement of a multitude of factors. In this review, we summarize 13 relevant risk factors associated with this disease that are important to consider prior to embarking on any related sarcopenia research. We suggest that researchers should concentrate on the biology of sarcopenia to develop a uniform consensus for screening this condition. In this review, we identify 50 biochemical markers across six pathways that have previously been investigated in subjects with sarcopenia. We suggest that these summarized biomarkers can be considered in future diagnosis to determine the biology of this disorder, thereby contributing to further research findings. As a result, a uniform consensus may also need to be established for screening and defining the disease. Sarcopenia is associated with a number of adverse economic and social outcomes, including disability, hospitalization, and death. In relation to this, we propose that we need to develop strategies including exercise interventions in the COVID-19 era to delay the onset and effects of sarcopenia. This suggestion should impact on sarcopenia’s primary and secondary outcomes, including physical, medical, social, and financial interactions. Abstract Sarcopenia refers to a progressive and generalized weakness of skeletal muscle as individuals age. Sarcopenia usually occurs after the age of 60 years and is associated with a persistent decline in muscle strength, function, and quality. A comparison of the risk factors associated with sarcopenia based on the European Working Group on Sarcopenia (1 and 2) in Older People, the Asian Working Group for Sarcopenia (1 and 2), the International Working Group on Sarcopenia, and the Foundation for the National Institutes of Health revealed no consistent patterns. Accordingly, the identification of a single risk factor for sarcopenia is unpredictable due to its “multifactorial” pathogenesis, with the involvement of a multitude of factors. Therefore, the first aim of this review was to outline and propose that the multiple factors associated with sarcopenia need to be considered in combination in the design of new experimentation in this area. A secondary aim was to highlight the biochemical risk factors that are already identified in subjects with sarcopenia to assist scientists in understanding the biology of the pathophysiological mechanisms affecting the old people with sarcopenia. We also briefly discuss primary outcomes (physical) and secondary outcomes (social and financial) of sarcopenia. For future investigative purposes, this comprehensive review may be useful in considering important risk factors in the utilization of a panel of biomarkers emanating from all pathways involved in the pathogenesis of this disease. This may help to establish a uniform consensus for screening and defining this disease. Considering the COVID-19 pandemic, its impact may be exacerbated in older populations, which requires immediate attention. Here, we briefly suggest strategies for advancing the development of smart technologies to deliver exercise in the COVID-19 era in an attempt regress the onset of sarcopenia. These strategies may also have an impact on sarcopenia’s primary and secondary outcomes.
Collapse
|
23
|
Shin MK, Choi JY, Kim SY, Kim EY, Lee SH, Chung KS, Jung JY, Park MS, Kim YS, Kang YA. Association of protein consumption and energy intake on sarcopenia in tuberculosis survivors. Ther Adv Chronic Dis 2021; 12:20406223211056712. [PMID: 34820080 PMCID: PMC8606730 DOI: 10.1177/20406223211056712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) causes undernutrition, and it has a long recovery time after treatment. It is accompanied by adverse health outcomes, such as sarcopenia. OBJECTIVE We aimed to evaluate the prevalence of sarcopenia and its association with protein and total energy intakes among Korean TB survivors. METHODS Data of the population-based Korea National Health and Nutrition Examination Survey (2008-2011) were analyzed, including 9,203 participants aged ⩾ 40 years. We used three definitions for sarcopenia-appendicular skeletal muscle mass (ASM, kg) divided by body mass index (BMI, kg/m2), weight (kg), or height squared (m2). Daily protein and total energy intakes were estimated with a 24-h recall method. Multiple logistic regression was used to evaluate the association between dietary protein/total energy intake and sarcopenia among TB survivors. RESULTS The prevalence of sarcopenia was 11.2%, 10.7%, and 24.3% among TB survivors with sarcopenia defined by ASM divided by BMI, weight, and height squared, respectively. The prevalence of sarcopenia among TB survivors was higher than among those without TB. After adjusting for age, weight, sex, education level, employment status, smoking status, and drinking status, sufficient protein and total energy intakes were associated with a lower risk of sarcopenia in TB survivors. CONCLUSION The prevalence of sarcopenia was higher in TB survivors than in those without TB. We suggest consuming sufficient protein intake along with increasing total energy intake in TB survivors.
