1
|
Yan M, Zhang S, Liang P, Huang H, Li G, A R, Wu H. Research Hotspots and Frontier Trends of Autophagy in Diabetic Cardiomyopathy From 2014 to 2024: A Bibliometric Analysis. J Multidiscip Healthc 2025; 18:837-860. [PMID: 39963325 PMCID: PMC11831922 DOI: 10.2147/jmdh.s507217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Objective In recent years, the investigation of autophagy mechanisms has gained prominence as a key focus for understanding the pathogenesis and therapeutic potential of diabetic cardiomyopathy. This study aims to present an overview of the current state, major research areas, and emerging trends in autophagy related to diabetic cardiomyopathy through bibliometric analysis, offering a scientific foundation for future research. Methods The Web of Science Core Collection served as the data source for this study, from which full-text publications were extracted. Using CiteSpace 6.3.R1, VOSviewer v1.6.18, and R-Bibliometrix, the analysis evaluated research output across dimensions such as subjects, countries, institutions, journals, authors, and co-cited references, generating a comprehensive visual map. Results A total of 367 publications met the inclusion criteria. Between 2014 and 2024, the volume of articles demonstrated a consistent upward trajectory. Research on autophagy in diabetic cardiomyopathy predominantly spans the disciplines of biology and medicine. China and the Fourth Military Medical University emerged as leading contributors among 41 countries and 505 institutions. Sun Dongdong was identified as the most prolific author, while Jia GH was the most frequently cited. Key journals in this field include Biochimica et Biophysica Acta - Molecular Basis of Disease and Frontiers in Cardiovascular Medicine, while Circulation Research recorded the highest number of co-citations. The most cited reference was an experimental study by Xie ZL. Current research focuses on autophagy, diabetic cardiomyopathy, oxidative stress, and their underlying mechanisms. Conclusion Research on the role of autophagy in diabetic cardiomyopathy has reached a stable phase of development. Future investigations should prioritize mechanistic studies and emphasize the clinical application of novel pharmacological interventions, thereby advancing therapeutic strategies and contributing to improved human health outcomes.
Collapse
Affiliation(s)
- Mei Yan
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Shizhao Zhang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Pengpeng Liang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hai Huang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Guiyun Li
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Ruhan A
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Hongyan Wu
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Brockmueller A, Buhrmann C, Moravejolahkami AR, Shakibaei M. Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? J Adv Res 2024; 66:181-195. [PMID: 38190940 PMCID: PMC11674784 DOI: 10.1016/j.jare.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), which is mainly caused by epigenetic and lifestyle factors, is very often associated with functional plasticity during its development. In addition, the malignant plasticity of CRC cells underscores one of their survival abilities to functionally adapt to specific stresses, including inflammation, that occur during carcinogenesis. This leads to the generation of various subsets of cancer cells with phenotypic diversity and promotes epithelial-mesenchymal transition (EMT), formation of cancer cell stem cells (CSCs) and metabolic reprogramming. This can enhance cancer cell differentiation and facilitate tumorigenic potential, drug resistance and metastasis. AIM OF REVIEW The tumor protein p53 acts as one of the central suppressors of carcinogenesis by regulating its target genes, whose proteins are involved in the plasticity of cancer cells, autophagy, cell cycle, apoptosis, DNA repair. The aim of this review is to summarize the latest published research on resveratrol's effect in the prevention of CRC, its regulatory actions, specifically on the p53 pathway, and its treatment options. KEY SCIENTIFIC CONCEPTS OF REVIEW Resveratrol, a naturally occurring polyphenol, is a potent inducer of a variety of tumor-controlling. However, the underlying mechanisms linking the p53 signaling pathway to the functional anti-plasticity effect of resveratrol in CRC are still poorly understood. Therefore, this review discusses novel relationships between anti-cellular plasticity/heterogeneity, pro-apoptosis and modulation of tumor protein p53 signaling in CRC oncogenesis, as one of the crucial mechanisms by which resveratrol prevents malignant phenotypic changes leading to cell migration and drug resistance, thus improving the ongoing treatment of CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
3
|
Jiang C, Zhou P, Zhang X, Ma N, Hu Y, Zhang M, Ghonaim AH, Li H, Dong L, Zeng W, Li C, Lang Y, Sun Y, He Q, Li W. ARF6 promotes Streptococcus suis suilysin induced apoptosis in HBMECs. Int J Biol Macromol 2024; 268:131839. [PMID: 38663699 DOI: 10.1016/j.ijbiomac.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.
Collapse
Affiliation(s)
- Changsheng Jiang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaoqian Zhang
- China Institute of Veterinary Drug Control, Beijing 102629, China
| | - NingNing Ma
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yaofang Hu
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Desert Research Center, Cairo 11435, Egypt
| | - Huimin Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Dong
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Zeng
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumei Sun
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
4
|
Shan J, Liang Y, Yang Z, Chen W, Chen Y, Sun K. RNA polymerase I subunit D activated by Yin Yang 1 transcription promote cell proliferation and angiogenesis of colorectal cancer cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:265-273. [PMID: 38682174 PMCID: PMC11058543 DOI: 10.4196/kjpp.2024.28.3.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2024]
Abstract
This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT- 29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.
