1
|
Ahmad Azahari AFA, Wan Ab Naim WN, Md Sari NA, Lim E, Mohamed Mokhtarudin MJ. Advancement in computational simulation and validation of congenital heart disease: a review. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 39001803 DOI: 10.1080/10255842.2024.2377338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The improvement in congenital heart disease (CHD) treatment and management has increased the life expectancy in infants. However, the long-term efficacy is difficult to assess and thus, computational modelling has been applied for evaluating this. Here, we provide an overview of the applications of computational modelling in CHD based on three categories; CHD involving large blood vessels only, heart chambers only, and CHD that occurs at multiple heart structures. We highlight the advancement of computational simulation of CHD that uses multiscale and multiphysics modelling to ensure a complete representation of the heart and circulation. We provide a brief future direction of computational modelling of CHD such as to include growth and remodelling, detailed conduction system, and occurrence of myocardial infarction. We also proposed validation technique using advanced three-dimensional (3D) printing and particle image velocimetry (PIV) technologies to improve the model accuracy.
Collapse
Affiliation(s)
| | - Wan Naimah Wan Ab Naim
- Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
| | - Nor Ashikin Md Sari
- Division of Cardiology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Jamil Mohamed Mokhtarudin
- Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
- Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan, Pahang, Malaysia
| |
Collapse
|
2
|
Chen Z, Zheng Q, Tong Z, Huang X, Yu A. Numerical modelling of the interaction between dialysis catheter, vascular vessel and blood considering elastic structural deformation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3811. [PMID: 38468441 DOI: 10.1002/cnm.3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/27/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024]
Abstract
The dialysis catheter indwelling in human bodies has a high risk of inducing thrombus and stenosis. Biomechanical research showed that such physiological complications are triggered by the wall shear stress of the vascular vessel. This study aimed to assess the impact of CVC implantation on central venous haemodynamics and the potential alterations in the haemodynamic environment related to thrombus development. The SVC structure was built from the images from computed tomography. The blood flow was calculated using the Carreau model, and the fluid domain was determined by CFD. The vascular wall and the CVC were computed using FEA. The elastic interaction between the vessel wall and the flow field was considered using FSI simulation. With consideration of the effect of coupling, it was shown that the catheter vibrated in the vascular systems due to the periodic variation of blood pressure, with an amplitude of up to 10% of the vessel width. Spiral flow was observed along the catheter after CVC indwelling, and recirculation flow appeared near the catheter tip. High OSI and WSS regions occurred at the catheter tip and the vascular junction. The arterial lumen tip had a larger effect on the WSS and OSI values on the vascular wall. Considering FSI simulation, the movement of the catheter inside the blood flow was simulated in the deformable vessel. After CVC indwelling, spiral flow and recirculation flow were observed near the regions with high WSS and OSI values.
Collapse
Affiliation(s)
- Zihan Chen
- Southeast University-Monash University Joint Research Institute, Suzhou, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| | - Qijun Zheng
- Southeast University-Monash University Joint Research Institute, Suzhou, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| | - Zhenbo Tong
- Southeast University-Monash University Joint Research Institute, Suzhou, China
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Xianchen Huang
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Aibing Yu
- Southeast University-Monash University Joint Research Institute, Suzhou, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Rasooli R, Holmstrom H, Giljarhus KET, Jolma IW, Vinningland JL, de Lange C, Brun H, Hiorth A. In vitro hemodynamic performance of a blood pump for self-powered venous assist in univentricular hearts. Sci Rep 2024; 14:6941. [PMID: 38521832 PMCID: PMC10960831 DOI: 10.1038/s41598-024-57269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Univentricular heart anomalies represent a group of severe congenital heart defects necessitating early surgical intervention in infancy. The Fontan procedure, the final stage of single-ventricle palliation, establishes a serial connection between systemic and pulmonary circulation by channeling venous return to the lungs. The absence of the subpulmonary ventricle in this peculiar circulation progressively eventuates in failure, primarily due to chronic elevation in inferior vena cava (IVC) pressure. This study experimentally validates the effectiveness of an intracorporeally-powered venous ejector pump (VEP) in reducing IVC pressure in Fontan patients. The VEP exploits a fraction of aortic flow to create a jet-venturi effect for the IVC, negating the external power requirement and driveline infections. An invitro Fontan mock-up circulation loop is developed and the impact of VEP design parameters and physiological conditions is assessed using both idealized and patient-specific total cavopulmonary connection (TCPC) phantoms. The VEP performance in reducing IVC pressure exhibited an inverse relationship with the cardiac output and extra-cardiac conduit (ECC) size and a proportional relationship with the transpulmonary pressure gradient (TPG) and mean arterial pressure (MAP). The ideal VEP with fail-safe features provided an IVC pressure drop of 1.82 ± 0.49, 2.45 ± 0.54, and 3.12 ± 0.43 mm Hg for TPG values of 6, 8, and 10 mm Hg, respectively, averaged over all ECC sizes and cardiac outputs. Furthermore, the arterial oxygen saturation was consistently maintained above 85% during full-assist mode. These results emphasize the potential utility of the VEP to mitigate elevated venous pressure in Fontan patients.
