1
|
Maia CMDA, Vasconcelos PGS, Pasetto S, Godwin WC, Silva JPRE, Tavares JF, Pardi V, Costa EMMDB, Murata RM. Anadenanthera colubrina regulated LPS-induced inflammation by suppressing NF-κB and p38-MAPK signaling pathways. Sci Rep 2024; 14:16028. [PMID: 38992070 PMCID: PMC11239917 DOI: 10.1038/s41598-024-66590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
We aimed to determine the chemical profile and unveil Anadenanthera colubrina (Vell.) Brenan standardized extract effects on inflammatory cytokines expression and key proteins from immunoregulating signaling pathways on LPS-induced THP-1 monocyte. Using the RT-PCR and Luminex Assays, we planned to show the gene expression and the levels of IL-8, IL-1β, and IL-10 inflammatory cytokines. Key proteins of NF-κB and MAPK transduction signaling pathways (NF-κB, p-38, p-NF-κB, and p-p38) were detected by Simple Western. Using HPLC-ESI-MSn (High-Performance Liquid-Chromatography) and HPLC-HRESIMS, we showed the profile of the extract that includes an opus of flavonoids, including the catechins, quercetin, kaempferol, and the proanthocyanidins. Cell viability was unaffected up to 250 µg/mL of the extract (LD50 = 978.7 µg/mL). Thereafter, the extract's impact on the cytokine became clear. Upon LPS stimuli, in the presence of the extract, gene expression of IL-1β and IL-10 were downregulated and the cytokines expression of IL-1β and IL-10 were down an upregulated respectively. The extract is involved in TLR-4-related NF-κB/MAPK pathways; it ignited phosphorylation of p38 and NF-κB, orchestrating a reduced signal intensity. Therefore, Anadenanthera colubrina's showed low cytotoxicity and profound influence as a protector against the inflammation, modulating IL-1β and IL-10 inflammatory cytokines gene expression and secretion by regulating intracellular NF-κB and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | | | - Silvana Pasetto
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Walton Colby Godwin
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Joanda Paolla Raimundo E Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Edja Maria Melo de Brito Costa
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil.
| | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
2
|
Lee D, Kim JW, Lee CY, Oh J, Hwang SH, Jo M, Kim SA, Choi W, Noh JK, Yi DK, Song M, Kim HG, Cho JY. Guettarda crispiflora Vahl Methanol Extract Ameliorates Acute Lung Injury and Gastritis by Suppressing Src Phosphorylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3560. [PMID: 36559672 PMCID: PMC9784507 DOI: 10.3390/plants11243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Many species in the genus Guettarda are known to exert anti-inflammatory effects and are used as traditional medicinal plants to treat various inflammatory symptoms. However, no studies on the inflammatory activities of Guettarda crispiflora Vahl have been reported. The aim of the study was to investigate in vitro and in vivo the anti-inflammatory effects of a methanol extract of Guettarda crispiflora Vahl (Gc-ME). To determine the anti-inflammatory activity of Gc-ME, lipopolysaccharide (LPS)-, poly(I:C)-, or Pam3CSK4-treated RAW264.7 cells, HCl/EtOH- and LPS-treated mice were employed for in vitro and in vivo tests. LPS-induced nitric oxide production in RAW264.7 cells was determined by Griess assays and cytokine gene expression in LPS-activated RAW264.7 cells, confirmed by RT- and real-time PCR. Transcriptional activation was evaluated by luciferase reporter gene assay. Target protein validation was assessed by Western blot analysis and cellular thermal shift assays (CETSA) with LPS-treated RAW264.7 and gene-transfected HEK293 cells. Using both a HCl/EtOH-induced gastritis model and an LPS-induced lung injury model, inflammatory states were checked by scoring or evaluating gastric lesions, lung edema, and lung histology. Phytochemical fingerprinting of Gc-ME was observed by using liquid chromatography-mass spectrometry. Nitric oxide production induced by LPS and Pam3CSK4 in RAW264.7 cells was revealed to be reduced by Gc-ME. The LPS-induced upregulation of iNOS, COX-2, IL-6, and IL-1β was also suppressed by Gc-ME treatment. Gc-ME downregulated the promotor activities of AP-1 and NF-κB triggered by MyD88- and TRIF induction. Upstream signaling proteins for NF-κB activation, namely, p-p50, p-p65, p-IκBα, and p-Src were all downregulated by Ch-EE. Moreover, Src was revealed to be directly targeted by Gc-ME. This extract, orally treated strongly, attenuated the inflammatory symptoms in HCl/EtOH-treated stomachs and LPS-treated lungs. Therefore, these results strongly imply that Guettarda crispiflora can be developed as a promising anti-inflammatory remedy with Src-suppressive properties.
