1
|
Medeiros-Fonseca B, Faustino-Rocha AI, Pires MJ, Neuparth MJ, Vala H, Vasconcelos-Nóbrega C, Gouvinhas I, Barros AN, Dias MI, Barros L, Bastos MMSM, Gonçalves L, Félix L, Venâncio C, Medeiros R, da Costa RMG, Oliveira PA. Exploring the therapeutic potential of Quercus ilex acorn extract in papillomavirus-induced lesions. Vet World 2024; 17:2644-2658. [PMID: 39829663 PMCID: PMC11736374 DOI: 10.14202/vetworld.2024.2644-2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/16/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aim Papillomaviruses (PVs) infections have been documented in numerous animal species across different regions worldwide. They often exert significant impacts on animal health and livestock production. Scientists have studied natural products for over half a century due to their diverse chemical composition, acknowledging their value in fighting cancer. Acorns (Quercus ilex) are believed to have several unexplored pharmacological properties. This study aimed to evaluate the in vivo safety and cancer chemopreventive activity of an infusion extract of Q. ilex in a transgenic mouse model of human PV (HPV)-16, which developed squamous cell carcinomas through a multistep process driven by HPV16 oncogenes. Materials and Methods Q. ilex extract was prepared by heating in water at 90°C and then characterized by mass spectrometry. Phenolic compounds from this extract were administered in drinking water to female mice in three different concentrations (0.03, 0.06, and 0.09 g/mL) over a period of 28 consecutive days. Six groups (n = 6) were formed for this study: group 1 (G1, wildtype [WT], water), group 2 (G2, HPV, water), group 3 (G3, WT, 0.09 g/mL), group 4 (G4, HPV, 0.03 g/mL), group 5 (G5, HPV, 0.06 g/mL), and group 6 (G6, HPV, 0.09 g/mL). Throughout the experiment, humane endpoints, body weight, food intake, and water consumption were recorded weekly. Following the experimental period, all mice were sacrificed, and blood, internal organs, and skin samples were collected. Blood was used to measure glucose and microhematocrit and later biochemical parameters, such as creatinine, urea, albumin, alanine aminotransferase, and total proteins. Histological analysis was performed on skin and organ samples. Results The administration of Q. ilex extract resulted in a statistically significant increase in relative organ weight among HPV transgenic animals, indicating adaptive biological response to the tested concentrations. Moreover, a reduction in characteristic skin lesions was observed in animals treated with the 0.06 and 0.09 g/mL extract. Conclusion These results provide a favorable chemopreventive profile for Q. ilex extract at concentrations of 0.06 and 0.09 g/mL. This study highlights the potential of Q. ilex extract as a safe and effective therapeutic strategy against HPV16-associated lesions in transgenic mouse models. The limitation of our study was the durability of transgenic animals. As a more sensitive species, we must always be careful with the durability of the test. We intend to study concentrations of 0.06 and 0.09 g/mL for longer to further investigate their possible effects.