Collapse
Affiliation(s)
- Moon-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Yeon Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Soo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Circulating MicroRNAs as Biomarkers of Accelerated Sarcopenia in Chronic Heart Failure. Glob Heart 2021; 16:56. [PMID: 34692380 PMCID: PMC8415175 DOI: 10.5334/gh.943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/30/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Sarcopenia is a critical finding in patients with chronic heart failure (CHF). However, the search for a definitive biomarker to predict muscle and functional decline in CHF remains elusive. Objectives: We aimed to correlate the circulating levels of selected miRs with the indexes of sarcopenia during healthy aging and in patients with CHF. Methods: We analyzed the association of circulating microRNAs (miRs) levels including miR-21, miR-434-3p, miR424-5p, miR-133a, miR-455-3p and miR-181a with sarcopenia indexes in male, 61–73 years old healthy controls and patients with CHF (N = 89–92/group). Results: Patients with CHF had lower hand-grip strength (HGS), appendicular skeletal mass index (ASMI) and physical capacity than healthy controls. Circulating miR-21 levels were higher and miR-181a, miR-133a, miR-434-3p and miR-455-3p levels were lower in patients with CHF than healthy controls. Among the sarcopenia indexes, HGS showed the strongest correlation with miR-133a while ASMI showed the strongest correlations with miR-133a, miR-434-3p and miR-455-3p. Among the miRs, miR-434-3p showed the highest area under the curve in testing for sensitivity and specificity for CHF. These changes were associated with higher expressions of the markers of inflammation, oxidative stress and muscle damage in CHF patients. Conclusion: Taken together, our data show that circulating miRs can be useful markers of muscle health and physical capacity in the sarcopenic elderly with CHF.
Collapse
|
25
|
Karim A, Muhammad T, Ustrana S, Qaisar R. Intestinal permeability marker zonulin as a predictor of sarcopenia in chronic obstructive pulmonary disease. Respir Med 2021; 189:106662. [PMID: 34673346 DOI: 10.1016/j.rmed.2021.106662] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Sarcopenia or age-related muscle loss is a common finding in patients with chronic obstructive pulmonary disease (COPD) and may lead to functional compromise. The contribution of an increased gut permeability to muscle decline in COPD may be of primary relevance. We measured the plasma zonulin levels (a marker of intestinal permeability) as potential predictors of sarcopenia in COPD patients during pulmonary rehabilitation (PR). METHOD We recruited male, 56-73 years healthy controls and patients with COPD (N = 70-76/group) to measure plasma zonulin, handgrip strength (HGS), body composition and biochemical parameters. All measurements were performed before and one year following the PR. RESULTS COPD patients had elevated plasma zonulin levels at baseline (22.8% higher vs healthy controls, p < 0.05), which were partially reduced (12.1% reduction vs baseline, p < 0.05) with PR. PR also resulted in improved HGS (8.5% increase, p < 0.05) as well as plasma c-reactive protein (CRP) (11.1% reduction, p < 0.05) and 8-isoprostanes (22.1% reduction, p < 0.05) as markers of inflammation and oxidative stress, respectively. Simple regression analysis revealed dynamic correlations of the alterations in zonulin levels with HGS, CRP and 8-isoprostanes during PR (all p < 0.05). These changes were associated with a reduction in sarcopenia incidence following PR. CONCLUSION Altogether, increased intestinal permeability may contribute to muscle decline in COPD, which is partially restored by PR. Plasma zonulin may be a useful marker to evaluate sarcopenia phenotype in COPD.
Collapse
Affiliation(s)
- Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; University of Health Sciences, Lahore, Pakistan
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Gomal University, Dera Ismail Khan, 30130, Pakistan
| | - Shahjahan Ustrana
- Department of Biochemistry, Gomal Medical College, Gomal University, Dera Ismail Khan, 30130, Pakistan
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
26
|
Prediction of Sarcopenia Using Multiple Biomarkers of Neuromuscular Junction Degeneration in Chronic Obstructive Pulmonary Disease. J Pers Med 2021; 11:jpm11090919. [PMID: 34575696 PMCID: PMC8465187 DOI: 10.3390/jpm11090919] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) present with an advanced form of age-related muscle loss or sarcopenia. Among multiple pathomechanisms of sarcopenia, neuromuscular junction (NMJ) degradation may be of primary relevance. We evaluated the circulating biomarkers of NMJ degradation, including c-terminal agrin fragment -22 (CAF22), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) as predictors of sarcopenia in COPD during pulmonary rehabilitation (PR). Male, 61-77-year-old healthy controls and patients of COPD (n = 77-84/group) were recruited for measurements of circulating CAF22, BDNF, and GDNF levels. Functional assessment and measurements of plasma biomarkers were performed at diagnosis and following six months of PR. CAF22 levels were elevated while BDNF and GDNF levels were reduced in COPD patients at diagnosis, which were incompletely restored to normal levels following PR. These biomarkers showed varying degrees of associations with indexes of sarcopenia and functional recovery during PR. Logistic regression revealed that the combined use of three biomarkers enhanced the diagnostic accuracy of sarcopenia better than single biomarkers. Altogether, measurements of plasma CAF22, BDNF, and GDNF may be helpful for the accurate diagnosis of sarcopenia and functional capacity in COPD during PR.
