1
|
Zhang C, Huang R, Ren L, Martincuks A, Song J, Kortylewski M, Swiderski P, Forman SJ, Yu H. Local CpG- Stat3 siRNA treatment improves antitumor effects of immune checkpoint inhibitors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102357. [PMID: 39618825 PMCID: PMC11605413 DOI: 10.1016/j.omtn.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has significantly benefited patients with several types of solid tumors and some lymphomas. However, many of the treated patients do not have a durable clinical response. It has been demonstrated that rescuing exhausted CD8+ T cells is required for ICB-mediated antitumor effects. We recently developed an immunostimulatory strategy based on silencing STAT3 while stimulating immune responses by CpG, a ligand for Toll-like receptor 9 (TLR9). The CpG-small interfering RNA (siRNA) conjugates efficiently enter immune cells, silencing STAT3 and activating innate immunity to enhance T cell-mediated antitumor immune responses. In the present study, we demonstrate that blocking STAT3 through locally delivered CpG-Stat3 siRNA enhances the efficacies of the systemic PD-1 and CTLA4 blockade against mouse A20 B cell lymphoma. In addition, locally delivered CpG-Stat3 siRNA combined with systemic administration of PD-1 antibody significantly augmented both local and systemic antitumor effects against mouse B16 melanoma tumors, with enhanced tumor-associated T cell activation. Furthermore, locally delivered CpG-Stat3 siRNA enhanced CD8+ T cell tumor infiltration and antitumor activity in a xenograft tumor model. Overall, our studies in both B cell lymphoma and melanoma mouse models demonstrate the potential of combinatory immunotherapy with CpG-Stat3 siRNA and checkpoint inhibitors as a therapeutic strategy for B cell lymphoma and melanoma.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Lyuzhi Ren
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - JiEun Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Hou Y, Wang Z, Chen Z, Shuai L, Pei Y, Sun B, Jiang Y, Wang H. Noninvasive Transdermal Administration of mRNA Vaccines Encoding Multivalent Neoantigens Effectively Inhibits Melanoma Growth. ACS Biomater Sci Eng 2024; 10:4587-4600. [PMID: 38869192 DOI: 10.1021/acsbiomaterials.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
It is difficult to obtain specific tumor antigens, which is one of the main obstacles in the development of tumor vaccines. The vaccines containing multivalent antigens are thought to be more effective in antitumor therapy. In this study, a mRNA encoding three neoantigens of melanoma were prepared and encapsulated into the mannosylated chitosan-modified ethosomes (EthsMC) to obtain a multivalent mRNA vaccine (MmRV) for transcutaneous immunization (TCI). MmRV can effectively induce maturation of dendritic cells, with a better performance than mRNA of a single neoantigen. TCI patches (TCIPs) loading MmRV or siRNA against PDL1 (siPDL1) were prepared and applied to the skin of melanoma-bearing mice. The results showed that TCIPs significantly increase the levels of TNF-α, IFN-γ, and IL-12 in both plasma and tumor tissues, inhibit tumor growth, as well as promote infiltration of CD4+ and CD8+ T cells in the tumor tissues. Furthermore, the combination of MmRV and siPDL1 showed much better antitumor effects than either monotherapy, suggesting a synergistic effect between the vaccine and PDL1 blocker. In addition, the treatment with the TCIPs did not cause damage to the skin, blood, and vital organs of the mice, showing good biosafety. To the best of our knowledge, this work is the first to construct a noninvasive TCI system containing MmRV and siPDL1, providing a convenient and promising approach for tumor treatment.
Collapse
Affiliation(s)
- Yuting Hou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhe Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhen Chen
- Xuhui District Dental Disease Prevention and Treatment Institute, Shanghai 200030, China
| | - Lan Shuai
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yifei Pei
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yuxin Jiang
- The First Hospital of Jiaxing, Jiaxing Key Laboratory of Virus-related Infectious Diseases, Jiaxing University, Jiaxing 314001, China
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang XJ. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:24. [PMID: 39050885 PMCID: PMC11267154 DOI: 10.20517/cdr.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.