Collapse
Affiliation(s)
- Jianfeng Shan
- Department of Colorectal Surgery, Xinchang People’s Hospital, Xinchang, Zhejiang 312500, China
| | - Yuanxiao Liang
- Department of Colorectal Surgery, Xinchang People’s Hospital, Xinchang, Zhejiang 312500, China
| | - Zhili Yang
- Department of Colorectal Surgery, Xinchang People’s Hospital, Xinchang, Zhejiang 312500, China
| | - Wenshan Chen
- Department of Colorectal Surgery, Xinchang People’s Hospital, Xinchang, Zhejiang 312500, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People’s Hospital, Xinchang, Zhejiang 312500, China
| | - Ke Sun
- Department of Colorectal Surgery, Xinchang People’s Hospital, Xinchang, Zhejiang 312500, China
| |
Collapse
|
5
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Abdallah R, Shaito AA, Badran A, Baydoun S, Sobeh M, Ouchari W, Sahri N, Eid AH, Mesmar JE, Baydoun E. Fractionation and phytochemical composition of an ethanolic extract of Ziziphus nummularia leaves: antioxidant and anticancerous properties in human triple negative breast cancer cells. Front Pharmacol 2024; 15:1331843. [PMID: 38405665 PMCID: PMC10885810 DOI: 10.3389/fphar.2024.1331843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024] Open
Abstract
Natural products have long been utilized in traditional medicine as remedies to improve health and treat illnesses, and have had a key role in modern drug discovery. Recently, there has been a revived interest in the search for bioactives from natural sources as alternative or complementary modalities to synthetic medicines; especially for cancer treatment, which incidence and mortality rates are on the rise worldwide. Ziziphus nummularia has been widely used in traditional medicine for the treatment of various diseases. Its traditional uses and numerous ethnopharmacological properties may be attributed to its richness in bioactive metabolites. However, its phytochemical composition or chemopreventive effects against the aggressive triple-negative breast cancer (TNBC) are still poorly explored. Here, phytochemical composition of an ethanolic extract of Z. nummularia leaves (ZNE) and its chromatographically isolated fractions was identified both qualitatively by spectrophotometric assays and analytically by HPLC-PDA-MS/MS. The anti-proliferative effects of ZNE were tested in several cancer cell lines, but we focused on its anti-TNBC effects since they were not explored yet. The anti-cancerous potential of ZNE and its fractions was tested in vitro in MDA-MB-231, a TNBC cell line. Results showed that ZNE and its Fraction 6 (F6) reduced the viability of MDA-MB-231 cells. F6 decreased MDA-MB-231 viability more than crude ZNE or its other fractions. ZNE and F6 are rich in phytochemicals and HPLC-PDA-MS/MS analysis identified several metabolites that were previously reported to have anti-cancerous effects. Both ZNE and F6 showed potent antioxidant capacity in the DPPH assay, but promoted reactive oxygen species (ROS) production in MDA-MB-231 cells; an effect which was blunted by the antioxidant N-acetyl cysteine (NAC). NAC also blunted ZNE- and F6-induced reduction in TNBC cell viability. We also demonstrated that ZNE and F6 induced an arrest of the cell cycle, and triggered apoptosis- and autophagy-mediated cell death. ZNE and F6 inhibited metastasis-related cellular processes by modifying cell migration, invasion, and adhesion. Taken together, our findings reveal that Z. nummularia is rich in phytochemicals that can attenuate the malignant phenotype of TNBC and may offer innovative avenues for the discovery of new drug leads for treatment of TNBC and other cancers.
Collapse
Affiliation(s)
- Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, Qatar University, Doha, Qatar
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Mansour Sobeh
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Wafae Ouchari
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Nihad Sahri
- Agrobiosciences Program, College for Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
8
|
Yagi S, Nilofar N, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Koyuncu I, Seker F, Polat R, Supti SJ, Tasnim F, Al Dhaheri Y, Zengin G, Eid AH. Elucidating the chemical profile and biological studies of Verbascum diversifolium Hochst. extracts. Front Pharmacol 2024; 15:1333865. [PMID: 38352148 PMCID: PMC10862011 DOI: 10.3389/fphar.2024.1333865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 μg g-1) and p-coumaric acid (3044.01 μg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 μg g-1), caffeic acid (130.13 μg g-1) and 4-hydroxy benzoic acid (465.93 μg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 μg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.
Collapse
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Université de Lorraine, INRAE, LAE, Nancy, France
| | - Nilofar Nilofar
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici” “Gabriele d’Annunzio” University, Chieti, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Türkiye
| | | | | | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Türkiye
| | - Fatma Seker
- Department of Biology, Science Arts Faculty, Harran University, Sanliurfa, Türkiye
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl, Türkiye
| | - Sumaiya Jahan Supti
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Faria Tasnim
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Doha, Qatar
| |
Collapse
|
9
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Arafat K, Al-Azawi AM, Sulaiman S, Attoub S. Exploring the Anticancer Potential of Origanum majorana Essential Oil Monoterpenes Alone and in Combination against Non-Small Cell Lung Cancer. Nutrients 2023; 15:5010. [PMID: 38068868 PMCID: PMC10708317 DOI: 10.3390/nu15235010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Lung cancer is the second most commonly diagnosed cancer and has the highest mortality rate worldwide despite the remarkable advances in its treatment. Origanum majorana Essential Oil (OMEO) has been shown to be effective against non-small cell lung cancer (NSCLC) cells, decreasing their viability and colony growth in vitro, as well as inhibiting tumor growth in chick embryo chorioallantoic membranes (CAM) and nude mice in vivo. OMEO is mainly composed of four monoterpenes, namely terpinen-4-ol, sabinene hydrate, α-terpinene, and γ-terpinene. In this study, we aimed to investigate the potential anticancer effects of these monoterpenes, either alone or in combination, on NSCLC. Our findings indicate that these four monoterpenes significantly decreased NSCLC cell viability in a concentration-dependent manner, reduced their colony growth in vitro, and also downregulated survivin expression in these cells. Moreover, different combined mixtures of these monoterpenes further enhanced their anticancer effects on cellular viability, with a terpinen-4-ol and sabinene hydrate combination being the most potent. We also found that terpinen-4-ol, in combination with sabinene hydrate, markedly enhanced the anticancer effect of the individual monoterpenes on NSCLC viability within a shorter treatment duration through, at least in part, survivin downregulation. Furthermore, this combination enhanced the inhibition of colony growth in vitro and the tumor growth of NSCLC cells xenografted onto chick embryo CAM in vivo. Altogether, our study highlights the potential of these monoterpenes for use in further pre-clinical investigations against various cancer hallmarks.