Collapse
|
27
|
Qaisar R, Karim A, Muhammad T, Shah I, Khan J. Prediction of sarcopenia using a battery of circulating biomarkers. Sci Rep 2021; 11:8632. [PMID: 33883602 PMCID: PMC8060253 DOI: 10.1038/s41598-021-87974-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of muscle mass and strength with aging, termed sarcopenia is accelerated in several comorbidities including chronic heart failure (CHF) and chronic obstructive pulmonary diseases (COPD). However, the effective circulating biomarkers to accurately diagnose and assess sarcopenia are not known. We recruited male healthy controls and patients with CHF and COPD (n = 81–87/group), aged 55–74 years. Sarcopenia was clinically identified based on hand-grip strength, appendicular skeletal muscle index and physical capacity as recommended by the European working group for sarcopenia. The serum levels of amino-terminal pro-peptide of type-III procollagen, c-terminal agrin fragment-22, osteonectin, irisin, fatty acid-binding protein-3 and macrophage migration inhibitory factor were significantly different between healthy controls and patients with CHF and COPD. Risk scores for individual biomarkers were calculated by logistic regressions and combined into a cumulative risk score. The median cutoff value of 3.86 was used to divide subjects into high- and low-risk groups for sarcopenia with the area under the curve of 0.793 (95% CI = 0.738–0.845, p < 0.001). A significantly higher incidence of clinical sarcopenia was found in high-risk group. Taken together, the battery of biomarkers can be an effective tool in the early diagnosis and assessment of sarcopenia.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,University of Health Sciences, Lahore, Pakistan
| | - Tahir Muhammad
- Departmenr of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - Islam Shah
- Department of Cardiology, Al Qassimi Hospital, Sharjah, United Arab Emirates
| | - Javaidullah Khan
- Department of Cardiology, Post Graduate Medical Institute, Hayatabad Medical Complex, Peshawar, Pakistan
| |
Collapse
|
28
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
29
|
Fujimoto S, Fujita Y, Kadota T, Araya J, Kuwano K. Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their MicroRNAs in Respiratory Diseases. Front Mol Biosci 2021; 7:619697. [PMID: 33614707 PMCID: PMC7890564 DOI: 10.3389/fmolb.2020.619697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory diseases and their comorbidities, such as cardiovascular disease and muscle atrophy, have been increasing in the world. Extracellular vesicles (EVs), which include exosomes and microvesicles, are released from almost all cell types and play crucial roles in intercellular communication, both in the regulation of homeostasis and the pathogenesis of various diseases. Exosomes are of endosomal origin and range in size from 50 to 150 nm in diameter, while microvesicles are generated by the direct outward budding of the plasma membrane in size ranges of 100-2,000 nm in diameter. EVs can contain various proteins, metabolites, and nucleic acids, such as mRNA, non-coding RNA species, and DNA fragments. In addition, these nucleic acids in EVs can be functional in recipient cells through EV cargo. The endothelium is a distributed organ of considerable biological importance, and disrupted endothelial function is involved in the pathogenesis of respiratory diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Endothelial cell-derived EVs (EC-EVs) play crucial roles in both physiological and pathological conditions by traveling to distant sites through systemic circulation. This review summarizes the pathological roles of vascular microRNAs contained in EC-EVs in respiratory diseases, mainly focusing on chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Furthermore, this review discusses the potential clinical usefulness of EC-EVs as therapeutic agents in respiratory diseases.
Collapse
Affiliation(s)
- Shota Fujimoto
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yu Fujita
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Translational Research for Exosomes, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsukasa Kadota
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|