Collapse
Affiliation(s)
- Piroonrat Dechbumroong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Authors contributed equally
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Authors contributed equally
| | - Wisawat Keaswejjareansuk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
5
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
6
|
Bao Q, Ganbold T, Bao M, Xiao H, Han S, Baigude H. Tumor targeted siRNA delivery by adenosine receptor-specific curdlan nanoparticles. Int J Biol Macromol 2023; 253:126845. [PMID: 37703972 DOI: 10.1016/j.ijbiomac.2023.126845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Aminated curdlan derivatives are highly effective nucleic acid carriers. Previously, we proved that the ligand-functionalized curdlan derivatives have greatly enhanced cell type specificity induced by receptor-mediated internalization in vitro. In this study, to improve biocompatibility and enhance tumor-targeting efficacy of the curdlan derivative, we pegylated the adenosine functionalized amino curdlan derivative (denoted by pAVC polymer). We confirmed that the uptake of pAVC polymer carrying siRNA by tumor cells was adenosine receptor (AR)-dependent and was specifically inhibited by AMP but not by GMP. The pAVC polymers not only preserved the receptor recognition and exhibited significantly decreased cytotoxicity but also showed remarkable tumor targeting efficiency in vivo. The nanoparticles formulated from siRNA (against STAT3) and pAVC4 polymer, which bears the highest degree of PEG substitution, delivered siRNA highly specifically to tumor tissue, knocked down STAT3, and inhibited tumor growth. The pAVC polymers may be a promising carrier for tumor specific delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Qingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Tsogzolmaa Ganbold
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Mingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Hai Xiao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Shuqin Han
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Huricha Baigude
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
7
|
Zhang C, Wei S, Dai S, Li X, Wang H, Zhang H, Sun G, Shan B, Zhao L. The NR_109/FUBP1/c-Myc axis regulates TAM polarization and remodels the tumor microenvironment to promote cancer development. J Immunother Cancer 2023; 11:jitc-2022-006230. [PMID: 37217247 DOI: 10.1136/jitc-2022-006230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and exert an important role in tumor progression. Due to the heterogeneity and plasticity of TAMs, modulating the polarization states of TAMs is considered as a potential therapeutic strategy for tumors. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, yet the underlying mechanism on how lncRNAs manipulate the polarization states of TAMs is still unclear and remains to be further investigated. METHODS Microarray analyses were employed to characterize the lncRNA profile involved in THP-1-induced M0, M1 and M2-like macrophage. Among those differentially expressed lncRNAs, NR_109 was further studied, for its function in M2-like macrophage polarization and the effects of the condition medium or macrophages mediated by NR_109 on tumor proliferation, metastasis and TME remodeling both in vitro and in vivo. Moreover, we revealed how NR_109 interacted with far upstream element-binding protein 1 (FUBP1) to regulate the protein stability through hindering ubiquitination modification by competitively binding with JVT-1. Finally, we examined sections of tumor patients to probe the correlation among the expression of NR_109 and related proteins, showing the clinical significance of NR_109. RESULTS We found that lncRNA NR_109 was highly expressed in M2-like macrophages. Knockdown NR_109 impeded IL-4 induced M2-like macrophage polarization and significantly reduced the activity of M2-like macrophages to support the proliferation and metastasis of tumor cells in vitro and in vivo. Mechanistically, NR_109 competed with JVT-1 to bind FUBP1 at its C-terminus domain, impeded the ubiquitin-mediated degradation of FUBP1, activated c-Myc transcription and thus promoted M2-like macrophages polarization. Meanwhile, as a transcription factor, c-Myc could bind to the promoter of NR_109 and enhance the transcription of NR_109. Clinically, high NR_109 expression was found in CD163+ TAMs from tumor tissues and was positively correlated with poor clinical stages of patients with gastric cancer and breast cancer. CONCLUSIONS Our work revealed for the first time that NR_109 exerted a crucial role in regulating the phenotype-remodeling and function of M2-like macrophages via a NR_109/FUBP1/c-Myc positive feedback loop. Thus, NR_109 has great translational potentials in the diagnosis, prognosis and immunotherapy of cancer.