Collapse
Affiliation(s)
- Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
| | - Aya Mudhafar Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
11
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
12
|
Orlandi G, Roncucci L, Carnevale G, Sena P. Different Roles of Apoptosis and Autophagy in the Development of Human Colorectal Cancer. Int J Mol Sci 2023; 24:10201. [PMID: 37373349 DOI: 10.3390/ijms241210201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) remains a major life-threatening malignancy, despite numerous therapeutic and screening attempts. Apoptosis and autophagy are two processes that share common signaling pathways, are linked by functional relationships and have similar protein components. During the development of cancer, the two processes can trigger simultaneously in the same cell, causing, in some cases, an inhibition of autophagy by apoptosis or apoptosis by autophagy. Malignant cells that have accumulated genetic alterations can take advantage of any alterations in the apoptotic process and as a result, progress easily in the cancerous transformation. Autophagy often plays a suppressive role during the initial stages of carcinogenicity, while in the later stages of cancer development it can play a promoting role. It is extremely important to determine the regulation of this duality of autophagy in the development of CRC and to identify the molecules involved, as well as the signals and the mechanisms behind it. All the reported experimental results indicate that, while the antagonistic effects of autophagy and apoptosis occur in an adverse environment characterized by deprivation of oxygen and nutrients, leading to the formation and development of CRC, the effects of promotion and collaboration usually involve an auxiliary role of autophagy compared to apoptosis. In this review, we elucidate the different roles of autophagy and apoptosis in human CRC development.
Collapse
Affiliation(s)
- Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| |
Collapse
|
13
|
Huang YK, Chang KC, Li CY, Lieu AS, Lin CL. AKR1B1 Represses Glioma Cell Proliferation through p38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways. Curr Issues Mol Biol 2023; 45:3391-3405. [PMID: 37185746 PMCID: PMC10136867 DOI: 10.3390/cimb45040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1's inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
15
|
Kakouri E, Daferera D, Kanakis C, Revelou PK, Kaparakou EH, Dervisoglou S, Perdikis D, Tarantilis PA. Origanum majorana Essential Oil-A Review of Its Chemical Profile and Pesticide Activity. Life (Basel) 2022; 12:1982. [PMID: 36556347 PMCID: PMC9785525 DOI: 10.3390/life12121982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Origanum majorana is a medicinal and aromatic plant that belongs to the Lamiaceae family. It is cultivated in several parts of the world and, due to its splendid aroma and taste, is widely used for culinary purposes and in perfumes. The essential oil of the plant, to which is attributed its aroma, contains many secondary metabolites with valuable biological activity. One of them is the pesticide activity, which has attracted much interest. Given the necessity of replacing synthetic pesticides, essential oils are studied in an attempt to find naturally derived products. Thus, the aim of this review paper is to discuss the chemical profile of O. majorana essential oil and to present data regarding its insecticidal, repellent and fumigant activity. Data were collected from 1992 to 2022. Databases, including PubMed, Google Scholar, ScienceDirect and Scopus, were used for the research, and keywords, including O. majorana, sweet marjoram, essential oil, volatiles, pesticide, insecticide and repellent activity, were used. The results of this review paper indicate that O. majorana essential oil can be an alternative agent to manage pests. However, still, much research should be conducted to evaluate its toxicity against beneficial insects and to ensure its safety for human health.
Collapse
Affiliation(s)
- Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimitra Daferera
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Charalabos Kanakis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Panagiota-Kyriaki Revelou
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleftheria H. Kaparakou
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia Dervisoglou
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Petros A. Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
16
|
Arafat K, Sulaiman S, Al-Azawi AM, Yasin J, Sugathan S, Nemmar A, Karam S, Attoub S. Origanum majorana essential oil decreases lung tumor growth and metastasis in vitro and in vivo. Biomed Pharmacother 2022; 155:113762. [PMID: 36182733 DOI: 10.1016/j.biopha.2022.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
17
|
Zhang Z, Chen WQ, Zhang SQ, Bai JX, Liu B, Yung KKL, Ko JKS. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154406. [PMID: 36029643 DOI: 10.1016/j.phymed.2022.154406] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pancreatic cancer has been characterized by poor prognosis, early metastasis and dissatisfactory treatment outcome. The high basal level of autophagy in tumor cells leads to chemoresistance and tumor progression. Thus, it is imminent to explore novel effective chemotherapeutic adjuvants to increase patients' survival rate. Isoliquiritigenin (ISL) is a bioactive flavonoid obtained from the Traditional Chinese herbal medicine Glycyrrhiza glabra, and it possesses a broad range of pharmacological effects. In this study, the anti-cancer effect of ISL in pancreatic cancer treatment and the underlying mechanism are investigated. METHODS MTT assay, colony formation and EdU analysis were performed to explore the growth inhibition of ISL on pancreatic cancer cells. Apoptosis were analyzed using TUNEL and flow cytometry. The formations of autophagosomes were analyzed by immunofluorescence microscopy and transmission electron microscopy. RFP-GFP-LC3B probe was applied to detect the autophagy flux. To assess the structural interaction of ISL with p38 protein, molecular docking assays were performed. The molecular mechanism was elucidated by using western immunoblotting. Subsequently, the inhibition of ISL on tumor growth was determined in vivo using pancreatic tumor mice model. RESULTS ISL inhibited pancreatic cancer cell growth and induced apoptosis, both in vitro and in vivo. ISL caused accumulation of autophagosome through blockade of late stage autophagic flux. Moreover, autophagy inducer rapamycin enhanced ISL-evoked cell growth inhibition and promoted apoptosis, while inhibition of autophagosome formation by siAtg5 attenuated ISL-induced apoptosis. It is remarkable that ISL synergistically sensitized the cytotoxic effect of gemcitabine and 5-fluorouracil on pancreatic cancer cells as both drugs induced autophagy. Molecular docking analysis has indicated that ISL acted by direct targeting of p38 MAPK, which was confirmed by ISL-induced phosphorylation of p38. The autophagy flux induced by p38 inhibitor SB203580 was blocked by ISL, with further increasing toxicity of ISL in pancreatic cancer cells. CONCLUSION The results have revealed that ISL inhibited pancreatic cancer progression by blockade of autophagy through p38 MAPK signaling.