Collapse
Affiliation(s)
- Reza Rasooli
- Department of Energy Resources, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
| | - Henrik Holmstrom
- Department of Pediatric Cardiology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Erik Teigen Giljarhus
- Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, 4036, Stavanger, Norway
| | - Ingunn Westvik Jolma
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | | | - Charlotte de Lange
- Department of Pediatric Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Brun
- Department of Pediatric Cardiology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Section for Medical Cybernetics and Image Processing, The Intervention Centre, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Aksel Hiorth
- Department of Energy Resources, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| |
Collapse
|
4
|
Truskey GA. The Potential of Deep Learning to Advance Clinical Applications of Computational Biomechanics. Bioengineering (Basel) 2023; 10:1066. [PMID: 37760168 PMCID: PMC10525821 DOI: 10.3390/bioengineering10091066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
When combined with patient information provided by advanced imaging techniques, computational biomechanics can provide detailed patient-specific information about stresses and strains acting on tissues that can be useful in diagnosing and assessing treatments for diseases and injuries. This approach is most advanced in cardiovascular applications but can be applied to other tissues. The challenges for advancing computational biomechanics for real-time patient diagnostics and treatment include errors and missing information in the patient data, the large computational requirements for the numerical solutions to multiscale biomechanical equations, and the uncertainty over boundary conditions and constitutive relations. This review summarizes current efforts to use deep learning to address these challenges and integrate large data sets and computational methods to enable real-time clinical information. Examples are drawn from cardiovascular fluid mechanics, soft-tissue mechanics, and bone biomechanics. The application of deep-learning convolutional neural networks can reduce the time taken to complete image segmentation, and meshing and solution of finite element models, as well as improving the accuracy of inlet and outlet conditions. Such advances are likely to facilitate the adoption of these models to aid in the assessment of the severity of cardiovascular disease and the development of new surgical treatments.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27701, USA
| |
Collapse
|
5
|
Syed F, Khan S, Toma M. Modeling Dynamics of the Cardiovascular System Using Fluid-Structure Interaction Methods. BIOLOGY 2023; 12:1026. [PMID: 37508455 PMCID: PMC10376821 DOI: 10.3390/biology12071026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Using fluid-structure interaction algorithms to simulate the human circulatory system is an innovative approach that can provide valuable insights into cardiovascular dynamics. Fluid-structure interaction algorithms enable us to couple simulations of blood flow and mechanical responses of the blood vessels while taking into account interactions between fluid dynamics and structural behaviors of vessel walls, heart walls, or valves. In the context of the human circulatory system, these algorithms offer a more comprehensive representation by considering the complex interplay between blood flow and the elasticity of blood vessels. Algorithms that simulate fluid flow dynamics and the resulting forces exerted on vessel walls can capture phenomena such as wall deformation, arterial compliance, and the propagation of pressure waves throughout the cardiovascular system. These models enhance the understanding of vasculature properties in human anatomy. The utilization of fluid-structure interaction methods in combination with medical imaging can generate patient-specific models for individual patients to facilitate the process of devising treatment plans. This review evaluates current applications and implications of fluid-structure interaction algorithms with respect to the vasculature, while considering their potential role as a guidance tool for intervention procedures.