Collapse
Affiliation(s)
- Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixia Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Chang YT, Huang TH, Alalaiwe A, Hwang E, Fang JY. Small interfering RNA-based nanotherapeutics for treating skin-related diseases. Expert Opin Drug Deliv 2023:1-16. [PMID: 37088710 DOI: 10.1080/17425247.2023.2206646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION RNA interference (RNAi) has demonstrated great potential in treating skin-related diseases, as small interfering RNA (siRNA) can efficiently silence specific genes. The design of skin delivery systems for siRNA is important to protect the nucleic acid while facilitating both skin targeting and cellular ingestion. Entrapment of siRNA into nanocarriers can accomplish these aims, contributing to improved targeting, controlled release, and increased transfection. AREAS COVERED The siRNA-based nanotherapeutics for treating skin disorders are summarized. First, the mechanisms of RNAi are presented, followed by the introduction of challenges for skin therapy. Then, the different nanoparticle types used for siRNA skin delivery are described. Subsequently, we introduce the mechanisms of how nanoparticles enhance siRNA skin penetration. Finally, the current investigations associated with nanoparticulate siRNA application in skin disease management are reviewed. EXPERT OPINION The potential application of nanotherapeutic RNAi allows for a novel skin application strategy. Further clinical studies are required to confirm the findings in the cell-based or animal experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for translation to commercialization. siRNA delivery by nanocarriers should be optimized to attain cutaneous targeting without the risk of toxicity.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou and Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
9
|
Pereira I, Monteiro C, Pereira-Silva M, Peixoto D, Nunes C, Reis S, Veiga F, Hamblin MR, Paiva-Santos AC. Nanodelivery systems for cutaneous melanoma treatment. Eur J Pharm Biopharm 2023; 184:214-247. [PMID: 36773725 DOI: 10.1016/j.ejpb.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cutaneous melanoma (CM) is a multifactorial disease whose treatment still presents challenges: the rapid progression to advanced CM, which leads to frequent recurrences even after surgical excision and, notably, the low response rates and resistance to the available therapies, particularly in the case of unresectable metastatic CM. Thereby, alternative innovative therapeutic approaches for CM continue to be searched. In this review we discuss relevant preclinical research studies, and provide a broad-brush analysis of patents and clinical trials which involve the application of nanotechnology-based delivery systems in CM therapy. Nanodelivery systems have been developed for the delivery of anticancer biomolecules to CM, which can be administered by different routes. Overall, nanosystems could promote technological advances in several therapeutic modalities and can be used in combinatorial therapies. Nevertheless, the results of these preclinical studies have not been translated to clinical applications. Thus, concerted and collaborative research studies involving basic, applied, translational, and clinical scientists need to be performed to allow the development of effective and safe nanomedicines to treat CM.
Collapse
Affiliation(s)
- Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carina Monteiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
10
|
Cardile A, Zanrè V, Campagnari R, Asson F, Addo SS, Orlandi E, Menegazzi M. Hyperforin Elicits Cytostatic/Cytotoxic Activity in Human Melanoma Cell Lines, Inhibiting Pro-Survival NF-κB, STAT3, AP1 Transcription Factors and the Expression of Functional Proteins Involved in Mitochondrial and Cytosolic Metabolism. Int J Mol Sci 2023; 24:ijms24021263. [PMID: 36674794 PMCID: PMC9860844 DOI: 10.3390/ijms24021263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Hyperforin (HPF), the main component responsible for the antidepressant action of Hypericum perforatum, displays additional beneficial properties including anti-inflammatory, antimicrobic, and antitumor activities. Among its antitumor effects, HPF activity on melanoma is poorly documented. Melanoma, especially BRAF-mutated melanoma, is still a high-mortality tumor type and the currently available therapies do not provide solutions. We investigated HPF's antimelanoma effectiveness in A375, FO1 and SK-Mel-28 human BRAF-mutated cell lines. Cell viability assays documented that all melanoma cells were affected by low HPF concentrations (EC50% 2-4 µM) in a time-dependent manner. A Br-deoxy-uridine incorporation assay attested a significant reduction of cell proliferation accompanied by decreased expression of cyclin D1 and A2, CDK4 and of the Rb protein phosphorylation, as assessed by immunoblots. In addition, the