Collapse
Affiliation(s)
- Beatriz Medeiros-Fonseca
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal
| | - Ana I. Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7000-812 Évora, Portugal
- Comprehensive Health Research Center, University of Évora, 7000-812 Évora, Portugal
| | - Maria João Pires
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Helena Vala
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CERNAS-IPV Research Center, Polytechnique Institute of Viseu, 3504-510 Viseu, Portugal
- Polytechnique Institute of Viseu, Agrarian School of Viseu, Campus Politécnico 3504-510 Viseu, Portugal
| | - Cármen Vasconcelos-Nóbrega
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CERNAS-IPV Research Center, Polytechnique Institute of Viseu, 3504-510 Viseu, Portugal
- Polytechnique Institute of Viseu, Agrarian School of Viseu, Campus Politécnico 3504-510 Viseu, Portugal
| | - Irene Gouvinhas
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria Inês Dias
- The Mountain Research Center of the Polytechnic Institute of Bragança (CIMO), Associate Laboratory for Sustainability and Technology in Mountain Regions (LA SusTEC), Instituto Politécnico de Bragança, Santa Apolónia Campus, 5300- 253 Bragança, Portugal
| | - Lillian Barros
- The Mountain Research Center of the Polytechnic Institute of Bragança (CIMO), Associate Laboratory for Sustainability and Technology in Mountain Regions (LA SusTEC), Instituto Politécnico de Bragança, Santa Apolónia Campus, 5300- 253 Bragança, Portugal
| | - Margarida M. S. M. Bastos
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering of the University of Porto (FEUP), 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering of the University of Porto (FEUP), 4200-465 Porto, Portugal
| | - Lio Gonçalves
- Department of Engineering, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), 4200-465 Porto, Portugal
| | - Luís Félix
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal
- Department of Research, Portuguese League against Cancer, Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Virology Service, Portuguese Institute of Oncology (IPO), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| | - Rui Miguel Gil da Costa
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal
- Department of Engineering, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), 4200-465 Porto, Portugal
- Postgraduate Program in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), São Luís 65020-070, Brazil
| | - Paula A. Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Du J, Han Z, Ran L, Zhang T, Li J, Li H. Extraction Condition Optimization, Quantitative Analysis, and Anti-AD Bioactivity Evaluation of Acorn Polyphenols from Quercus variabilis, Quercus aliena, and Quercus dentata. Int J Mol Sci 2024; 25:10536. [PMID: 39408864 PMCID: PMC11476354 DOI: 10.3390/ijms251910536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
In the present study, Quercus variabilis (Q. variabilis), Quercus aliena (Q. aliena), and Quercus dentata (Q. dentata) acorn kernels were taken as the research objects, and the free polyphenols and bound polyphenols in acorn kernels were extracted using improved ultrasound-assisted ethanolic and alkaline extraction methods, after which the contents of gallic acid, quercetin, azelaic acid, ellagic acid, and ferulic acid were quantified by LC-MC/MS. The results demonstrated that Q. variabilis and Q. aliena acorns were suitable as raw materials to extract ellagic acid, the contents of ferulic acid and bound gallic acid in them were different, and Q. aliena acorns were more suitable for the research of gallic acid, but not for azelaic acid. Results on APP/PS1 transgenic mice verified that five polyphenols significantly suppressed the progression of AD. This study provides a theoretical basis for the drug development of acorn polyphenols.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.D.); (Z.H.); (L.R.); (T.Z.); (J.L.)
| |
Collapse
|
3
|
