1
|
Yu X, Yang Y, Zhu W, Liu M, Wu J, Singer SM, Li W. The pathogenic responses elicited during exposure of human intestinal cell line with Giardia duodenalis excretory-secretory products and the potential attributed endocytosis mechanism. Med Microbiol Immunol 2024; 213:23. [PMID: 39441372 DOI: 10.1007/s00430-024-00806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Giardia duodenalis, an important zoonotic protozoan parasite, adheres to host intestinal epithelial cells (IECs) via the ventral disc and causes giardiasis characterized mainly by diarrhea. To date, it remains elusive how excretory-secretory products (ESPs) of Giardia enter IECs and how the cells respond to the entry. Herein, we initially demonstrated that ESPs evoked IEC endocytosis in vitro. We indicated that ESPs contributed vitally in triggering intrinsic apoptosis, pro-inflammatory responses, tight junction (TJ) protein expressional changes, and autophagy in IECs. Endocytosis was further proven to be implicated in those ESPs-triggered IEC responses. Ten predicted virulent excretory-secretory proteins of G. duodenalis were investigated for their capability to activate clathrin/caveolin-mediated endocytosis (CME/CavME) in IECs. Pyridoxamine 5'-phosphate oxidase (PNPO) was confirmed to be an important contributor. PNPO was subsequently verified as a vital promoter in the induction of giardiasis-related IEC apoptosis, inflammation, and TJ protein downregulation. Most importantly, this process seemed to be involved majorly in PNPO-evoked CME pathway, rather than CavME. Collectively, this study identified Giardia ESPs, notably PNPO, as potentially important pathogenic factors during noninvasive infection. It was also noteworthy that ESPs-evoked endocytosis might play a role in triggering giardiasis-inducing cellular regulation. These findings would deepen our understanding about the role of ESPs, notably PNPO, in the pathogenesis of giardiasis and the potential attributed endocytosis mechanism.
Collapse
Affiliation(s)
- Xiran Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yongwu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Weining Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Min Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jingxue Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Alizadeh G, Kheirandish A, Alipour M, Jafari M, Radfar M, Bybordi T, Rafiei-Sefiddashti R. The role of helminths and their antigens in cancer therapy: insights from cell line models. Infect Agent Cancer 2024; 19:52. [PMID: 39385244 PMCID: PMC11465614 DOI: 10.1186/s13027-024-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recent articles have explored the effect of worms on cancer cells. This review focused on various cell cultures employed to understand which cells are more commonly and less utilized. METHODS The present review analyzed studies published between 2013 and 2023 to obtain information about different cell cultures used in cancer studies involving helminths. Databases such as PubMed, Google Scholar, HINARI, and the Cochrane Library were searched. RESULTS This search yielded 130 records, but 97 papers were excluded because they were either irrelevant to the research topic (n = 72) or contradicted the research idea (n = 25).The remaining twenty-one articles focused on different types of worms, such as Echinococcus granulosus, Clonorchis sinensis, Opisthorchis felineus, Opisthorchis viverrini, Trichinella spiralis, Toxocara canis, and Heligmosomoides polygyrus. CONCLUSION Due to the presence of numerous antigens, parasites at different growth stages can impact various cells through unknown mechanisms. Given the high diversity of antigens and their effects, artificial intelligence can assist in predicting initial outcomes for future studies.