expression of P21/waf1 and the activated form of P53 were increased in A375 and SK-Mel-28 cells. Furthermore, HPF exerts cytotoxic effects. Apoptosis is induced 24 h after HPF administration, documented by an increase of cleaved-PARP1 and a decrease of both Bcl2 and Bcl-xL expression levels. Autophagy is induced, attested by an augmented LC3B expression and augmentation of the activated form of AMPK. Moreover, HPF lowers GPX4 enzyme expression, suggesting ferroptosis induction. HPF has been reported to activate the TRPC6 Ca++ channel and/or Ca++ and Zn++ release from mitochondria stores, increasing cytosolic Ca++ and Zn++ concentrations. Our data highlighted that HPF affects many cell-signaling pathways, including signaling induced by Ca++, such as FRA1, pcJun and pCREB, the expression or activity of which are increased shortly after treatment. However, the blockage of the TRPC6 Ca++ channel or the use of Ca++ and Zn++ chelators do not hinder HPF cytostatic/cytotoxic activity, suggesting that damages induced in melanoma cells may pass through other pathways. Remarkably, 24 h after HPF treatment, the expression of activated forms of the transcription factors NF-κB P65 subunit and STAT3 are significantly lowered. Several cytosolic (PGM2, LDHA and pPKM2) and mitochondrial (UQCRC1, COX4 and ATP5B) enzymes are downregulated by HPF treatment, suggesting a generalized reduction of vital functions in melanoma cells. In line with these results is the recognized ability of HPF to affect mitochondrial membrane potential by acting as a protonophore. Finally, HPF can hinder both melanoma cell migration and colony formation in soft agar. In conclusion, we provide evidence of the pleiotropic antitumor effects induced by HPF in melanoma cells.
Collapse
Affiliation(s)
- Alessia Cardile
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Valentina Zanrè
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Rachele Campagnari
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Francesca Asson
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Solomon Saforo Addo
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Elisa Orlandi
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
11
|
Li JK, Zhu PL, Wang Y, Jiang XL, Zhang Z, Zhang Z, Yung KKL. Gracillin exerts anti-melanoma effects in vitro and in vivo: role of DNA damage, apoptosis and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154526. [PMID: 36334389 DOI: 10.1016/j.phymed.2022.154526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Melanoma is an aggressive cancer. Gracillin has been reported to treat various types of cancer, such as colorectal and lung cancer. However, there is a paucity of research on the anti-melanoma effects of gracillin. PURPOSE The aim of this study was to assess the anti-melanoma effects and mechanisms of action of gracillin in vitro and in vivo. METHODS Cell viability was detected using MTT and crystal violet staining assays. Cell proliferation was examined by EdU staining assays. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Autophagic flux was monitored under a confocal microscope. Protein levels were determined by immunoblotting. LY294002 and rapamycin (Rapa) were used to determine the involvement of PI3K/AKT/mTOR signaling in gracillin-mediated autophagy. Signal transducer and activator of transcription 3 (STAT3) was overactivated to explore the contribution of the STAT3 signaling pathway in the anti-melanoma effects of gracillin. A B16F10 allograft mouse model was developed to evaluate the anti-melanoma effects of gracillin in vivo. RESULTS We demonstrated that in melanoma cells, gracillin inhibited proliferation, induced G0/G1 phase cell cycle arrest, evoked apoptosis, and triggered autophagic cell death. Gracillin induced DNA damage in melanoma cells. Moreover, it suppressed the phosphorylation/activation of PI3K, AKT, mTOR, and 4E-BP1 in melanoma cells. Inhibiting PI3K/AKT and mTOR activity using LY294002 and Rapa, respectively, increased the protein level of LC3B-II in gracillin-treated melanoma cells. Furthermore, gracillin downregulated the protein levels of p-JAK2 (Tyr1007/1008), p-Src (Tyr416), and p-STAT3 (Tyr705) in melanoma cells. Over-expression of STAT3 in A375 cells significantly mitigated the cytotoxic and apoptotic effects of gracillin. In vivo studies showed that gracillin (1 mg/kg or 8 mg/kg, administered intraperitoneally for 16 consecutive days) suppressed B16F10 tumor growth and Src/STAT3 and AKT/mTOR signaling in tumors. No overt toxicity was observed in mice. CONCLUSION Induction of DNA damage, inhibition of PI3K/AKT/mTOR signaling and suppression of STAT3 signaling are involved in gracillin-mediated cell cycle arrest, autophagic cell death and apoptosis, respectively, in melanoma cells. These findings provide novel insights into the anti-melanoma molecular mechanisms of gracillin, and suggest a potential role of gracillin in melanoma management.