Collapse
Affiliation(s)
- Faiz Syed
- College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| | - Sahar Khan
- College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| | - Milan Toma
- College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| |
Collapse
|
6
|
Rasooli R, Giljarhus KET, Hiorth A, Jolma IW, Vinningland JL, de Lange C, Brun H, Holmstrom H. In Silico Evaluation of a Self-powered Venous Ejector Pump for Fontan Patients. Cardiovasc Eng Technol 2023; 14:428-446. [PMID: 36877450 PMCID: PMC10412470 DOI: 10.1007/s13239-023-00663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE The Fontan circulation carries a dismal prognosis in the long term due to its peculiar physiology and lack of a subpulmonic ventricle. Although it is multifactorial, elevated IVC pressure is accepted to be the primary cause of Fontan's high mortality and morbidity. This study presents a self-powered venous ejector pump (VEP) that can be used to lower the high IVC venous pressure in single-ventricle patients. METHODS A self-powered venous assist device that exploits the high-energy aortic flow to lower IVC pressure is designed. The proposed design is clinically feasible, simple in structure, and is powered intracorporeally. The device's performance in reducing IVC pressure is assessed by conducting comprehensive computational fluid dynamics simulations in idealized total cavopulmonary connections with different offsets. The device was finally applied to complex 3D reconstructed patient-specific TCPC models to validate its performance. RESULTS The assist device provided a significant IVC pressure drop of more than 3.2 mm Hg in both idealized and patient-specific geometries, while maintaining a high systemic oxygen saturation of more than 90%. The simulations revealed no significant caval pressure rise (< 0.1 mm Hg) and sufficient systemic oxygen saturation (> 84%) in the event of device failure, demonstrating its fail-safe feature. CONCLUSIONS A self-powered venous assist with promising in silico performance in improving Fontan hemodynamics is proposed. Due to its passive nature, the device has the potential to provide palliation for the growing population of patients with failing Fontan.
Collapse
Affiliation(s)
- Reza Rasooli
- Department of Energy Resources, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
| | - Knut Erik Teigen Giljarhus
- Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, 4036, Stavanger, Norway
| | - Aksel Hiorth
- Department of Energy Resources, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - Ingunn Westvik Jolma
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | | | - Charlotte de Lange
- Department of Paediatric Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Brun
- Section for Medical Cybernetics and Image Processing, The Intervention Centre, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Paediatric Cardiology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Henrik Holmstrom
- Department of Paediatric Cardiology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Cao L, Guo Y, Li X, Chen L, Wang X, Zhao T. Optimization of Ski Attitude for the In-Flight Aerodynamic Performance of Ski Jumping. BIOLOGY 2022; 11:biology11091362. [PMID: 36138841 PMCID: PMC9495398 DOI: 10.3390/biology11091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Flight distance determines the score of ski jumping and thus should be elongated in the competitions. Research has found that an analysis of aerodynamics is indispensable for ski jumping and the attitudes of athletes and skis are crucial factors to dictate the aerodynamic forces. As a follow-up to our previous computational fluid dynamics work, an optimization of the ski attitudes is conducted to maximize the lift-to-drag ratio under certain lift constraints. The optimal attitudes at these lift levels are of practical importance for athlete training and the angle of attack is proven to be pivotal for the optimal lift-to-drag ratio. The flow structures generated by the ski at the optimal attitudes are also discussed, together with a comparison with previous wind-tunnel measurements. Abstract The control and adjustment of in-flight attitudes are critical to enlarging the flight distance of ski jumping. As one of the most important gears, the skis provide sufficient lift and drag forces for the athletes, and thus their in-flight attitudes should be optimized to improve flight performance. Here, the lift-to-drag ratio of a ski jumping ski is optimized with/without a constraint of lift capacity. The ski attitude is defined by three Eulerian angles and the resulting aerodynamic characteristics are predicted by Kriging models, which are established based on computational fluid dynamics (CFD) data. The surrogated models are dynamically updated in the optimization process to ensure their accuracy. Our results find that the optimization of the lift-to-drag ratio should be constrained by a certain lift capacity to be more practical. The angle of attack of the ski dominates the optimal lift-to-drag ratio at different lift levels while the yaw and roll angles are almost independent of the constraint once the required lift coefficient surpasses 0.6. This thus suggests that the athletes should focus on the angle of attack when modifying the ski attitude in the flight, which may reduce the difficulties in their in-flight decision makings.