Collapse
Affiliation(s)
- Gita Alizadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Alipour
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jafari
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdis Radfar
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tina Bybordi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Rafiei-Sefiddashti
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li J, Feng R, Zhang X, Hou W, Zhang Y, Li J, Li X, Jian F, Zhang L, Zhang S, Wang R. miR-181d targets BCL2 to regulate HCT-8 cell apoptosis and parasite burden in response to Cryptosporidium parvum infection via the intrinsic apoptosis pathway. Vet Parasitol 2024; 330:110237. [PMID: 38878462 DOI: 10.1016/j.vetpar.2024.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Cryptosporidium parvum is an important zoonotic pathogen that is studied worldwide. MicroRNAs (miRNAs) act as post-transcriptional regulators and may play a key role in modulating host epithelial responses following Cryptosporidium infection. Our previous study has shown that C. parvum downregulates the expression of miR-181d through the p50-dependent TLRs/NF-κB pathway. However, the mechanism by which miR-181d regulates host cells in response to C. parvum infection remains unclear. The present study found that miR-181d downregulation inhibited cell apoptosis and increased parasite burden in HCT-8 cells after C. parvum infection. Bioinformatics analysis and luciferase reporter assays have shown that BCL2 was a target gene for miR-181d. Moreover, BCL2 overexpression and miR-181d downregulation had similar results. To further investigate the mechanism by which miR-181d regulated HCT-8 cell apoptosis during C. parvum infection, the expression of molecules involved in the intrinsic apoptosis pathway was detected. Bax, caspase-9, and caspase-3 expression was decreased at 4, 8, 12, and 24 hpi and upregulated at 36 and 48 hpi. Interfering with the expression of miR-181d or BCL2 significantly affected the expression of molecules in the intrinsic apoptosis pathway. These data indicated that miR-181d targeted BCL2 to regulate HCT-8 cell apoptosis and parasite burden in response to C. parvum infection via the intrinsic apoptosis pathway. These results allowed us to further understand the regulatory mechanisms of host miRNAs during Cryptosporidium infection, and provided a theoretical foundation for the design and development of anti-cryptosporidiosis drugs.
Collapse
Affiliation(s)
- Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Ruiying Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Wenyan Hou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Yingying Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Li X, Liao P, Zhou W, Yang X, Ye B. Molecular characteristics of Echinococcus multilocularis FABP1 and its regulatory functions on murine macrophages. Acta Trop 2024; 255:107247. [PMID: 38729330 DOI: 10.1016/j.actatropica.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic β-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Peng Liao
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenjing Zhou
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinqi Yang
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bin Ye
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Jiménez-Meléndez A, Shakya R, Markussen T, Robertson LJ, Myrmel M, Makvandi-Nejad S. Gene expression profile of HCT-8 cells following single or co-infections with Cryptosporidium parvum and bovine coronavirus. Sci Rep 2023; 13:22106. [PMID: 38092824 PMCID: PMC10719361 DOI: 10.1038/s41598-023-49488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Ruchika Shakya
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lucy J Robertson
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Mette Myrmel
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Shokouh Makvandi-Nejad
- Research Group Animal Health, Vaccinology, Norwegian Veterinary Institute, Ås, Norway
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| |
Collapse
|
6
|
Kot K, Kupnicka P, Tarnowski M, Tomasiak P, Kosik-Bogacka D, Łanocha-Arendarczyk N. The role of apoptosis and oxidative stress in the pathophysiology of Acanthamoeba spp. infection in the kidneys of hosts with different immunological status. Parasit Vectors 2023; 16:445. [PMID: 38041167 PMCID: PMC10693070 DOI: 10.1186/s13071-023-06052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Acanthamoeba spp. are opportunistic pathogens that cause inflammation, mostly in the brain, lungs and cornea. Recent reports indicate kidney dysfunction in hosts with systemic acanthamoebiasis. The aim of the study was to analyze the gene expression and protein concentration of NADPH oxidase 2 and 4 (NOX2 and NOX4, respectively) and nuclear erythroid 2-related factor (Nrf2) in the kidneys of hosts with systemic acanthamoebiasis. We also aimed to determine the protein and gene expressions of Bcl2, Bax, caspases 3 and 9. METHODS Mice were divided into four groups based on their immunological status and Acanthamoeba sp. infection: A, immunocompetent Acanthamoeba sp.-infected mice; AS, immunosuppressed Acanthamoeba sp.