Radhakrishnan J, Kennedy BE, Noftall EB, Giacomantonio CA, Rupasinghe HPV. Recent Advances in Phytochemical-Based Topical Applications for the Management of Eczema: A Review. Int J Mol Sci 2024; 25:5375. [PMID: 38791412 PMCID: PMC11120771 DOI: 10.3390/ijms25105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Eczema (atopic dermatitis, AD) is a skin disease characterized by skin barrier dysfunction due to various factors, including genetics, immune system abnormalities, and environmental triggers. Application of emollients and topical drugs such as corticosteroids and calcineurin inhibitors form the mainstay of treatments for this challenging condition. This review aims to summarize the recent advances made in phytochemical-based topical applications to treat AD and the different carriers that are being used. In this review, the clinical efficacy of several plant extracts and bioactive phytochemical compounds in treating AD are discussed. The anti-atopic effects of the herbs are evident through improvements in the Scoring Atopic Dermatitis (SCORAD) index, reduced epidermal thickness, decreased transepidermal water loss, and alleviated itching and dryness in individuals affected by AD as well as in AD mouse models. Histopathological studies and serum analyses conducted in AD mouse models demonstrated a reduction in key inflammatory factors, including thymic stromal lymphopoietin (TSLP), serum immunoglobulin E (IgE), and interleukins (IL). Additionally, there was an observed upregulation of the filaggrin (FLG) gene, which regulates the proteins constituting the stratum corneum, the outermost layer of the epidermis. Carriers play a crucial role in topical drug applications, influencing dose delivery, retention, and bioavailability. This discussion delves into the efficacy of various nanocarriers, including liposomes, ethosomes, nanoemulsions, micelles, nanocrystals, solid-lipid nanoparticles, and polymeric nanoparticles. Consequently, the potential long-term side effects such as atrophy, eruptions, lymphoma, pain, and allergic reactions that are associated with current topical treatments, including emollients, topical corticosteroids, topical calcineurin inhibitors, and crisaborole, can potentially be mitigated through the use of phytochemical-based natural topical treatments.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Barry E. Kennedy
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| | - Erin B. Noftall
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| | - Carman A. Giacomantonio
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| |
Collapse
|
4
|
Fan P, Xie S, Zhang Z, Yuan Q, He J, Zhang J, Liu X, Liu X, Xu L. Polygonum perfoliatum L. ethanol extract ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117288. [PMID: 37827300 DOI: 10.1016/j.jep.2023.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum perfoliatum L. (PP) is classified as a heat-clearing and detoxifying agent in traditional Chinese medicine, and is believed to possess therapeutic properties for treating eczema, furuncles, and venomous snake bites. Previous studies have demonstrated that PP extract exhibits multiple bioactivities, including antibacterial, anti-inflammatory, antitumor, antioxidation, and antiviral properties. However, no existing studies have evaluated the effects of PP on animal models of atopic dermatitis (AD)-like skin symptoms, which are closely associated with traditional ethnic usage. AIM OF THE STUDY In present study, therefore, we aimed to explore the potential anti-atopic effect of Polygonum perfoliatum L. ethanol extract (PPE) in 2,4-Dinitrochlorobenzene (DNCB)-induced dermatitis-like skin lesions. MATERIALS AND METHODS For reaching this aim, DNCB-induced mice with AD-like skin inflammation were subjected to topical administration of PPE gels for a period of 21 days, and subsequently, the biological impacts of PPE were evaluated. RESULTS PPE gels effectively mitigated AD-like skin symptoms induced by DNCB in mice, as demonstrated by a marked reduction in epidermal thickness and dermatitis severity. Moreover, PPE significantly decreased the production of various cytokines, including TNF-α, IL-6, IL-1β, IL-4, IL-5, IL-13 and IgE, in addition to suppressed the production of key inflammation-related enzymes (iNOS and COX-2) and decreased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in AD-like skin samples. Furthermore, PPE treatment inhibited the abnormally elevated CD4+/CD8+ ratio in DNCB-induced AD mice. The results of the skin irritation test revealed that PPE exhibited no adverse toxicity in mice at dose of 10 mg/day. CONCLUSIONS PPE exhibits potential as a safe therapeutic agent for atopic dermatitis by efficiently mitigating DNCB-induced atopic symptoms and diminishing inflammation, and does not carry the risk of over-immunosuppression or treatment-associated adverse effects.