Collapse
Affiliation(s)
- Dahae Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chae Young Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - So Hyun Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Shear-Induced ITGB4 Promotes Endothelial Cell Inflammation and Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5842677. [PMID: 36329801 PMCID: PMC9626222 DOI: 10.1155/2022/5842677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/30/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
The local heterogeneity in the distribution of atherosclerotic lesions is caused by local flow patterns. The integrin family plays crucial regulatory roles in diverse biological processes, but knowledge of integrin β4 (ITGB4) in shear stress-induced atherosclerosis is limited. This study clarified that low shear stress (LSS) regulates the generation of ITGB4 in endothelial cells with atheroprone phenotype to identify ITGB4's role in atherosclerosis. We found that LSS led to an increase in ITGB4 protein expression both in vitro and in vivo. ITGB4 knockdown attenuated inflammation and ROS generation in human umbilical vein endothelial cells (HUVECs) and reduced atherosclerotic lesion areas in ApoE−/− mice fed with HFD, largely independent of effects on the lipid profile. Mechanistically, ITGB4 knockdown altered the phosphorylation levels of SRC, FAK, and NFκB in HUVECs under LSS conditions. In addition, the knockdown of NFκB inhibited the production of ITGB4 and SRC phosphorylation, and the knockdown of SRC downregulated ITGB4 protein expression and NFκB activation. These data demonstrate a critical role of ITGB4 in atherosclerosis via modulation of endothelial cell inflammation, and ITGB4/SRC/NFκB might form a positive feedback loop in the regulation of endothelial cell inflammation.
Collapse
|
4
|
Kim JW, Kwon KW, Kim MY, Cho JY. Potentilla paradoxa Nutt. Ethanol Extract Exhibits Anti-Inflammatory Effects by Suppression of the Src/NF-κB Signaling Pathway. PLANTS 2022; 11:plants11131750. [PMID: 35807703 PMCID: PMC9269291 DOI: 10.3390/plants11131750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022]
Abstract
Inflammation is an immune response that protects against harmful stimuli. However, severe inflammation can cause many diseases, such as diabetes, cancer, and arthritis. In this study, we examined the anti-inflammatory efficacy and mechanism of Potentilla paradoxa Nutt. ethanol extract (Pp-EE) as a new strategy for controlling the inflammatory response. Cellular activities and the molecular target of Pp-EE were identified in RAW264.7 cells and HEK293T cells. The effect of Pp-EE was analyzed using the Griess assay, the luciferase assay, reverse transcription-polymerase chain reaction, and Western blotting. To evaluate the in vivo effects, an HCl/EtOH-induced gastritis mouse model was used. NO production and pro-inflammatory gene (iNOS, COX-2, and TNF-α) mRNA levels were decreased by Pp-EE in a concentration-dependent manner without showing cytotoxicity. The activation of the transcription factor, particularly NF-κB, was effectively suppressed by Pp-EE. It was also found that Pp-EE directly inhibits the activation of Src in lipopolysaccharide (LPS)-treated RAW264.7 cells and in Src-overexpressed HEK293 cells by Western blotting analysis and cellular thermal shift assay. Experiments in the gastritis mouse model indicated that Pp-EE suppresses HCl/EtOH-induced gastric lesions, the expression levels of COX-2, IL-6, and TNF-α, and the phosphorylation of p65, p50, and Src. Taken together, these results suggest that Pp-EE can be applied as an anti-inflammatory remedy with a Src/NF-κB inhibitory property.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.W.K.); (K.W.K.)
| | - Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.W.K.); (K.W.K.)