- infected mice; C, immunocompetent uninfected mice; CS, immunosuppressed uninfected mice. NOX2, NOX4 and Nrf2 were analyzed by quantitative reverse transcription PCR (qRT-PCR) and ELISA methods, while pro-apoptotic and anti-apoptotic proteins (Bax and Bcl-2, respectively), Cas9, Cas3 were analyzed by qRT-PCR and western blot methods. RESULTS: Increased gene expression and/or protein concentration of NOX2 and NOX4 were found in both immunocompetent and immunosuppressed mice infected with Acanthamoeba sp. (groups A and AS, respectively). Gene expression and/or protein concentration of Nrf2 were higher in group A than in control animals. Compared to control mice, in the AS group the expression of the Nrf2 gene was upregulated while the concentration of Nrf2 protein was decreased. Additionally in A group, higher gene and protein expression of Bcl-2, and lower gene as well as protein expression of Bax, caspases 3 and 9 were noted. In contrast, the AS group showed lower gene and protein expression of Bcl-2, and higher gene as well as protein expression of Bax, caspases 3 and 9. CONCLUSIONS This study is the first to address the mechanisms occurring in the kidneys of hosts infected with Acanthamoeba sp. The contact of Acanthamoeba sp. with the host cell surface and/or the oxidative burst caused by elevated levels of NOXs lead to an antioxidant response enhanced by the Nrf2 pathway. Acanthamoeba sp. have various strategies concerning apoptosis. In immunocompetent hosts, amoebae inhibit the apoptosis of kidney cells, and in immunosuppressed hosts, they lead to increased apoptosis by the intrinsic pathway and thus to a more severe course of the disease.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Patrycja Kupnicka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
7
|
Zhai B, Meng YM, Xie SC, Peng JJ, Liu Y, Qiu Y, Wang L, Zhang J, He JJ. iTRAQ-Based Phosphoproteomic Analysis Exposes Molecular Changes in the Small Intestinal Epithelia of Cats after Toxoplasma gondii Infection. Animals (Basel) 2023; 13:3537. [PMID: 38003154 PMCID: PMC10668779 DOI: 10.3390/ani13223537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite, has the ability to invade and proliferate within most nucleated cells. The invasion and destruction of host cells by T. gondii lead to significant changes in the cellular signal transduction network. One important post-translational modification (PTM) of proteins is phosphorylation/dephosphorylation, which plays a crucial role in cell signal transmission. In this study, we aimed to investigate how T. gondii regulates signal transduction in definitive host cells. We employed titanium dioxide (TiO2) affinity chromatography to enrich phosphopeptides in the small intestinal epithelia of cats at 10 days post-infection with the T. gondii Prugniuad (Pru) strain and quantified them using iTRAQ technology. A total of 4998 phosphopeptides, 3497 phosphorylation sites, and 1805 phosphoproteins were identified. Among the 705 differentially expressed phosphoproteins (DEPs), 68 were down-regulated and 637 were up-regulated. The bioinformatics analysis revealed that the DE phosphoproteins were involved in various cellular processes, including actin cytoskeleton reorganization, cell necroptosis, and MHC immune processes. Our findings confirm that T. gondii infection leads to extensive changes in the phosphorylation of proteins in the cat intestinal epithelial cells. The results of this study provide a theoretical foundation for understanding the interaction between T. gondii and its definitive host.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Yu-Meng Meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Shi-Chen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jun-Jie Peng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China;
| | - Yanhua Qiu
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Lu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Li J, Sun L, Xie F, Shao T, Wu S, Li X, Zhang L, Wang R. MiR-3976 regulates HCT-8 cell apoptosis and parasite burden by targeting BCL2A1 in response to Cryptosporidium parvum infection. Parasit Vectors 2023; 16:221. [PMID: 37415254 DOI: 10.1186/s13071-023-05826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Cryptosporidium is second only to rotavirus as a cause of moderate-to-severe diarrhea in young children. There are currently no fully effective drug treatments or vaccines for cryptosporidiosis. MicroRNAs (miRNAs) are involved in regulating the innate immune response to Cryptosporidium parvum infection. In this study, we investigated the role and mechanism of miR-3976 in regulating HCT-8 cell apoptosis induced by C. parvum infection. METHODS Expression levels of miR-3976 and C. parvum burden were estimated using real-time quantitative polymerase chain reaction (RT-qPCR) and cell apoptosis was detected by flow cytometry. The interaction between miR-3976 and B-cell lymphoma 2-related protein A1 (BCL2A1) was studied by luciferase reporter assay, RT-qPCR, and western blotting. RESULTS Expression levels of miR-3976 were decreased at 8 and 12 h post-infection (hpi) but increased at 24 and 48 hpi. Upregulation of miR-3976 promoted cell apoptosis and inhibited the parasite burden in HCT-8 cells after C. parvum infection. Luciferase reporter assay indicated that BCL2A1 was a target gene of miR-3976. Co-transfection with miR-3976 and a BCL2A1 overexpression vector revealed that miR-3976 targeted BCL2A1 and suppressed cell apoptosis and promoted the parasite burden in HCT-8 cells. CONCLUSIONS The present data indicated that miR-3976 regulated cell apoptosis and parasite burden in HCT-8 cells by targeting BCL2A1 following C. parvum infection. Future study should determine the role of miR-3976 in hosts' anti-C. parvum immunity in vivo.