Collapse
Affiliation(s)
- Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Shuchun Xie
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - ZhiQian Zhang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Quan Yuan
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jiajiang He
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jie Zhang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Xinyue Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoyi Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Lieqiang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Lee JW, Kim EN, Jeong GS. Anti-Inflammatory Herbal Extracts and Their Drug Discovery Perspective in Atopic Dermatitis. Biomol Ther (Seoul) 2024; 32:25-37. [PMID: 38148551 PMCID: PMC10762282 DOI: 10.4062/biomolther.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 12/28/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic disorder characterized by skin inflammation. It is well known that the activation of various inflammatory cells and the generation of inflammatory molecules are closely linked to the development of AD. There is accumulating evidence demonstrating the beneficial effects of herbal extracts (HEs) on the regulation of inflammatory response in both in vitro and in vivo studies of AD. This review summarizes the anti-atopic effects of HEs and its associated underlying mechanisms, with a brief introduction of in vitro and in vivo experiment models of AD based on previous and recent studies. Thus, this review confirms the utility of HEs for AD therapy.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Lee J, Jo SE, Han SI, Kim JH. Ethanol-Extracted Acorn Induces Anti-Inflammatory Effects in Human Keratinocyte and Production of Hyaluronic Acid in Human Fibroblasts. J Med Food 2023; 26:595-604. [PMID: 37594560 DOI: 10.1089/jmf.2022.k.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Acorn (Quercus acutissima CARR.) has been used in traditional food and medicinal ethnopharmacology in Asia, and it has shown multifarious functions such as antidementia, antiobesity, and antiasthma functions. However, there is limited scientific evidence about the efficacy of acorn for ameliorating skin problems. Treatment with ethanol-extracted acorns (EeA's) ablated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), monocyte chemoattractant protein-1 (MCP-1), and interleukin (IL)-8 stimulated by tumor necrosis factor (TNF)-α in human adult low calcium high temperature (HaCaT) cells under sublethal dosages. In addition, treatment with EeA dose dependently inhibited the ex vivo hyper keratin formation induced by TNF-α in HaCaT cells in conjunction with the blockade of cytokeratin-1 (CK-1) and cytokeratin-5 (CK-5) expression. Moreover, EeA treatment stimulated the expression of hyaluronic acid (HA) expression in human fibroblasts in a dose-dependent manner. Linoleamide was identified as the functional component of EeA using preparative high-performance liquid chromatography and ultra high performance liquid chromatography-mass spectrometry-mass spectrometry analysis, and the anti-inflammatory features and enhanced HA expression were verified. Collectively, these results suggest the efficacy of EeA supplementation in improving skin problems via anti-inflammation and upregulating HA production.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | | | - Song-I Han
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | - Jae-Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| |
Collapse
|
7
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
9
|
Hou DD, Wang XX, Li SJ, Wang DC, Niu Y, Xu ZR, Jin ZQ. Glycyrrhizic acid suppresses atopic dermatitis-like symptoms by regulating the immune balance. J Cosmet Dermatol 2022; 21:7090-7099. [PMID: 36099014 DOI: 10.1111/jocd.15383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Glycyrrhiza is one of the most widely used traditional Chinese medicines in China. Its main bioactive ingredient glycyrrhizic acid (GA) has the potential to be used as a treatment for atopic dermatitis (AD) because it has similar actions to steroids, but with relatively few side effects. AIMS The objective of this study was to explore the potential mechanisms of GA on AD mice model. METHODS Calcipotriol, a vitamin D3 analogue (MC903) was applied topically to establish AD mouse model. Mice were intraperitoneally administrated with 2 mg/kg dexamethasone (DEX), 25 or 50 mg/kg GA for 15 days. After mice were executed, skin tissues were collected and detected the expression levels of IL-4, IFN-γ, TNF-α and thymic stromal lymphopoietin (TSLP). The percentages of Th1, Th2, Th17, langerhans cells (LCs) in draining lymph nodes (dLNs) were measured by flow cytometry. RESULTS Our data demonstrated that GA improved the symptoms of AD by exerting anti-inflammatory and anti-allergic functions in vivo. We found that GA treatment decreased the level of total IgE in serum, suppressed ear swelling, reduced the infiltration of mast cells in skin lesions and decreased expressions of IL-4, IFN-γ, TNF-α and TSLP in skin lesions. Furthermore, our experimental results demonstrated that GA suppressed the Th1/Th2/Th17-immune responses in the dLNs, inhibited the migration of LCs in dLNs. CONCLUSIONS In conclusion, our findings suggested potential therapeutic effects of GA against MC903-induced AD-like skin lesions in mice.