Collapse
Affiliation(s)
- Lianzhong Cao
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
- Correspondence: (L.C.); (T.Z.)
| | - Youcai Guo
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
| | - Xiong Li
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Long Chen
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
| | - Tianyu Zhao
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
- Correspondence: (L.C.); (T.Z.)
| |
Collapse
|
8
|
Schafstedde M, Yevtushenko P, Nordmeyer S, Kramer P, Schleiger A, Solowjowa N, Berger F, Photiadis J, Mykychak Y, Cho MY, Ovroutski S, Kuehne T, Brüning J. Virtual treatment planning in three patients with univentricular physiology using computational fluid dynamics—Pitfalls and strategies. Front Cardiovasc Med 2022; 9:898701. [PMID: 35990961 PMCID: PMC9381838 DOI: 10.3389/fcvm.2022.898701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUneven hepatic venous blood flow distribution (HFD) to the pulmonary arteries is hypothesized to be responsible for the development of intrapulmonary arteriovenous malformations (PAVM) in patients with univentricular physiology. Thus, achieving uniform distribution of hepatic blood flow is considered favorable. However, no established method for the prediction of the post-interventional hemodynamics currently exists. Computational fluid dynamics (CFD) offers the possibility to quantify HFD in patient-specific anatomies before and after virtual treatment. In this study, we evaluated the potential benefit of CFD-assisted treatment planning.Materials and methodsThree patients with total cavopulmonary connection (TCPC) and PAVM underwent cardiovascular magnetic resonance imaging (CMR) and computed tomography imaging (CT). Based on this imaging data, the patient-specific anatomy was reconstructed. These patients were considered for surgery or catheter-based intervention aiming at hepatic blood flow re-routing. CFD simulations were then performed for the untreated state as well as for different surgical and interventional treatment options. These treatment options were applied as suggested by treating cardiologists and congenital heart surgeons with longstanding experience in interventional and surgical treatment of patients with univentricular physiology. HFD was quantified for all simulations to identify the most viable treatment decision regarding redistribution of hepatic blood flow.ResultsFor all three patients, the complex TCPC anatomy could be reconstructed. However, due to the presence of metallic stent implants, hybrid models generated from CT as well as CMR data were required. Numerical simulation of pre-interventional HFD agreed well with angiographic assessment and physiologic considerations. One treatment option resulting in improvement of HFD was identified for each patient. In one patient follow-up data after treatment was available. Here, the virtual treatment simulation and the CMR flow measurements differed by 15%.ConclusionThe combination of modern computational methods as well as imaging methods for assessment of patient-specific anatomy and flow might allow to optimize patient-specific therapy planning in patients with pronounced hepatic flow mismatch and PAVM. In this study, we demonstrate that these methods can also be applied in patients with complex univentricular physiology and extensive prior interventions. However, in those cases, hybrid approaches utilizing information of different image modalities may be required.