Collapse
Affiliation(s)
- Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lulu Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fujie Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tianren Shao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shanbo Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Wang R, Lin L, Han Y, Li Z, Zhen J, Zhang Y, Sun F, Lu Y. Exosome-delivered miR-153 from Trichinella spiralis promotes apoptosis of intestinal epithelial cells by downregulating Bcl2. Vet Res 2023; 54:52. [PMID: 37381058 DOI: 10.1186/s13567-023-01186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Trichinellosis, a helminthic zoonosis, exhibits a cosmopolitan distribution and is a public health concern. In previous studies, it was reported that the exosomes secreted by Trichinella spiralis larvae (TsExos) largely affected cell biological activities. miRNAs, as exosome-delivered cargoes, affect the biological activities of the host by targeting genes. The present study aimed to elucidate the mechanisms by which miRNAs interact with intestinal epithelial cells. First, a miRNA library of TsExos was constructed; then, based on high-throughput miRNA sequencing results, miR-153 and its predicted target genes, namely, Agap2, Bcl2 and Pten, were selected for follow-up studies. The dual-luciferase reporter assays revealed that miR-153 directly targeted Bcl2 and Pten. Furthermore, real-time qPCR and Western blotting revealed that only Bcl2 was downregulated by TsExo-delivered miR-153 in porcine intestinal epithelial cells (IPEC-J2). Bcl2, an important antiapoptotic protein, plays an essential role in cell apoptosis as a common intersecting molecule of various signal transduction pathways. Therefore, we hypothesized that miR-153 derived from TsExos causes cell apoptosis by targeting Bcl2. The results suggested that miR-153 could induce apoptosis, reduce mitochondrial membrane potential, affect cell proliferation, and cause damage and substantial oxidative stress. Furthermore, miR-153 coincubated with IPEC-J2 cells stimulated the accumulation of the proapoptotic proteins Bax and Bad, which belong to the Bcl2 family of proteins, and the apoptosis-implementing proteins Caspase 9 and Caspase 3. Moreover, studies have suggested that miR-153 can promote apoptosis by regulating the MAPK and p53 signalling pathways involved in apoptosis. Thus, exosome-mediated miR-153 delivery secreted by T. spiralis could induce apoptosis and affect the MAPK and p53 signalling pathways by downregulating Bcl2 in IPEC-J2 cells. The study highlights the mechanisms underlying the invasion of T. spiralis larva.
Collapse
Affiliation(s)
- Ruibiao Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihao Lin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yang Han
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhixin Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingbo Zhen
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuheng Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Feng Sun
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixin Lu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
10
|
Meng JX, Wei XY, Guo H, Chen Y, Wang W, Geng HL, Yang X, Jiang J, Zhang XX. Metagenomic insights into the composition and function of the gut microbiota of mice infected with Toxoplasma gondii. Front Immunol 2023; 14:1156397. [PMID: 37090719 PMCID: PMC10118048 DOI: 10.3389/fimmu.2023.1156397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Despite Toxoplasma gondii infection leading to dysbiosis and enteritis, the function of gut microbiota in toxoplasmosis has not been explored. Methods Here, shotgun metagenomics was employed to characterize the composition and function of mouse microbial community during acute and chronic T. gondii infection, respectively. Results The results revealed that the diversity of gut bacteria was decreased immediately after T. gondii infection, and was increased with the duration of infection. In addition, T. gondii infection led to gut microbiota dysbiosis both in acute and chronic infection periods. Therein, several signatures, including depression of Firmicutes to Bacteroidetes ratio and infection-enriched Proteobacteria, were observed in the chronic period, which may contribute to aggravated gut inflammation and disease severity. Functional analysis showed that a large amount of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and carbohydrate-active enzymes (CAZy) family displayed distinct variation in abundance between infected and healthy mice. The lipopolysaccharide biosynthesis related pathways were activated in the chronic infection period, which might lead to immune system imbalance and involve in intestinal inflammation. Moreover, microbial and functional spectrums were more disordered in chronic than acute infection periods, thus implying gut microbiota was more likely to participate in disease process in the chronically infected mice, even exacerbated immunologic derangement and disease progression. Discussion Our data indicate that the gut microbiota plays a potentially important role in protecting mice from T. gondii infection, and contributes to better understand the association between gut microbiota and toxoplasmosis.