Collapse
Affiliation(s)
- Dian-Dong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Xin-Xin Wang
- Basic Medical and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Si-Jia Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - De-Cheng Wang
- The Second Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuan Niu
- Huzhou University, Huzhou, China
| | | | | |
Collapse
|
10
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
11
|
Lee TK, Kim DW, Ahn JH, Lee CH, Lee JC, Lim SS, Kang IJ, Hong S, Choi SY, Won MH, Park JH. Protective Effects of Topical Administration of Laminarin in Oxazolone-Induced Atopic Dermatitis-like Skin Lesions. Mar Drugs 2022; 20:669. [PMID: 36354992 PMCID: PMC9694758 DOI: 10.3390/md20110669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 08/26/2023] Open
Abstract
Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Gangwon, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Gangwon, Korea
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Gyeongnam, Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Chungbuk, Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Gangwon, Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Gangwon, Korea
| | - Seongkweon Hong
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Gangwon, Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Gangwon, Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Gyeongbuk, Korea
| |
Collapse
|
12
|
Unveiling the Ability of Witch Hazel ( Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int J Mol Sci 2022; 23:ijms23169279. [PMID: 36012541 PMCID: PMC9408886 DOI: 10.3390/ijms23169279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023] Open
Abstract
Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use by considering the impact of crucial biomarkers on AD pathogenesis. A standardized extract (HVE) (0.5−125 μg/mL) was compared to hamamelitannin (HT), its main compound (0.5−5 μg/mL), in a model of human keratinocytes (HaCaTs), challenged with an AD-like cytokine milieu (TNF-α, IFN-γ, and IL-4). HVE inhibited the release of mediators involved in skin autoimmunity (IL-6 and IL-17C) and allergy (TSLP, IL-6, CCL26, and MMP-9) with a concentration-dependent fashion (IC50s < 25 μg/mL). The biological mechanism was ascribed, at least in part, to the impairment of the NF-κB-driven transcription. Moreover, HVE counteracted the proliferative effects of IL-4 and recovered K10, a marker of skin differentiation. Notably, HT showed activity on well-known targets of IL-4 pathway (CCL26, K10, cell proliferation). To the best of our knowledge, this work represents the first demonstration of the potential role of Hamamelis virginiana in the control of AD symptoms, such as itch and skin barrier impairment, supporting the relevance of the whole phytocomplex.
Collapse
|
13
|
Mohd Kasim VNK, Noble SM, Liew KY, Tan JW, Israf DA, Tham CL. Management of Atopic Dermatitis Via Oral and Topical Administration of Herbs in Murine Model: A Systematic Review. Front Pharmacol 2022; 13:785782. [PMID: 35685636 PMCID: PMC9171034 DOI: 10.3389/fphar.2022.785782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past few decades, complementary and alternative medicine (CAM) using herbs, or their active constituents have garnered substantial attention in the management of a chronic and relapsing inflammatory skin disorder called atopic dermatitis (AD), particularly in attenuating disease recurrence and maintaining long-term remission. In Eastern Asian countries including China, Korea and Taiwan, herbal medicine available in both topical and oral preparation plays a significant role in treating skin diseases like AD as they possibly confer high anti-inflammatory properties and immunomodulatory functions. Conventional murine models of AD have been employed in drug discovery to provide scientific evidence for conclusive and specific pharmacological effects elicited by the use of traditional herbs and their active constituents. Coupled with the goal to develop safe and effective novel therapeutic agents for AD, this systematic review consists of a summary of 103 articles on both orally and topically administered herbs and their active constituents in the murine model, whereby articles were screened and selected via a specialized framework known as PICO (Population, Intervention, Comparator and Outcome). The objectives of this review paper were to identify the efficacy of oral and topical administered herbs along with their active constituents in alleviating AD and the underlying mechanism of actions, as well as the animal models and choice of inducer agents used in these studies. The main outcome on the efficacy of the majority of the herbs and their active constituents illustrated suppression of Th2 response as well as improvements in the severity of AD lesions, suppression of Immunoglobulin E (IgE) concentration and mast cell infiltration. The majority of these studies used BALB/c mice followed by NC/Nga mice (commonly used gender-male; commonly used age group - 6-8 weeks). The most used agent in inducing AD was 2, 4-Dinitrochlorobenzene (DNCB), and the average induction period for both oral and topical administered herbs and their active constituents in AD experiments lasted between 3 and 4 weeks. In light of these findings, this review paper could potentially assist researchers in exploring the potential candidate herbs and their active constituents using murine model for the amelioration of AD.