Collapse
Affiliation(s)
- Jun-Kui Li
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Pei-Li Zhu
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Ying Wang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Xiao-Li Jiang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Zhang Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Ken-Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
12
|
Gomari MM, Abkhiz S, Pour TG, Lotfi E, Rostami N, Monfared FN, Ghobari B, Mosavi M, Alipour B, Dokholyan NV. Peptidomimetics in cancer targeting. Mol Med 2022; 28:146. [PMID: 36476230 PMCID: PMC9730693 DOI: 10.1186/s10020-022-00577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
The low efficiency of treatment strategies is one of the main obstacles to developing cancer inhibitors. Up to now, various classes of therapeutics have been developed to inhibit cancer progression. Peptides due to their small size and easy production compared to proteins are highly regarded in designing cancer vaccines and oncogenic pathway inhibitors. Although peptides seem to be a suitable therapeutic option, their short lifespan, instability, and low binding affinity for their target have not been widely applicable against malignant tumors. Given the peptides' disadvantages, a new class of agents called peptidomimetic has been introduced. With advances in physical chemistry and biochemistry, as well as increased knowledge about biomolecule structures, it is now possible to chemically modify peptides to develop efficient peptidomimetics. In recent years, numerous studies have been performed to the evaluation of the effectiveness of peptidomimetics in inhibiting metastasis, angiogenesis, and cancerous cell growth. Here, we offer a comprehensive review of designed peptidomimetics to diagnose and treat cancer.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Abkhiz
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantab Pour
- grid.411746.10000 0004 4911 7066Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Lotfi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rostami
- grid.411425.70000 0004 0417 7516Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Fatemeh Nafe Monfared
- grid.411705.60000 0001 0166 0922Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ghobari
- grid.412831.d0000 0001 1172 3536Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mona Mosavi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behruz Alipour
- grid.411705.60000 0001 0166 0922Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikolay V. Dokholyan
- grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA USA
| |
Collapse
|
13
|
Peptidomimetic Lipid-Nanoparticle-Mediated Knockdown of TLR4 in CNS Protects against Cerebral Ischemia/Reperfusion Injury in Mice. NANOMATERIALS 2022; 12:nano12122072. [PMID: 35745411 PMCID: PMC9228890 DOI: 10.3390/nano12122072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke activates toll-like receptor 4 (TLR4) signaling, resulting in proinflammatory polarization of microglia and secondary neuronal damage. Herein, we report a novel lipid-nanoparticle (LNP)-mediated knockdown of TLR4 in microglia and amelioration of neuroinflammation in a mouse model of transient middle cerebral artery occlusion (tMCAO). siRNA against TLR4 (siTLR4) complexed to the novel LNP (siTLR4/DoGo310), which was based on a dioleoyl-conjugated short peptidomimetic (denote DoGo310), was readily internalized by the oxygen–glucose-deprived (OGD) mouse primary microglia, knocked-down TLR4, and polarized the cell to the anti-inflammatory phenotype in vitro. Systemic administration of siTLR4/DoGo310 LNPs in the tMCAO mice model resulted in the accumulation of siRNA mainly in the Iba1 positive cells in the peri-infarct. Analysis of the peri-infarct brain tissue revealed that a single injection of siTLR4/DoGo310 LNPs led to significant knockdown of TLR4 gene expression, reversing the pattern of cytokines expression, and improving the neurological functions in tMCAO model mice. Our data demonstrate that DoGo310 LNPs could be a promising nanocarrier for CNS-targeted siRNA delivery for the treatment of CNS disorders.
Collapse
|
14
|
Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. Int J Mol Sci 2022; 23:ijms23126556. [PMID: 35742999 PMCID: PMC9223570 DOI: 10.3390/ijms23126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022] Open
Abstract
The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.