Collapse
Affiliation(s)
- Marie Schafstedde
- Department of Congenital Heart Disease–Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
- Institute for Cardiovascular Computer-Assisted Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- *Correspondence: Marie Schafstedde,
| | - Pavlo Yevtushenko
- Institute for Cardiovascular Computer-Assisted Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Nordmeyer
- Department of Congenital Heart Disease–Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
- Institute for Cardiovascular Computer-Assisted Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Kramer
- Department of Congenital Heart Disease–Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Anastasia Schleiger
- Department of Congenital Heart Disease–Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Natalia Solowjowa
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease–Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Department of Pediatric Cardiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Photiadis
- Department of Congenital Heart Surgery, German Heart Center Berlin, Berlin, Germany
| | - Yaroslav Mykychak
- Department of Congenital Heart Surgery, German Heart Center Berlin, Berlin, Germany
| | - Mi-Young Cho
- Department of Congenital Heart Surgery, German Heart Center Berlin, Berlin, Germany
| | - Stanislav Ovroutski
- Department of Congenital Heart Disease–Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Titus Kuehne
- Department of Congenital Heart Disease–Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
- Institute for Cardiovascular Computer-Assisted Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Jan Brüning
- Institute for Cardiovascular Computer-Assisted Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Javadi E, Laudenschlager S, Kheyfets V, Di Maria M, Stone M, Jamali S, Powell AJ, Moghari MH. Predicting Hemodynamic Performance of Fontan Operation for Glenn Physiology using Computational Fluid Dynamics: Ten Patient-specific Cases. JOURNAL OF CLINICAL IMAGES AND MEDICAL CASE REPORTS 2022; 3:1916. [PMID: 36339935 PMCID: PMC9631545 DOI: 10.52768/2766-7820/1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single ventricle hearts have only one ventricle that can pump blood effectively and the treatment requires three stages of operations to reconfigure the heart and circulatory system. At the second stage, Glenn procedure is performed to connect superior vena cava (SVC) to the pulmonary arteries (PA). For the third and most complex operation, called Fontan, an extracardiac conduit is used to connect inferior vena cava (IVC) to the PL and thereafter no deoxygenated blood goes to the heart. Predicting Hemodynamic Performance of Fontan Operation using computational fluid dynamics (CFD) is hypothesized to improve outcomes and optimize this treatment planning in children with single-ventricle heart disease. An important reason for this surgical planning is to reduce the development of pulmonary arteriovenous malformations (PAVM) and the need to perform Fontan revisions. The purpose of this study was to develop amodel for Fontan surgical planning and use this model to compare blood circulation in two designed graft types of Fontan operation known as T-shape and Y-graft. The functionality of grafts was compared in terms of power loss (PL) and hepatic flow distribution (HFD), a known factor in PAVM development. To perform this study, ten single-ventricle children with Glenn physiology were included and a CFD model was developed to estimate the blood flow circulation to the left and right pulmonary arteries. The estimated blood flow by CFD was compared with that measured by cardiovascular magnetic resonance. Results showed that there was an excellent agreement between the net blood flow in the right and left pulmonary arteries computed by CFD and CMR (ICC= 0.98, P-value ≥0.21). After validating the accuracy of each CFD model, Fontan operations using T-shape and Y-graft conduits were performed in silico for each patient and the developed CFD model was used to predict the post-surgical PL and HFD. We found that the PL in the Y-graft was significantly lower than in the T-shape (P-value ≤0.001) and HFD was significantly better balanced in Y-graft compared to the T-shape (P-value=0.004).
Collapse
Affiliation(s)
- Elahe Javadi
- Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| | - Sebastian Laudenschlager
- School of Medicine, University of Colorado Aurora, and Department of Radiology, Children’s Hospital Colorado, Aurora, CO, USA
| | - Vitaly Kheyfets
- Paediatric Critical Care Medicine; Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Michael Di Maria
- Department of Pediatrics, University of Colorado, and Department of Cardiology, Children’s Hospital Colorado, Aurora, CO, USA
| | - Matthew Stone
- Department of Surgery, University of Colorado, and Children’s Hospital Colorado, Aurora, CO, USA
| | - Safa Jamali
- Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| | - Andrew J. Powell
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Mehdi H. Moghari
- School of Medicine, University of Colorado Aurora, and Department of Radiology, Children’s Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
10
|
Zhang L, Li X, Wang X, Chen L, Zhao T. Performance and Biomechanics in the Flight Period of Ski Jumping: Influence of Ski Attitude. BIOLOGY 2022; 11:biology11050671. [PMID: 35625399 PMCID: PMC9138498 DOI: 10.3390/biology11050671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary The adjustment of ski attitude during the flight period of ski jumping aims to improve the aerodynamic performance and thus enlarges the flying distance. Previous studies have measured the aerodynamic forces of an isolated ski through wind tunnel experiments; however, less information on the aerodynamic moment and underlying flow structures was provided. The biomechanic relation between the aerodynamics of the ski and the athlete’s ankle was also unknown. Using Computational Fluid Dynamics (CFD) methods, this research investigated the aerodynamic characteristics and related flow structures of a full-scale ski jumping ski in 125 attitudes. A convenient database for the aerodynamic forces and moments of the ski was established and the association between the aerodynamics of the ski and the control of the athlete’s ankle is discussed. Abstract The performance of ski jumping is underpinned by multi-disciplinary principles, in which the aerodynamics of the ski dominates the flying distance and affects the biomechanics of the athletes’ ankle during the flight period. Conventional research on this topic was supported by wind tunnel experiments. Here, the aerodynamics of a full-scale ski jumping ski was calculated via Computational Fluid Dynamics (CFD) methods and good agreement with experimental data was achieved. The impacts of the angle of attack, yaw angle, and roll angle on the aerodynamic performance are explained. The inclusion of yaw angle can enhance the lift generation, which originates from the formation of a tilted multi-vortex system and the induced low-pressure footprints on the upper surface of the ski. Our results thus establish a database for the aerodynamic forces and moments of the ski and the associations between our findings and the skills in ankle control are discussed.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China;
| | - Xiong Li
- Department of Mechanics, Northeastern University, Shenyang 110819, China; (X.L.); (L.C.)