Collapse
Affiliation(s)
- Vivi Nur Khalieda Mohd Kasim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Kong Yen Liew
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
14
|
Fan P, Yang Y, Liu T, Lu X, Huang H, Chen L, Kuang Y. Anti-atopic effect of Viola yedoensis ethanol extract against 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114474. [PMID: 34332065 DOI: 10.1016/j.jep.2021.114474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viola yedoensis Makiho (VY, Violaceae) is a well-known medicinal herb in Chinese medicine, which is traditionally used to treat inflammation-related disorders, including allergic skin reactions. Although studies have uncovered its anti-inflammatory effects and corresponding bioactive constituents, the exact mechanism of action is still unclear in treating allergic skin reactions. OBJECTIVE Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by severe pruritus, dry, edema and inflamed skin. It affects people's quality of life seriously and causes huge economic losses to society. This study proposes VY as a possible remedy for atopic dermatitis since its traditional usage and superior anti-inflammatory effects. MATERIALS AND METHODS Atopic dermatitis-like skin lesion was induced by topical application of 2,4-dinitrochlorobenzene (DNCB) in ICR mice. After treatment with Viola yedoensis Makiho ethanol extract (VYE) or dexamethasone (positive control) for 3 weeks, skin pathological observation and the molecular biological index were performed for therapeutic evaluation, including visual inspection in the change of the stimulated skin, scar formation, pathological morphology by hematoxylin and eosin (HE) staining, the measurement of interleukin IL-1β, IL-6 and tumor necrosis factor-alpha (TNF-α) levels in serum as well as spleen index. The expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were analyzed by western blot. The ratio of CD4+/CD8+ T lymphocyte in the spleen was detected by flow cytometry. Meanwhile, immunohistochemistry staining for CD68 identified the number of activated macrophages in skin lesions. Additionally, a reliable ultrahigh-performance liquid chromatography coupled with a Q exactive hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS) method was established for the systematic identification and characterization of main components in VYE. RESULTS VYE alleviated DNCB-stimulated AD-like lesions symptoms as evidenced by a significant decrease in hypertrophy, hyperkeratosis, and infiltration of inflammatory cells in dorsal skin. The levels of IL-1β, IL-6, and TNF-α in serum were suppressed in mice treated with VYE as compared to the DNCB-induced model group. Also, the administration of VYE reduced the ratio of CD4+/CD8+ T lymphocyte in the spleen and the number of activated macrophages stimulated by DNCB. Besides, the expression of iNOS and COX-2 were down-regulated in the dorsal skin. CONCLUSIONS VYE showed therapeutic effects on atopic dermatitis in DNCB-induced AD-like lesion mouse models by inhibiting the T cell-mediated allergic immune response. Our results indicated that VY could act as a potential remedy for atopic dermatitis.
Collapse
Affiliation(s)
- Pinglong Fan
- National Engineering Research Center for Modernization of Traditional Chinese Medicine- Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Yanling Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine- Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Tao Liu
- Jiangxi Gannan Haixin Pharmaceutical Co., Ltd, Ganzhou, 341000, People's Republic of China
| | - Xiaolu Lu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine- Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine- Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Lei Chen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine- Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China.