Collapse
Affiliation(s)
- Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin-Yu Wei
- College of Life Science, Changchun Sci-Tech University, Changchun, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Huanping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jiang Jiang
- College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Yu S, Zhao H, Qin X, Li X, Guo J, Li W. Giardia duodenalis-induced G0/G1 intestinal epithelial cell cycle arrest and apoptosis involve activation of endoplasmic reticulum stress in vitro. Front Immunol 2023; 14:1127552. [PMID: 37006313 PMCID: PMC10050679 DOI: 10.3389/fimmu.2023.1127552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Giardia duodenalis is a zoonotic intestinal protozoan parasite that may cause host diarrhea and chronic gastroenteritis, resulting in great economic losses annually and representing a significant public health burden across the world. However, thus far, our knowledge on the pathogenesis of Giardia and the related host cell responses is still extensively limited. The aim of this study is to assess the role of endoplasmic reticulum (ER) stress in regulating G0/G1 cell cycle arrest and apoptosis during in vitro infection of intestinal epithelial cells (IECs) with Giardia. The results showed that the mRNA levels of ER chaperone proteins and ER-associated degradation genes were increased and the expression levels of the main unfolded protein response (UPR)-related proteins (GRP78, p-PERK, ATF4, CHOP, p-IRE1, XBP1s and ATF6) were increased upon Giardia exposure. In addition, cell cycle arrest was determined to be induced by UPR signaling pathways (IRE1, PERK and ATF6) through upregulation of p21 and p27 levels and promotion of E2F1-RB complex formation. Upregulation of p21 and p27 expression was shown to be related to Ufd1-Skp2 signaling. Therefore, the cell cycle arrest was induced by ER stress when infected with Giardia. Furthermore, the apoptosis of the host cell was also assessed after exposure to Giardia. The results indicated that apoptosis would be promoted by UPR signaling (PERK and ATF6), but would be suppressed by the hyperphosphorylation of AKT and hypophosphorylation of JNK that were modulated by IRE1 pathway. Taken together, both of the cell cycle arrest and apoptosis of IECs induced by Giardia exposure involved the activation of the UPR signaling. The findings of this study will deepen our understanding of the pathogenesis of Giardia and the associated regulatory network.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Li
- *Correspondence: Wei Li, ; Jiaying Guo,
| |
Collapse
|
12
|
Hassan ZR, Salama DEA, Ibrahim HF. Apoptotic changes in the intestinal epithelium of Cryptosporidium-infected mice after silver nanoparticles treatment versus nitazoxanide. J Parasit Dis 2022; 46:1011-1020. [PMID: 36457780 PMCID: PMC9606195 DOI: 10.1007/s12639-022-01520-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/29/2022] [Indexed: 10/16/2022] Open
Abstract
Cryptosporidium has been identified as one of the prevalent opportunistic parasites that cause diarrhea, which may be persistent and fatal. Current chemotherapeutic agents, including nitazoxanide (NTZ), are frequently associated with therapeutic failure, and their roles in the induction of apoptosis in cryptosporidiosis remain to be a topic of debate. Thus, this study aimed to assess the apoptotic changes in cryptosporidiosis in immunocompetent (IC) and immunosuppressed (IS) mice after treatment with silver nanoparticles (AgNPs) and NTZ either alone or after loading. In total, 120 laboratory-bred Swiss albino mice were divided into two groups. Group A included IC mice, while Group B included IS mice. Both groups were divided into six subgroups: noninfected nontreated, infected nontreated, infected AgNP-treated, infected NTZ-treated, infected AgNP-loaded NTZ (full-dose)-treated, and infected AgNP-loaded NTZ (half-dose)-treated. The assessment was achieved through parasitological, histopathological, and apoptotic marker expression evaluation. AgNP-loaded NTZ (different doses) treatment showed the highest oocyst shedding reduction and remarkable improvement in histopathological changes, followed by individual treatment with NTZ and then AgNPs in IC and IS mice. Results of apoptotic marker expression revealed that AgNP-loaded NTZ treatment exhibited a promising role in regulating apoptotic changes in cryptosporidiosis through the expression of the lowest levels of cytochrome C and caspase-3 in IC and IS mice at the end of the experiment. Therefore, AgNP-loaded NTZ can be a potential therapeutic agent against cryptosporidiosis for IC and IS mice.