Collapse
Affiliation(s)
- Zhu Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China; Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wen-Qing Chen
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Shi-Qing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing-Xuan Bai
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China; Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Joshua Ka-Shun Ko
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
18
|
Dolghi A, Coricovac D, Dinu S, Pinzaru I, Dehelean CA, Grosu C, Chioran D, Merghes PE, Sarau CA. Chemical and Antimicrobial Characterization of Mentha piperita L. and Rosmarinus officinalis L. Essential Oils and In Vitro Potential Cytotoxic Effect in Human Colorectal Carcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186106. [PMID: 36144839 PMCID: PMC9505364 DOI: 10.3390/molecules27186106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Colorectal cancer is one of the most frequently diagnosed forms of cancer, and the therapeutic solutions are frequently aggressive requiring improvements. Essential oils (EOs) are secondary metabolites of aromatic plants with important pharmacological properties that proved to be beneficial in multiple pathologies including cancer. Mentha piperita L. (M_EO) and Rosmarinus officinalis L. (R_EO) essential oils are well-known for their biological effects (antimicrobial, antioxidant, anti-inflammatory and cytotoxic in different cancer cells), but their potential as complementary treatment in colorectal cancer is underexplored. The aim of the present study was to investigate the M_EO and R_EO in terms of chemical composition, antioxidant, antimicrobial, and cytotoxic effects in a colorectal cancer cell line—HCT 116. The gas-chromatographic analysis revealed menthone and menthol, and eucalyptol, α-pinene and L-camphor as major compounds in M_EO and R_EO respectively. M_EO exhibited potent antimicrobial activity, moderate antioxidant activity and a low cytotoxic effect in HCT 116 cells. R_EO presented a significant cytotoxicity in colorectal cancer cells and a low antimicrobial effect. The cytotoxic effect on non-cancerous cell line HaCaT was not significant for both essential oils. These results may provide an experimental basis for further research concerning the potential use of M_EO and R_EO for anticancer treatment.
Collapse
Affiliation(s)
- Alina Dolghi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (S.D.); (I.P.)
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (S.D.); (I.P.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Grosu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Doina Chioran
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Petru Eugen Merghes
- Faculty of Bioengineering of Animal Resources, University of Life Science “King Michael I of Romania” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Cristian Andrei Sarau
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
19
|
N-linoleyltyrosine protects neurons against Aβ1-40-induced cell toxicity via autophagy involving the CB2/AMPK/mTOR/ULK1 pathway. Brain Res Bull 2022; 188:203-213. [DOI: 10.1016/j.brainresbull.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/20/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
|
20
|
AlKahlout A, Fardoun M, Mesmar J, Abdallah R, Badran A, Nasser SA, Baydoun S, Kobeissy F, Shaito A, Iratni R, Muhammad K, Baydoun E, Eid AH. Origanum syriacum L. Attenuates the Malignant Phenotype of MDA-MB231 Breast Cancer Cells. Front Oncol 2022; 12:922196. [PMID: 35847867 PMCID: PMC9280492 DOI: 10.3389/fonc.2022.922196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Among breast cancer types, triple negative breast cancer (TNBC) is the most aggressive, and is resistant to hormonal and chemotherapeutic treatments. As such, alternative approaches that may provide some benefit in fighting this debilitating pathology are critically needed; hence the utilization of herbal medicine. Origanum syriacum L., one of the most regularly consumed plants in the Mediterranean region, exhibits antiproliferative effect on several cancer cell lines. However, whether this herb modulates the malignant phenotype of TNBC remains poorly investigated. Here, we show that in MDA-MB-231, a TNBC cell line, Origanum syriacum L. aqueous extract (OSE) inhibited cellular viability, induced autophagy determined by the accumulation of lipidized LC3 II, and triggered apoptosis. We also show that OSE significantly promoted homotypic cell-cell adhesion while it decreased cellular migration, adhesion to fibronectin, and invasion of MDA-MB-231 cells. This was supported by decreased activity of focal adhesion kinase (FAK), reduced α2 integrin expression, and downregulation of secreted PgE2, MMP2 and MMP-9, in OSE-treated cells. Finally, we also show that OSE significantly inhibited angiogenesis and downregulated the level of nitric oxide (NO) production. Our findings demonstrate the ability of OSE to attenuate the malignant phenotype of the MDA-MB-231 cells, thus presenting Origanum syriacum L. as a promising potential source for therapeutic compounds for TNBC.