| | - Ying Kuang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine- Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
15
|
Khoury E, Abou Fayad A, Karam Sarkis D, Fahs H, Gunsalus KC, Kallassy Awad M. The Microbiome of the Lebanese Wild Apple, Malus trilobata, is a Rich Source of Potential Biocontrol Agents for Fungal Post-harvest Pathogens of Apples. Curr Microbiol 2021; 78:1388-1398. [PMID: 33646376 DOI: 10.1007/s00284-021-02397-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The widespread use of harmful fungicides in the agricultural sector has led to a demand for safer alternatives to protect against crop pathogens. The domestic apple is the second most highly consumed fruit in the world and encounters several pre- and post-harvest fungal and bacterial phytopathogens. The goal of this study was to explore the uncharacterized microbiome of a wild apple, Malus trilobata, as a potential source of novel biocontrol agents for two post-harvest fungi that affect commercial apples: Botrytis cinerea and Penicillium expansum. We sampled microflora associated with the leaves, bulk soil, and roots of Malus trilobata in two regions of Lebanon: Ehden reserve in the north and Dhour EL Choueir near Beirut. The two regions have different soil types Dhour EL Choueir and samples from the two regions showed very different microbial compositions, with greater microbial diversity among those from Ehden reserve. Molecular characterization revealed a wide variety of genera displaying activity against the two fungal pathogens, including several with previously unknown antifungal activity: Bosea, Microlunatus, Microbacterium, Mycetecola, Rhizobium and Paraphoma. In total, 92 strains inhibited Penicillium expansum (39%) and 87 strains inhibited Botrytis cinerea (38%) out of 237 screened. Further chemical and genetic characterization of one or more selected strains could pave the way for future development of new biocontrol agents for post-harvest applications.
Collapse
Affiliation(s)
- Elie Khoury
- Laboratory of Biodiversity and Functional Genomics, UR EGP, Faculty of Science, Université Saint- Joseph de Beyrouth, Beirut, B.P. 11-514, Riad El Solh, Beirut, 1107 2050, Lebanon
| | - Antoine Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research (CIDR), Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,WHO Collaborating Center for Reference and Research On Bacterial Pathogens, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dolla Karam Sarkis
- Laboratory of Pathogens, School of Pharmacy, Saint-Joseph University, Beirut, Lebanon
| | - Hala Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Center for Genomics and Systems Biology, New York University, New York, USA
| | - Mireille Kallassy Awad
- Laboratory of Biodiversity and Functional Genomics, UR EGP, Faculty of Science, Université Saint- Joseph de Beyrouth, Beirut, B.P. 11-514, Riad El Solh, Beirut, 1107 2050, Lebanon.
| |
Collapse
|
16
|
Lee YS, Ryu HW, Yang WK, Park MH, Park YC, Kim DY, Kwon HJ, Kim SY, Oh SR, Kim SH. A combination of Olea europaea leaf extract and Spirodela polyrhiza extract alleviates atopic dermatitis by modulating immune balance and skin barrier function in a 1-chloro-2,4-dinitrobenzene-induced murine model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153407. [PMID: 33571899 DOI: 10.1016/j.phymed.2020.153407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Atopic dermatitis is a chronic inflammatory skin disease in humans. Although Olea europaea leaf extract (OLE) and Spirodela polyrhiza extract (SPE) have been used to protect against skin damage, the effects of their combined administration on atopic dermatitis have yet to studied. PURPOSE In this study, we evaluated the potential therapeutic effects of an OLE and SPE combination on the progression of atopic dermatitis and the possible mechanisms underlying these effects in 1-chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. METHODS Atopic dermatitis was induced by topical application of 0.2% w/v DNCB prepared in an olive oil:acetone solution (1:3), and thereafter OLE, SPE and OLE + SPE were administered orally for 5 weeks. We determined atopic dermatitis symptoms, serum IgE levels, and levels of cytokine- and gene expression in the dorsal skin and splenocytes, and performed histological and immune cell subtype analyses. The expression of skin barrier-related proteins (filaggrin, sirtuin 1, and claudin 1) was also evaluated. RESULTS The OLE + SPE combination significantly ameliorated atopic dermatitis symptoms, including dermatitis scores, and reduced epidermal thickness and