Collapse
Affiliation(s)
- Zeinab R. Hassan
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Doaa E. A. Salama
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Hanan F. Ibrahim
- Department of Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
13
|
Arzik Y, Kizilaslan M, White SN, Piel LMW, Çınar MU. Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep. Genes (Basel) 2022; 13:2177. [PMID: 36553445 PMCID: PMC9778220 DOI: 10.3390/genes13122177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have been used as an effective tool to understand the genetics of complex traits such as gastrointestinal parasite (GIP) resistance. The aim of this study was to understand the genetics of gastrointestinal parasite (nematodes, Moniezia spp., Eimeria spp.) resistance in Akkaraman sheep by performing genomic heritability estimations and conducting GWAS to uncover responsible genomic regions. This is one of the first studies to examine the genetic resistance of Akkaraman sheep to the tapeworm parasite. The samples from 475 animals were genotyped using the Axiom 50K Ovine Genotyping Array. Genomic heritability estimates ranged from 0.00 to 0.34 for parasite resistance traits. This indicates that measured phenotypes have low to moderate heritability estimates. A total of two genome-wide significant SNP associated with TNEM3 and ATRNL1 genes and 10 chromosome-wide significant SNPs related with 10 genes namely NELL1, ST6GALNAC3, HIPK1, SYT1, ALK, ZNF596, TMCO5A, PTH2R, LARGE1, and SCG2 were suggested as candidates for parasite resistance traits. The majority of these candidate genes were involved in several basic biological processes that are essential and important for immune system functions and cellular growth; specifically, inflammatory responses, cellular transport, cell apoptosis, cell differentiation, histone de-acetylation, and endocytosis. These results have implications for animal breeding program studies due to the effect that the genetic background has on parasite resistance, which underlies many productive, health, and wellness-related traits.
Collapse
Affiliation(s)
- Yunus Arzik
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Turkey
- International Center for Livestock Research and Training, Ministry of Agriculture and Forestry, Ankara 06852, Turkey
| | - Mehmet Kizilaslan
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Turkey
- International Center for Livestock Research and Training, Ministry of Agriculture and Forestry, Ankara 06852, Turkey
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Lindsay M. W. Piel
- USDA-ARS Animal Disease Research, 3003 Animal Disease Biotech Facility, Washington State University, Pullman, WA 99164, USA
| | - Mehmet Ulaş Çınar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Turkey
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
14
|
Quezada-Lázaro R, Vázquez-Cobix Y, Fonseca-Liñán R, Nava P, Hernández-Cueto DD, Cedillo-Peláez C, López-Vidal Y, Huerta-Yepez S, Ortega-Pierres MG. The Cysteine Protease Giardipain-1 from Giardia duodenalis Contributes to a Disruption of Intestinal Homeostasis. Int J Mol Sci 2022; 23:13649. [PMID: 36362435 PMCID: PMC9655832 DOI: 10.3390/ijms232113649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 08/05/2023] Open
Abstract
In giardiasis, diarrhoea, dehydration, malabsorption, weight loss and/or chronic inflammation are indicative of epithelial barrier dysfunction. However, the pathogenesis of giardiasis is still enigmatic in many aspects. Here, we show evidence that a cysteine protease of Giardia duodenalis called giardipain-1, contributes to the pathogenesis of giardiasis induced by trophozoites of the WB strain. In an experimental system, we demonstrate that purified giardipain-1 induces apoptosis and extrusion of epithelial cells at the tips of the villi in infected jirds (Meriones unguiculatus). Moreover, jird infection with trophozoites expressing giardipain-1 resulted in intestinal epithelial damage, cellular infiltration, crypt hyperplasia, goblet cell hypertrophy and oedema. Pathological alterations were more pronounced when jirds were infected intragastrically with Giardia trophozoites that stably overexpress giardipain-1. Furthermore, Giardia colonization in jirds results in a chronic inflammation that could relate to the dysbiosis triggered by the protist. Taken together, these results reveal that giardipain-1 plays a key role in the pathogenesis of giardiasis.