Collapse
|
15
|
Gulla S, Reddy VC, Araveti PB, Lomada D, Srivastava A, Reddy MC, Reddy KR. Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Salviolone from Salvia miltiorrhiza Roots Impairs Cell Cycle Progression, Colony Formation, and Metalloproteinase-2 Activity in A375 Melanoma Cells: Involvement of P21(Cip1/Waf1) Expression and STAT3 Phosphorylation. Int J Mol Sci 2022; 23:ijms23031121. [PMID: 35163058 PMCID: PMC8835475 DOI: 10.3390/ijms23031121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Melanoma is a highly malignant solid tumor characterized by an elevated growth and propagation rate. Since, often, melanoma treatment cannot prevent recurrences and the appearance of metastasis, new anti-melanoma agents need to be discovered. Salvia miltiorrhiza roots are a source of diterpenoid derivatives, natural compounds with several biological activities, including antiproliferative and anticancer effects. Seven diterpenoid derivatives were purified from S. miltiorrhiza roots and identified by NMR and MS analysis. Tanshinone IIA and cryptotanshinone were detected as the main components of S. miltiorrhiza root ethanol extract. Although their antitumor activity is already known, they have been confirmed to induce a reduction in A375 and MeWo melanoma cell growth. Likewise, salviolone has been shown to impair the viability of melanoma cells without affecting the growth of normal melanocytes. The underlying anticancer activity of salviolone has been investigated and compared to that of cryptotanshinone in A375 cells, showing an increased P21 protein expression in a P53-dependent manner. In that way, salviolone, even more than cryptotanshinone, displays a multitarget effect on cell-cycle-related proteins. Besides, it modulates the phosphorylation level of the signal transducer and activator of transcription (STAT)3. Unexpectedly, salviolone and cryptotanshinone induce sustained activation of the extracellular signal-regulated kinases (ERK)1/2 and the protein kinase B (Akt). However, the blockage of ERK1/2 or Akt activities suggests that kinase activation does not hinder their ability to inhibit A375 cell growth. Finally, salviolone and cryptotanshinone inhibit to a comparable extent some crucial malignancy features of A375 melanoma cells, such as colony formation in soft agar and metalloproteinase-2 activity. In conclusion, it has been shown for the first time that salviolone, harboring a different molecular structure than tanshinone IIA and cryptotanshinone, exhibits a pleiotropic effect against melanoma by hampering cell cycle progression, STAT3 signaling, and malignant phenotype of A375 melanoma cells.
Collapse
|
17
|
Bao Q, Ganbold T, Qiburi Q, Bao M, Han S, Baigude H. AMP functionalized curdlan nanoparticles as a siRNA carrier: Synthesis, characterization and targeted delivery via adenosine A 2B receptor. Int J Biol Macromol 2021; 193:866-873. [PMID: 34743942 DOI: 10.1016/j.ijbiomac.2021.10.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Receptor-mediated endocytosis has been used for tissue targeted delivery of short interfering RNA (siRNA) drugs. Herein, we investigated adenosine receptor (AR) as a candidate for receptor-mediated siRNA internalization. We synthesized adenosine functionalized cationic curdlan derivatives (denote CuAMP polymers). One of these polymers, CuAMP4, efficiently delivered siRNA to breast cancer cells expressing high level of A2B receptor. The internalization of siRNA loaded CuAMP4 by cancer cells was inhibited by free AMP as well as endocytosis inhibitors. Moreover, knockdown of A2BR by siRNA, or pre-treatment of the cells with anti-A2BR antibody, strongly inhibited the cellular uptake of CuAMP4. Our findings confirmed that A2BR can be utilized for cell type specific siRNA delivery, and CuAMP4 NP may be a promising delivery system for cancer cell targeted delivery of therapeutic siRNAs.