infiltration of different inflammatory cells in mice with DNCB-induced atopic dermatitis. It also significantly reduced the number of CD4+, CD8+, and CD4+/CD69+ T cells; immunoglobulin E-producing B cells (CD23+/B220+) in the axillary lymph nodes; CD3+ T-cell eosinophils (chemokine-chemokine receptor 3+/CD11b+) in the skin; and CD3+ T cells, immunoglobulin E-producing B cells (CD23+/B220+), and eosinophils in peripheral blood mononuclear cells. Additionally, the experimental combination lowered levels of serum immunoglobulin E and histamine, as well as Th2-mediated cytokines, and interleukin-4, -5, and -13, whereas it increased the levels of Th1-mediated cytokine interferon-γ in splenocytes. Furthermore, the preparation significantly restored expression of the skin barrier-related proteins filaggrin, sirtuin 1, and claudin 1, and also reduced the expression of the inflammatory cytokine interleukin-6 and chemokine-chemokine receptor 3, as well as the pruritus-related cytokine interleukin-31 and interleukin-31 receptor, in atopic dermatitis skin lesions. CONCLUSION Taken together, our findings indicate that administration of a combination of OLE and SPE can alleviate atopic dermatitis symptoms by regulating immune balance and skin barrier function and may be an effective therapeutic option for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Young-Sil Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Won-Kyung Yang
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Mi Hyeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Hyuk Joon Kwon
- National Institute of Biological Resources, Environmental Research Complex, Gyoungseo-dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Soo-Young Kim
- National Institute of Biological Resources, Environmental Research Complex, Gyoungseo-dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea.
| | - Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Republic of Korea.
| |
Collapse
|
17
|
Guo S, Zhang J, Wei C, Lu Z, Cai R, Pan D, Zhang H, Liang B, Zhang Z. Anticancer effects of brusatol in nasopharyngeal carcinoma through suppression of the Akt/mTOR signaling pathway. Cancer Chemother Pharmacol 2020; 85:1097-1108. [PMID: 32449143 DOI: 10.1007/s00280-020-04083-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Brusatol, a natural quassinoid that is isolated from a traditional Chinese herbal medicine known as Bruceae Fructus, possesses biological activity in various types of human cancers, but its effects in nasopharyngeal carcinoma (NPC) have not been reported. This study aimed to explore the effect and molecular mechanism of brusatol in NPC in vivo and in vitro. METHODS The antiproliferative effect of brusatol was assessed by MTT and colony formation assays. Apoptosis was determined by flow cytometry. The expression of mitochondrial apoptosis, cell cycle arrest, and Akt/mTOR pathway proteins were determined by western blot analysis. Further in vivo confirmation was performed in a nude mouse model. RESULTS Brusatol showed antiproliferative activity against four human NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) in a dose-dependent manner. This antiproliferative effect was accompanied by mitochondrial apoptosis and cell cycle arrest through the modulation of several key molecular targets, such as Bcl-xl, Bcl-2, Bad, Bax, PARP, Caspase-9, Caspase-7, Caspase-3, Cdc25c, Cyclin B1, Cdc2 p34, and Cyclin D1. In addition, we found that brusatol inhibited the activation of Akt, mTOR, 4EBP1, and S6K, suggesting that the Akt/mTOR pathway is a key underlying mechanism by which brusatol inhibits growth and promotes apoptosis. Further in vivo nude mouse models proved that brusatol significantly inhibited the growth of CNE-1 xenografts with no significant toxicity. CONCLUSIONS These observations indicate that brusatol is a promising antitumor drug candidate or a supplement to current chemotherapeutic therapies to treat NPC.
Collapse
Affiliation(s)
- Songbin Guo
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jinling Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Cairong Wei
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Zhiyong Lu
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Rulong Cai
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Danqi Pan
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Hanbin Zhang
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Baoxia Liang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Zhenfeng Zhang
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China. .,Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|