Collapse
Affiliation(s)
| | - Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, Amman, Jordan
| | - Suzanne A. Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Serine Baydoun
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainseville, FL, United States
| | | | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Resveratrol Induces Autophagy and Apoptosis in Non-Small-Cell Lung Cancer Cells by Activating the NGFR-AMPK-mTOR Pathway. Nutrients 2022; 14:nu14122413. [PMID: 35745143 PMCID: PMC9228598 DOI: 10.3390/nu14122413] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Resveratrol (RSV) has been reported to induce autophagy and apoptosis in non-small-cell lung cancer A549 cells, and the nerve growth factor receptor (NGFR) regulates autophagy and apoptosis in many other cells. However, the effect of NGFR on autophagy and apoptosis induced by RSV in A549 cells remains unclear. Here, we found that RSV reduced the cell survival rate in time- and concentration-dependent manners, activating autophagy and apoptosis. Lethal autophagy was triggered by RSV higher than 55 μM. The relationship between autophagy and apoptosis depended on the type of autophagy. Specifically, mutual promotion was observed between apoptosis and lethal autophagy. Conversely, cytoprotective autophagy facilitated apoptosis but was unaffected by apoptosis. RSV enhanced NGFR by increasing mRNA expression and prolonging the lifespan of NGFR mRNA and proteins. RSV antagonized the enhanced autophagy and apoptosis caused by NGFR knockdown. As the downstream pathway of NGFR, AMPK-mTOR played a positive role in RSV-induced autophagy and apoptosis. Overall, RSV-induced autophagy and apoptosis in A549 cells are regulated by the NGFR-AMPK-mTOR signaling pathway.
Collapse
|
22
|
Kaskatepe B, Aslan Erdem S, Ozturk S, Safi Oz Z, Subasi E, Koyuncu M, Vlainić J, Kosalec I. Antifungal and Anti-Virulent Activity of Origanum majorana L. Essential Oil on Candida albicans and In Vivo Toxicity in the Galleria mellonella Larval Model. Molecules 2022; 27:molecules27030663. [PMID: 35163928 PMCID: PMC8838586 DOI: 10.3390/molecules27030663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate and compare in detail both the antifungal activity in vitro (with planktonic and biofilm-forming cells) and the essential oil composition (EOs) of naturally growing (OMN) and cultivated (OMC) samples of Origanum majorana L. (marjoram). The essential oil composition was analyzed using GC-MS. The major constituent of both EOs was carvacrol: 75.3% and 84%, respectively. Both essential oils showed high antifungal activity against clinically relevant Candida spp. with IC50 and IC90 less than or equal to 0.5 µg mL−1 and inhibition of biofilm with a concentration of 3.5 µg mL−1 or less. Cultivated marjoram oil showed higher anti-biofilm activity against C. albicans. In addition, OMC showed greater inhibition of germ-tube formation (inhibition by 83% in Spider media), the major virulence factor of C. albicans at a concentration of 0.125 µg mL−1. Both EOs modulated cell surface hydrophobicity (CSH), but OMN proved to be more active with a CSH% up to 58.41%. The efficacy of O. majorana EOs was also investigated using Galleria mellonella larvae as a model. It was observed that while the larvae of the control group infected with C. albicans (6.0 × 108 cells) and not receiving treatment died in the controls carried out after 24 h, all larvae in the infected treatment group survived at the end of the 96th hour. When the treatment group and the infected group were evaluated in terms of vital activities, it was found that the difference was statistically significant (p < 0.001). The infection of larvae with C. albicans and the effects of O. majorana EOs on the hemocytes of the model organism and the blastospores of C. albicans were evaluated by light microscopy on slides stained with Giemsa. Cytological examination in the treatment group revealed that C. albicans blastospores were phagocytosed and morphological changes occurred in hemocytes. Our results indicated that the essential oil of both samples showed strong antifungal activities against planktonic and biofilm-forming C. albicans cells and also had an influence on putative virulence factors (germ-tube formation and its length and on CSH).
Collapse
Affiliation(s)
- Banu Kaskatepe
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey;
| | - Sinem Aslan Erdem
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey;
| | - Sukran Ozturk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey;
| | - Zehra Safi Oz
- Department of Medical Biology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey;
| | - Eldan Subasi
- Microbiology Laboratory of Application and Research Hospital, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey;
| | - Mehmet Koyuncu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Cyprus International University, Lefkosa 99258, Turkey;
| | | | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, Institute for Microbiology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1639-4492
| |
Collapse
|
23
|
Zhang T, Chen H, Liu Y. Nickel Sulfate Induces Autophagy in Human Thyroid Follicular Epithelial Cells. Biol Trace Elem Res 2022; 200:122-133. [PMID: 33738685 DOI: 10.1007/s12011-021-02643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Nickel is an industrial and environmental toxic metal, which is toxic to humans in certain forms at high doses. Here, we investigated the cytotoxic effects of nickel sulfate (NiSO4) exposure on the human thyroid follicular epithelial cells (Nthy-ori 3-1) and its underlying toxicological mechanisms. The results showed that NiSO4 reduced the cell viability of Nthy-ori 3-1 cells in a dose- and time-dependent manner, inducing S and G2/M phases cell-cycle arrest and apoptosis. Electron microscopy demonstrated that abundant autophagic vacuoles were found in Nthy-ori 3-1 cells after NiSO4 treatment. Accordingly, exposure of Nthy-ori 3-1 cells to NiSO4 resulted in a dose-dependent increase of LC3II/I ratio, an induction of Beclin-1 expression, and a decrease in p62 levels. Blockade of autophagy with 3-methyladenine (3-MA) potentiated the NiSO4-induced apoptotic cell death, while induction of autophagy significantly alleviated toxicity of NiSO4. From a molecular standpoint, NiSO4 markedly promoted the activation of p38 and IKKβ by increasing their phosphorylation. In conclusion, we showed that autophagy was induced to protect thyroid cells from Ni2+ mediated apoptosis, thus providing rational strategy to prevent against nickel toxicity in the thyroid.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Hui Chen
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People's Republic of China.