| | - Xin Wang
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China;
- Correspondence: (X.W.); (T.Z.)
| | - Long Chen
- Department of Mechanics, Northeastern University, Shenyang 110819, China; (X.L.); (L.C.)
| | - Tianyu Zhao
- Department of Mechanics, Northeastern University, Shenyang 110819, China; (X.L.); (L.C.)
- Correspondence: (X.W.); (T.Z.)
| |
Collapse
|
11
|
Tobin N, Good BC, Plasencia JD, Fogel MA, Weiss WJ, Manning KB. Computational Investigation of Anastomosis Options of a Right-Heart Pump to Patient Specific Pulmonary Arteries. Ann Biomed Eng 2022; 50:929-940. [PMID: 35451680 DOI: 10.1007/s10439-022-02969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Patients with Fontan circulation have increased risk of heart failure, but are not always candidates for heart transplant, leading to the development of the subpulmonic Penn State Fontan Circulation Assist Device. The aim of this study was to use patient-specific computational fluid dynamics simulations to evaluate anastomosis options for implanting this device. Simulations were performed of the pre-surgical anatomy as well as four surgical options: a T-junction and three Y-grafts. Cases were evaluated based on several fluid-dynamic quantities. The impact of imbalanced left-right pulmonary flow distribution was also investigated. Results showed that a 12-mm Y-graft was the most energy efficient. However, an 8-mm graft showed more favorable wall shear stress distribution, indicating lower risk of thrombosis and endothelial damage. The 8-mm Y-grafts also showed a more balanced pulmonary flow split, and lower residence time, also indicating lower thrombosis risk. The relative performance of the surgical options was largely unchanged whether or not the pulmonary vascular resistance remained imbalanced post-implantation.
Collapse
Affiliation(s)
- Nicolas Tobin
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | - Bryan C Good
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | | | - Mark A Fogel
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - William J Weiss
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, 17033, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA. .,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, 17033, USA.
| |
Collapse
|
12
|
In Vitro Measurement of Hepatic Flow Distribution in Fontan Vascular Conduits: Towards Rapid Validation Techniques. J Biomech 2022; 137:111092. [DOI: 10.1016/j.jbiomech.2022.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
|
13
|
Stokes C, Bonfanti M, Li Z, Xiong J, Chen D, Balabani S, Díaz-Zuccarini V. A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics. J Biomech 2021; 129:110793. [PMID: 34715606 PMCID: PMC8907869 DOI: 10.1016/j.jbiomech.2021.110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023]
Abstract
We present a novel, cost-efficient methodology to simulate aortic haemodynamics in a patient-specific, compliant aorta using an MRI data fusion process. Based on a previously-developed Moving Boundary Method, this technique circumvents the high computational cost and numerous structural modelling assumptions required by traditional Fluid-Structure Interaction techniques. Without the need for Computed Tomography (CT) data, the MRI images required to construct the simulation can be obtained during a single imaging session. Black Blood MR Angiography and 2D Cine-MRI data were used to reconstruct the luminal geometry and calibrate wall movement specifically to each region of the aorta. 4D-Flow MRI and non-invasive pressure measurements informed patient-specific inlet and outlet boundary conditions. Luminal area closely matched 2D Cine-MRI measurements with a mean error of less than 4.6% across the cardiac cycle, while physiological pressure and flow distributions were simulated to within 3.3% of patient-specific targets. Moderate agreement with 4D-Flow MRI velocity data was observed. Despite lower peak velocity, an equivalent rigid-wall simulation predicted a mean Time-Averaged Wall Shear Stress (TAWSS) 13% higher than the compliant simulation. The agreement observed between compliant simulation results and MRI data is testament to the accuracy and efficiency of this MRI-based simulation technique.