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.W.K.); (K.W.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
5
|
Shin KK, Park SH, Lim HY, Lorza LR, Qomaladewia NP, You L, Aziz N, Kim SA, Lee JS, Choung ES, Noh JK, Yie DK, Jeong D, Lee J, Cho JY. In Vitro Anti-Photoaging and Skin Protective Effects of Licania macrocarpa Cuatrec Methanol Extract. PLANTS (BASEL, SWITZERLAND) 2022; 11:1383. [PMID: 35631808 PMCID: PMC9144732 DOI: 10.3390/plants11101383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
The Licania genus has been used in the treatment of dysentery, diabetes, inflammation, and diarrhea in South America. Of these plants, the strong anti-inflammatory activity of Licania macrocarpa Cuatrec (Chrysobalanaceae) has been reported previously. However, the beneficial activities of this plant on skin health have remained unclear. This study explores the protective activity of a methanol extract (50-100 μg/mL) in the aerial parts of L. macrocarpa Cuatrec (Lm-ME) and its mechanism, in terms of its moisturizing/hydration factors, skin wrinkles, UV radiation-induced cell damage, and radical generation (using RT/real-time PCR, carbazole assays, flowcytometry, DPPH/ABTS, and immunoblotting analysis). The anti-pigmentation role of Lm-ME was also tested by measuring levels of melanin, melanogenesis-related genes, and pigmentation-regulatory proteins. Lm-ME decreased UVB-irradiated death in HaCaT cells by suppressing apoptosis and inhibited matrix metalloproteinases 1/2 (MMP1/2) expression by enhancing the activity of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. It was confirmed that Lm-ME displayed strong antioxidative activity. Lm-ME upregulated the expression of hyaluronan synthases-2/3 (HAS-2/3) and transglutaminase-1 (TGM-1), as well as secreted levels of hyaluronic acid (HA) via p38 and JNK activation. This extract also significantly inhibited the production of hyaluronidase (Hyal)-1, -2, and -4. Lm-ME reduced the melanin expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1/2 (TYRP-1/2) in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 cells via the reduction of cAMP response element-binding protein (CREB) and p38 activation. These results suggest that Lm-ME plays a role in skin protection through antioxidative, moisturizing, cytoprotective, and skin-lightening properties, and may become a new and promising cosmetic product beneficial for the skin.
Collapse
Affiliation(s)
- Kon Kuk Shin
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Hye Yeon Lim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Laura Rojas Lorza
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Nurinanda Prisky Qomaladewia
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Long You
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Soo Ah Kim
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Jin Kyung Noh
- Instituto de BioEconomia, El Batan, Quito 170135, Ecuador;
| | - Dong-Keun Yie
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Deok Jeong
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| |
Collapse
|
6
|
Jang WY, Lee HP, Kim SA, Huang L, Yoon JH, Shin CY, Mitra A, Kim HG, Cho JY. Angiopteris cochinchinensis de Vriese Ameliorates LPS-Induced Acute Lung Injury via Src Inhibition. PLANTS 2022; 11:plants11101306. [PMID: 35631731 PMCID: PMC9143704 DOI: 10.3390/plants11101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract of Angiopteris cochinchinensis de Vriese (Ac-EE) were assessed using RAW264.6 murine macrophages and a lipopolysaccharide (LPS)-induced ALI model. Ac-EE reduced the nitric oxide production in murine macrophages increased by LPS induction. Moreover, protective effects of Ac-EE on lung tissue were demonstrated by shrinkage of edema and lung injury. Reduced neutrophil infiltration and formation of hyaline membranes were also detected in lung tissues after H&E staining. Semiquantitative RT-PCR, quantitative real-time PCR, and ELISA showed that Ac-EE inhibits the production of proinflammatory mediators, including iNOS and COX-2, and cytokines, such as TNF-α, IL-1β, and IL-6. An Ac-EE-mediated anti-inflammatory response was derived from inhibiting the NF-κB signaling pathway, which was evaluated by luciferase reporter assay and Western blotting analysis. A cellular thermal shift assay revealed that the prime target of Ac-EE in alleviating inflammation was Src. With its direct binding with Src, Angiopteris cochinchinensis de Vriese significantly mitigates lung injury, showing possibilities of its potential as an effective botanical drug.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ankita Mitra
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
7
|
Caragana rosea Turcz Methanol Extract Inhibits Lipopolysaccharide-Induced Inflammatory Responses by Suppressing the TLR4/NF-κB/IRF3 Signaling Pathways. Molecules 2021; 26:molecules26216660. [PMID: 34771068 PMCID: PMC8586996 DOI: 10.3390/molecules26216660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 01/05/2023] Open
Abstract
Caragana rosea Turcz, which belongs to the Leguminosae family, is a small shrub found in Northern and Eastern China that is known to possess anti-inflammatory properties and is used to treat fever, asthma, and cough. However, the underlying molecular mechanisms of its anti-inflammatory effects are unknown. Therefore, we used lipopolysaccharide (LPS) in RAW264.7 macrophages to investigate the molecular mechanisms that underlie the anti-inflammatory activities of a methanol extract of Caragana rosea (Cr-ME). We showed that Cr-ME reduced the production of nitric oxide (NO) and mRNA levels of iNOS, TNF-α, and IL-6 in a concentration-dependent manner. We also found that Cr-ME blocked MyD88- and TBK1-induced NF-κB and IRF3 promoter activity, suggesting that it affects multiple targets. Moreover, Cr-ME reduced the phosphorylation levels of IκBα, IKKα/β and IRF3 in a time-dependent manner and regulated the upstream NF-κB proteins Syk and Src, and the IRF3 protein TBK1. Upon overexpression of Src and TBK1, Cr-ME stimulation attenuated the phosphorylation of the NF-κB subunits p50 and p65 and IRF3 signaling. Together, our results suggest that the anti-inflammatory activity of Cr-ME occurs by inhibiting the NF-κB and IRF3 signaling pathways.