| | - Yahong Liu
- Department of Pediatrics Cardiology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| |
Collapse
|
24
|
Lu P, Chen J, Zhang C, Saur D, Baer CE, Lifshitz LM, Fogarty KE, ZhuGe R. Oscillating calcium signals in smooth muscle cells underlie the persistent basal tone of internal anal sphincter. J Cell Physiol 2021; 236:5937-5952. [PMID: 33452672 PMCID: PMC8132622 DOI: 10.1002/jcp.30279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/05/2023]
Abstract
A persistent basal tone in the internal anal sphincter (IAS) is essential for keeping the anal canal closed and fecal continence; its inhibition via the rectoanal inhibitory reflex (RAIR) is required for successful defecation. However, cellular signals underlying the IAS basal tone remain enigmatic. Here we report the origin and molecular mechanisms of calcium signals that control the IAS basal tone, using a combination approach including a novel IAS slice preparation that retains cell arrangement and architecture as in vivo, 2-photon imaging, and cell-specific gene-modified mice. We found that IAS smooth muscle cells generate two forms of contractions (i.e., phasic and sustained contraction) and Ca2+ signals (i.e., synchronized Ca2+ oscillations [SCaOs] and asynchronized Ca2+ oscillations [ACaOs]) that last for hours. RyRs, TMEM16A, L-type Ca2+ channels, and gap junctions are required for SCaOs, which account for phasic contraction and 75% of sustained contraction. Nevertheless, only RyRs are required for ACaOs, which contribute 25% of sustained contraction. Nitric oxide, the primary neurotransmitter mediating the RAIR, blocks both types of Ca2+ signals, leading to IAS's full relaxation. Our results show that the oscillating nature of Ca2+ signals generates and maintains the basal tone without causing cytotoxicity to IAS. Our study provides insight into fecal continence and normal defecation.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chenghai Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Sanderson Center for Optical Experimentation, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kevin E Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
25
|
Oleanolic Acid Induces Autophagy and Apoptosis via the AMPK-mTOR Signaling Pathway in Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8281718. [PMID: 34326874 PMCID: PMC8310446 DOI: 10.1155/2021/8281718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022]
Abstract
Aims The purpose of this study was to explore the biological functions of the mTOR and AMPK signaling pathways in colon cancer (CC). The potential molecular mechanisms by which oleanolic acid (OA) induces autophagy and apoptosis were also investigated. Methods The biological functions of mTOR were analyzed by GeneCards, the Search Tool for the Retrieval of Interacting Genes (STRING), and the Database for Annotation, Visualization and Integrated Discovery (DAVID). Least absolute shrinkage and selection operator (LASSO) regression analysis was used to obtain prognostic and survival data of CC patients from the Gene Expression Omnibus (GEO) database. The effects of OA on the CC cell lines HCT-116 and SW-480 were analyzed by CCK-8, colony formation assay, and high-content system (HCS) array scan. The apoptosis rate of SW-480 and HCT-116 cells was detected by flow cytometry. The mRNA and protein expression levels in HCT-116 and SW-480 cells and NCM-460 normal colonic epithelial cells were detected by RT-PCR and Western blotting. Results mTOR was highly expressed in CC patients and acted as an oncogene. The AMPK signaling pathway mediated by mTOR predicted the poor prognosis of CC patients. OA effectively inhibited the proliferation and viability of CC cells. Furthermore, the apoptosis rate of CC cells was clearly increased following OA administration. Regarding the molecular mechanism of OA, the results indicated that mTOR and the antiapoptosis gene Bcl-2 were downregulated by OA. In addition, regulator genes of autophagy and apoptosis, including BAX, caspase-9, caspase-8, and caspase-3, were significantly upregulated by OA. Moreover, OA upregulated AMPK and its downstream proteins, including TSC2, BAX, Beclin 1, LC3B-II, and ULK1, to induce autophagy and apoptosis in CC cells. Conclusion The findings from this study demonstrate that OA could effectively inhibit the proliferation and viability of CC cells. The anti-CC activity of OA is closely related to the activation of the AMPK-mTOR signaling pathway. Activation of AMPK and inhibition of mTOR are involved in the induction of autophagy and apoptosis by OA. OA induced autophagy and apoptosis mainly in an AMPK activation-dependent manner in CC cells.
Collapse
|
26
|
Du H, Luo F, Shi M, Che J, Zhu L, Li H, Hang J. Beclin-1 is a Promising Prognostic Biomarker in a Specific Esophageal Squamous Cell Carcinoma Population. Pathol Oncol Res 2021; 27:594724. [PMID: 34257544 PMCID: PMC8262207 DOI: 10.3389/pore.2021.594724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
The effects of autophagy and apoptosis in the prognostic assessment and treatment of Esophageal squamous cell carcinoma (ESCC) remain to be elucidated. Here, we conducted a retrospective study on the histopathology of ESCC, investigated the expression of Beclin-1 and Bcl-2 proteins (both autophagy- and apoptosis-related) in esophageal cancer tissue, and analyzed the significance of these proteins for the prognosis of ESCC. In the present study, the expression level of Beclin-1 in ESCC was significantly lower than that in adjacent tissues (p < 0.01), whereas the expression level of Bcl-2 showed the opposite pattern (p < 0.01). Furthermore, low expression of Beclin-1 was associated with more advanced ESCC stages and lymph node metastasis. However, high expression of Bcl-2 was associated with more advanced ESCC stages, deeper tumor invasion, and lymph node metastasis. Moreover, the relationship between Bcl-2 expression and OS was not significant (p > 0.05), whereas Beclin-1 expression was significantly associated with OS (p < 0.05). Subgroup analysis showed that Beclin-1 expression was significantly associated with OS in the high-Bcl-2-expression group but not in the low-Bcl-2-expression group. Importantly, Beclin-1 upregulation or downregulation significantly upregulated or downregulated invasion, respectively, in EC9706 cells in combination with high expression but not low expression of Bcl-2. These findings reveal that differences in autophagy and apoptotic states and their activities may promote malignant tumor differentiation, which could lead to a more aggressive esophageal squamous cell phenotype and a worse survival prognosis. Here, Beclin-1 was shown to be a promising prognostic biomarker and therapeutic target for patients with ESCC in the high-Bcl-2-expression population.