Collapse
Affiliation(s)
- Catriona Stokes
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Mirko Bonfanti
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Zeyan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Jiang Xiong
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Stavroula Balabani
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Vanessa Díaz-Zuccarini
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| |
Collapse
|
14
|
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application. Cardiovasc Eng Technol 2021; 12:618-630. [PMID: 34114202 DOI: 10.1007/s13239-021-00541-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/30/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cardiovascular simulations for patients with single ventricles undergoing the Fontan procedure can assess patient-specific hemodynamics, explore surgical advances, and develop personalized strategies for surgery and patient care. These simulations have not yet been broadly accepted as a routine clinical tool owing to a number of limitations. Numerous approaches have been explored to seek innovative solutions for improving methodologies and eliminating these limitations. PURPOSE This article first reviews the current state of cardiovascular simulations of Fontan hemodynamics. Then, it will discuss the technical progress of Fontan simulations with the emphasis of its clinical impact, noting that substantial improvements have been made in the considerations of patient-specific anatomy, flow, and blood rheology. The article concludes with insights into potential future directions involving clinical validation, uncertainty quantification, and computational efficiency. The advancements in these aspects could promote the clinical usage of Fontan simulations, facilitating its integration into routine clinical practice.
Collapse
|
15
|
Is Doppler Echocardiography Adequate for Surgical Planning of Single Ventricle Patients? Cardiovasc Eng Technol 2021; 12:606-617. [PMID: 33931807 DOI: 10.1007/s13239-021-00533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Surgical planning has shown great potential for optimizing outcomes for patients affected by single ventricle (SV) malformations. Phase-contrast magnetic resonance imaging (PC-MRI) is the routine technique used for flow acquisition in the surgical planning paradigm. However, PC-MRI may suffer from possible artifacts in certain cases; furthermore, this technology may not be readily available for patients in low and lower-middle-income countries. Therefore, this study aims to investigate the effectiveness of using Doppler echocardiography (echo-Doppler) for flow acquisitions of SV surgical planning. METHODS This study included eight patients whose blood flow data was acquired by both PC-MRI and echo-Doppler. A virtual surgery platform was used to generate two surgical options for each patient: (1) a traditional Fontan conduit and (2) a Y-graft. Computational fluid dynamics (CFD) simulations were conducted using the two flow acquisitions to assess clinically relevant hemodynamic metrics: indexed power loss (iPL) and hepatic flow distribution (HFD). RESULTS Differences exist in flow data acquired by PC-MRI and echo-Doppler, but no statistical significance was obtained. Flow fields, therefore, exhibit discrepancies between simulations using flow acquisitions by PC-MRI and echo-Doppler. In virtual surgery, the two surgical options were ranked based on these metrics. No difference was observed in the ranking of surgical options between using different flow acquisitions. CONCLUSION Doppler echocardiography is an adequate alternative approach to acquire flow data for SV surgical planning. This finding encourages broader usage of SV surgical planning with echo-Doppler when MRI may present artifacts or is not available, especially in low and lower-middle-income countries.
Collapse
|
16
|
Toma M, Concu R. Computational Biology: A New Frontier in Applied Biology. BIOLOGY 2021; 10:biology10050374. [PMID: 33925472 PMCID: PMC8145007 DOI: 10.3390/biology10050374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
All living things are related to one another [...].
Collapse
Affiliation(s)
- Milan Toma
- Serota Academic Center (Room 138), New York Institute of Technology, Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA
- Correspondence: (M.T.); (R.C.)
| | - Riccardo Concu
- Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Correspondence: (M.T.); (R.C.)
| |
Collapse
|