Collapse
Affiliation(s)
- Qingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Tsogzolmaa Ganbold
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Qiburi Qiburi
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Mingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Shuqin Han
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Huricha Baigude
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
18
|
Gotte G, Campagnari R, Loreto D, Bettin I, Calzetti F, Menegazzi M, Merlino A. The crystal structure of the domain-swapped dimer of onconase highlights some catalytic and antitumor activity features of the enzyme. Int J Biol Macromol 2021; 191:560-571. [PMID: 34563576 DOI: 10.1016/j.ijbiomac.2021.09.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Onconase (ONC) is a monomeric amphibian "pancreatic-type" RNase endowed with remarkable anticancer activity. ONC spontaneously forms traces of a dimer (ONC-D) in solution, while larger amounts can be formed when ONC is lyophilized from mildly acidic solutions. Here, we report the crystal structure of ONC-D and analyze its catalytic and antitumor activities in comparison to ONC. ONC-D forms via the three-dimensional swapping of the N-terminal α-helix between two monomers, but it displays a significantly different quaternary structure from that previously modeled [Fagagnini A et al., 2017, Biochem J 474, 3767-81], and based on the crystal structure of the RNase A N-terminal swapped dimer. ONC-D presents a variable quaternary assembly deriving from a variable open interface, while it retains a catalytic activity that is similar to that of ONC. Notably, ONC-D displays antitumor activity against two human melanoma cell lines, although it exerts a slightly lower cytostatic effect than the monomer. The inhibition of melanoma cell proliferation by ONC or ONC-D is associated with the reduction of the expression of the anti-apoptotic B cell lymphoma 2 (Bcl2), as well as of the total expression and phosphorylation of the Signal Transducer and Activator of Transcription (STAT)-3. Phosphorylation is inhibited in both STAT3 Tyr705 and Ser727 key-residues, as well as in its upstream tyrosine-kinase Src. Consequently, both ONC species should exert their anti-cancer action by inhibiting the pro-tumor pleiotropic STAT3 effects deriving either by its phospho-tyrosine activation or by its non-canonical signaling pathways. Both ONC species, indeed, increase the portion of A375 cells undergoing apoptotic cell death. This study expands the variety of RNase domain-swapped dimeric structures, underlining the unpredictability of the open interface arrangement upon domain swapping. Structural data also offer valuable insights to analyze the differences in the measured ONC or ONC-D biological activities.
Collapse
Affiliation(s)
- Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Domenico Loreto
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Federica Calzetti
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy.
| |
Collapse
|
19
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
20
|
Yeon M, Kim Y, Jung HS, Jeoung D. Histone Deacetylase Inhibitors to Overcome Resistance to Targeted and Immuno Therapy in Metastatic Melanoma. Front Cell Dev Biol 2020; 8:486. [PMID: 32626712 PMCID: PMC7311641 DOI: 10.3389/fcell.2020.00486] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Therapies that target oncogenes and immune checkpoint molecules constitute a major group of treatments for metastatic melanoma. A mutation in BRAF (BRAF V600E) affects various signaling pathways, including mitogen activated protein kinase (MAPK) and PI3K/AKT/mammalian target of rapamycin (mTOR) in melanoma. Target-specific agents, such as MAPK inhibitors improve progression-free survival. However, BRAFV600E mutant melanomas treated with BRAF kinase inhibitors develop resistance. Immune checkpoint molecules, such as programmed death-1 (PD-1) and programmed death ligand-1(PD-L1), induce immune evasion of cancer cells. MAPK inhibitor resistance results from the increased expression of PD-L1. Immune checkpoint inhibitors, such as anti-PD-L1 or anti-PD-1, are main players in immune therapies designed to target metastatic melanoma. However, melanoma patients show low response rate and resistance to these inhibitors develops within 6–8 months of treatment. Epigenetic reprogramming, such as DNA methylaion and histone modification, regulates the expression of genes involved in cellular proliferation, immune checkpoints and the response to anti-cancer drugs. Histone deacetylases (HDACs) remove acetyl groups from histone and non-histone proteins and act as transcriptional repressors. HDACs are often dysregulated in melanomas, and regulate MAPK signaling, cancer progression, and responses to various anti-cancer drugs. HDACs have been shown to regulate the expression of PD-1/PD-L1 and genes involved in immune evasion. These reports make HDACs ideal targets for the development of anti-melanoma therapeutics. We review the mechanisms of resistance to anti-melanoma therapies, including MAPK inhibitors and immune checkpoint inhibitors. We address the effects of HDAC inhibitors on the response to MAPK inhibitors and immune checkpoint inhibitors in melanoma. In addition, we discuss current progress in anti-melanoma therapies involving a combination of HDAC inhibitors, immune checkpoint inhibitors, and MAPK inhibitors.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| |
Collapse
|