Collapse
Affiliation(s)
- Hailei Du
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangxiu Luo
- Department of Pathology, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Institute of Digestive Surgery, Shanghai, China
| | - Jiaming Che
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianggang Zhu
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junbiao Hang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
28
|
Romano B, Lucariello G, Capasso R. Topical Collection "Pharmacology of Medicinal Plants". Biomolecules 2021; 11:biom11010101. [PMID: 33466709 PMCID: PMC7828774 DOI: 10.3390/biom11010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy; (B.R.); (G.L.)
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy; (B.R.); (G.L.)
| | - Raffaele Capasso
- Department of Agricultural Science, University of Naples Federico II, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
29
|
Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants (Basel) 2021; 10:antiox10010073. [PMID: 33430013 PMCID: PMC7828031 DOI: 10.3390/antiox10010073] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rhus coriaria L. (Anacardiaceae), commonly known as sumac, is a commonly used spice, condiment, and flavoring agent, especially in the Mediterranean region. Owing to its bountiful beneficial values, sumac has been used in traditional medicine for the management and treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcer, and eye inflammation. This plant is rich in various classes of phytochemicals including flavonoids, tannins, polyphenolic compounds, organic acids, and many others. By virtue of its bioactive, Rhus coriaria possesses powerful antioxidant capacities that have ameliorative and therapeutic benefits for many common diseases including cardiovascular disease, diabetes, and cancer. This review describes the phytochemical properties of R. coriaria and then focuses on the potent antioxidant capacities of sumac. We then dissect the cellular and molecular mechanisms of sumac’s action in modulating many pathophysiological instigators. We show how accumulating evidence supports the antibacterial, antinociceptive, antidiabetic, cardioprotective, neuroprotective, and anticancer effects of this plant, especially that toxicity studies show that sumac is very safe to consume by humans and has little toxicity. Taken together, the findings we summarize here support the utilization of this plant as an attractive target for drug discovery.
Collapse
|
30
|
Sitarek P, Merecz-Sadowska A, Śliwiński T, Zajdel R, Kowalczyk T. An In Vitro Evaluation of the Molecular Mechanisms of Action of Medical Plants from the Lamiaceae Family as Effective Sources of Active Compounds against Human Cancer Cell Lines. Cancers (Basel) 2020; 12:E2957. [PMID: 33066157 PMCID: PMC7601952 DOI: 10.3390/cancers12102957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
It is predicted that 1.8 million new cancer cases will be diagnosed worldwide in 2020; of these, the incidence of lung, colon, breast, and prostate cancers will be 22%, 9%, 7%, and 5%, respectively according to the National Cancer Institute. As the global medical cost of cancer in 2020 will exceed about $150 billion, new approaches and novel alternative chemoprevention molecules are needed. Research indicates that the plants of the Lamiaceae family may offer such potential. The present study reviews selected species from the Lamiaceae and their active compounds that may have the potential to inhibit the growth of lung, breast, prostate, and colon cancer cells; it examines the effects of whole extracts, individual compounds, and essential oils, and it discusses their underlying molecular mechanisms of action. The studied members of the Lamiaceae are sources of crucial phytochemicals that may be important modulators of cancer-related molecular targets and can be used as effective factors to support anti-tumor treatment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
31
|
Memory-Enhancing Effects of Origanum majorana Essential Oil in an Alzheimer's Amyloid beta1-42 Rat Model: A Molecular and Behavioral Study. Antioxidants (Basel) 2020; 9:antiox9100919. [PMID: 32993114 PMCID: PMC7600529 DOI: 10.3390/antiox9100919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Origanum L. (Lamiaceae) is an important genus of medicinal and aromatic plants used in traditional medicine since ancient times as culinary herbs and remedies. The aim of the present study was to evaluate the chemical composition, as well as the biochemical and cellular activities of freshly prepared Origanum majorana L. essential oil (OmEO) in an Alzheimer’s disease (AD) amyloid beta1-42 (Aβ1-42) rat model. OmEO (1% and 3%) was inhaled for 21 consecutive days, while Aβ1-42 was administered intracerebroventricularly to induce AD-like symptoms. Our data demonstrate that OmEO increased antioxidant activity and enhanced brain-derived neurotrophic factor (BDNF) expression, which in concert contributed to the improvement of cognitive function of animals. Moreover, OmEO presented beneficial effects on memory performance in Y-maze and radial arm-maze tests in the Aβ1-42 rat AD model.
Collapse
|
32
|
Xie Q, Liu Y, Li X. The interaction mechanism between autophagy and apoptosis in colon cancer. Transl Oncol 2020; 13:100871. [PMID: 32950931 PMCID: PMC7509232 DOI: 10.1016/j.tranon.2020.100871] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Autophagy and apoptosis play crucial roles in tumorigenesis. Recent studies have shown that autophagy and apoptosis have a cross-talk relationship in anti-tumor therapy. It is well established that apoptosis is one of the main pathways of tumor cell death. While autophagy can occurs in tumors with opposite function: protective autophagy and lethal autophagy. Protective autophagy can inhibit tumor apoptosis induced by anticancer drugs, while lethal autophagy can induce tumor cell apoptosis in cooperation with anticancer drugs. Hence, autophagy and apoptosis have synergistic and antagonistic effects in tumor. Colorectal cancer is a common malignant tumor with high morbidity and mortality. In recent years, colorectal carcinoma has achieved improved clinical efficacy with drug treatment. Nonetheless, increasing drug-resistance limit the treatment efficacy, highlighting the urgency of exploring the molecular events that drive drug resistance. Researchers have found that autophagy is one of the major factors leading to drug resistance in colon cancer. Therefore, elucidating the interaction between autophagy and apoptosis is helpful to improve the efficacy of anticancer drugs in clinical treatment of colorectal cancer. This review attaches great importance to the relationship between autophagy and apoptosis and related factors in colorectal cancer.