Collapse
|
8
|
You L, Kim MY, Cho JY. Protective Effect of Potentilla glabra in UVB-Induced Photoaging Process. Molecules 2021; 26:5408. [PMID: 34500840 PMCID: PMC8434042 DOI: 10.3390/molecules26175408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Maintaining skin homeostasis is one of the most important factors for skin health. UVB-induced skin photoaging is a difficult problem that has negative impacts on skin homeostasis. So far, a number of compounds have been discovered that improve human skin barrier function and hydration, and are thought to be effective ways to protect skin homeostasis. Potentilla glabra var. mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract (Pg-EE) is a compound that has noteworthy anti-inflammatory properties. However, its skin-protective effects are poorly understood. Therefore, we evaluated the capacity of Pg-EE to strengthen the skin barrier and improve skin hydration. Pg-EE can enhance the expression of filaggrin (FLG), transglutaminase (TGM)-1, hyaluronic acid synthase (HAS)-1, and HAS-2 in human keratinocytes. Moreover, Pg-EE down-regulated the expression of pro-inflammatory cytokines and up-regulated the production of FLG, HAS-1, and HAS-2 suppressed by UVB through inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathways. Given the above, since Pg-EE can improve skin barrier, hydration and reduce the UVB-induced inflammation on skin, it could therefore be a valuable natural ingredient for cosmetics or pharmaceuticals to treat skin disorders.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
9
|
Augustynowicz D, Latté KP, Tomczyk M. Recent phytochemical and pharmacological advances in the genus Potentilla L. sensu lato - An update covering the period from 2009 to 2020. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113412. [PMID: 32987127 DOI: 10.1016/j.jep.2020.113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla plants are still common herbal medicines used in folk medicine. This review provides an update of research undertaken on Potentilla from 2009 until 2020. AIM OF THE STUDY This comprehensive review considers biological updates, recent advances in phytochemical and pharmacological research, and toxicological reports on Potentilla sensu lato based on available data since 2009. METHODS A literature search was conducted using available databases including ScienceDirect, PubMed, Scopus, Web of Science, China National Knowledge Infrastructure and Google Scholar. RESULTS Until now, more than 210 new and known compounds, including flavonoids, tannins, triterpenes and phenolic compounds, have been confirmed and elucidated for numerous Potentilla species, i.e., in the underground and aerial parts of this genus. Modern pharmacology studies have revealed that those structures are responsible for a broad spectrum of pharmacological activities, such as anti-neoplastic, antihyperglycemic, anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, antibacterial and anti-yeast effects. CONCLUSIONS However, in vitro studies must be re-considered due to the discovery of urolithins and their origins, including microbiota, which can lead to different results when applying Potentilla species and their extracts to in vivo conditions. Thus, future research should focus more on in vivo and particularly clinical studies to confirm the validity and safety of traditional uses. Particularly, the use of Potentilla alba extracts in the treatment of thyroid gland disorders should be further explored to confirm the underlying mechanism of their action, efficacy and safety. In addition, more clinical studies should focus on Potentilla erecta rhizome extracts for application as herbal remedies against dysentery, diarrhoea and inflammation of the skin.
Collapse
Affiliation(s)
- Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland.
| |
Collapse
|