Collapse
Affiliation(s)
- Qingqiang Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, PR China,Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China,Corresponding author at: The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
33
|
Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers (Basel) 2020; 12:cancers12092650. [PMID: 32948083 PMCID: PMC7565555 DOI: 10.3390/cancers12092650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the last years, targeted therapy and immunotherapy modified the landscape for metastatic melanoma treatment. These therapeutic approaches led to an impressive improvement in patients overall survival. Unfortunately, the emergence of drug resistance and side effects occurring during therapy strongly limit the long-term efficacy of such treatments. Several preclinical studies demonstrate the efficacy of essential oils as antitumoral agents, and clinical trials support their use to reduce side effects emerging during therapy. In this review we have summarized studies describing the molecular mechanism through which essential oils induce in vitro and in vivo cell death in melanoma models. We also pointed to clinical trials investigating the use of essential oils in reducing the side effects experienced by cancer patients or those undergoing anticancer therapy. From this review emerged that further studies are necessary to validate the effectiveness of essential oils for the management of melanoma. Abstract The last two decades have seen the development of effective therapies, which have saved the lives of a large number of melanoma patients. However, therapeutic options are still limited for patients without BRAF mutations or in relapse from current treatments, and severe side effects often occur during therapy. Thus, additional insights to improve treatment efficacy with the aim to decrease the likelihood of chemoresistance, as well as reducing side effects of current therapies, are required. Natural products offer great opportunities for the discovery of antineoplastic drugs, and still represent a useful source of novel molecules. Among them, essential oils, representing the volatile fraction of aromatic plants, are always being actively investigated by several research groups and show promising biological activities for their use as complementary or alternative medicine for several diseases, including cancer. In this review, we focused on studies reporting the mechanism through which essential oils exert antitumor action in preclinical wild type or mutant BRAF melanoma models. We also discussed the latest use of essential oils in improving cancer patients’ quality of life. As evidenced by the many studies listed in this review, through their effect on apoptosis and tumor progression-associated properties, essential oils can therefore be considered as potential natural pharmaceutical resources for cancer management.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
| | - Rino Ragno
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| |
Collapse
|
34
|
Evaluating the In vitro anti-cancer potential of estragole from the essential oil of Agastache foeniculum [Pursh.] Kuntze. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Zheng C, Zhang T, Li D, Huang C, Tang H, Ni XF, Chen B. Upregulation of CENPM facilitates tumor metastasis via the mTOR/p70S6K signaling pathway in pancreatic cancer. Oncol Rep 2020; 44:1003-1012. [PMID: 32705259 PMCID: PMC7388243 DOI: 10.3892/or.2020.7673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a severe disease with high morbidity and mortality. However, the primary molecular mechanisms of pancreatic tumor formation and progression remain unclear. The present study using sequencing technology revealed that the centromere protein M (CENPM) gene was overexpressed in pancreatic cancer tissues. CENPM is one of the components of a complex that plays a central role in kinetochore protein assembly, mitotic progression and chromosome segregation. However, the biological function of CENPM in pancreatic cancer has yet to be determined. Hence, two effective siRNAs were designed to knock down CENPM. Notably, downregulation of CENPM inhibited pancreatic cancer cell proliferation, altered the cell cycle and limited pancreatic cancer cell migration and invasion via the mTOR/p70S6K signaling pathway. This research provides new evidence that CENPM overexpression plays a significant role in the progression of pancreatic cancer. Overall, the present findings indicated that CENPM may be a significant biomarker for predicting the development and progression of pancreatic malignancy.
Collapse
Affiliation(s)
- Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ding Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chongchu Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao-Feng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
36
|
Diniz do Nascimento L, Barbosa de Moraes AA, Santana da Costa K, Pereira Galúcio JM, Taube PS, Leal Costa CM, Neves Cruz J, de Aguiar Andrade EH, Guerreiro de Faria LJ. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020; 10:biom10070988. [PMID: 32630297 PMCID: PMC7407208 DOI: 10.3390/biom10070988] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Spice plants have a great influence on world history. For centuries, different civilizations have used them to condiment the foods of kings and nobles and applied them as embalming preservatives, perfumes, cosmetics, and medicines in different regions of the world. In general, these plants have formed the basis of traditional medicine and some of their derived substances have been utilized to treat different human diseases. Essential oils (EOs) obtained from these plants have been also used as therapeutic agents and have shown supportive uses in remedial practices. The discovery and development of bioactive compounds from these natural products, based on their traditional uses, play an important role in developing the scientific evidence of their potential pharmaceutical, cosmetic, and food applications. In the present review, using recent studies, we exhibit a general overview of the main aspects related to the importance of spice plants widely used in traditional medicine: Cinnamomum zeylanicum (true cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (oregano), Piper nigrum (black pepper), Rosmarinus officinalis (rosemary), and Thymus vulgaris (thyme); and we discuss new findings of the bioactive compounds obtained from their EOs, their potential applications, as well as their molecular mechanisms of action, focusing on their antioxidant activity. We also exhibit the main in vitro methods applied to determine the antioxidant activities of these natural products.
Collapse
Affiliation(s)
- Lidiane Diniz do Nascimento
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - Angelo Antônio Barbosa de Moraes
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Kauê Santana da Costa
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - João Marcos Pereira Galúcio
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Paulo Sérgio Taube
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Cristiane Maria Leal Costa
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| | - Jorddy Neves Cruz
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Eloisa Helena de Aguiar Andrade
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Lênio José Guerreiro de Faria
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| |
Collapse
|