Collapse
Affiliation(s)
- Rodrigo Quezada-Lázaro
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| | - Yessica Vázquez-Cobix
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Daniel Dimitri Hernández-Cueto
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología Experimental, Torre de Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| |
Collapse
|
15
|
Xie F, Zhang Y, Li J, Sun L, Zhang L, Qi M, Zhang S, Jian F, Li X, Li J, Ning C, Wang R. MiR-942-5p targeting the IFI27 gene regulates HCT-8 cell apoptosis via a TRAIL-dependent pathway during the early phase of Cryptosporidium parvum infection. Parasit Vectors 2022; 15:291. [PMID: 35974384 PMCID: PMC9382849 DOI: 10.1186/s13071-022-05415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are involved in the regulation of both the innate and adaptive immune response to Cryptosporidium parvum infection. We previously reported that C. parvum upregulated miR‑942‑5p expression in HCT‑8 cells via TLR2/TLR4‑NF‑κB signaling. In the present study, the role of miRNA-942-5p in the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated HCT-8 cell apoptosis induced by C. parvum was investigated. METHODS Quantitative real-time polymerase chain reaction, western blotting, flow cytometry, and immunofluorescence were used for analysis. RESULTS Forced expression of miRNA-942-5p resulted in decreased apoptosis and an increased C. parvum burden in HCT-8 cells. The opposite results were observed using the suppressed expression of miRNA-942-5p. The miRNA-942-5p led to the translational suppression of IFI27 gene through targeting the 3'-untranslated region of the IFI27 gene. Moreover, overexpression of the IFI27 gene produced a high apoptotic ratio and low C. parvum burden. In contrast, a low apoptotic ratio and a high C. parvum burden were observed following downregulation of the IFI27 gene. Both miR-942-5p and the IFI27 gene influenced TRAIL and caspase-8 expression induced by C. parvum in HCT-8 cells. Moreover, TRAIL promoted HCT-8 cell apoptosis in a concentration-dependent manner. CONCLUSIONS These data suggested that C. parvum induced the downregulation of IFI27 via relief of miR-942-5p-mediated translational suppression. IFI27 downregulation was affected the burden of C. parvum by regulating HCT-8 cell apoptosis through TRAIL-dependent pathways. Future studies should determine the mechanisms by which C. parvum infection increases miR-942-5p expression and the role of miR-942-5p in hosts' anti-C. parvum immunity in vivo.
Collapse
Affiliation(s)
- Fujie Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yajun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lulu Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Changsheng Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
16
|
Kapczuk P, Kosik-Bogacka D, Kupnicka P, Kopytko P, Tarnowski M, Kolasa A, Chlubek D, Baranowska-Bosiacka I. Hymenolepis diminuta Infection Affects Apoptosis in the Small and Large Intestine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9753. [PMID: 35955110 PMCID: PMC9368115 DOI: 10.3390/ijerph19159753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The rat tapeworm Hymenolepis diminuta has been shown to cause alterations in gastrointestinal tissues. Since hymenolepiasis induces a number of reactions in the host, it is reasonable to assume that it may also be involved in the mechanisms of apoptosis in the intestines. Individual research tasks included an examination of the effect of H. diminuta infection on; (i) the cellular localization of the expression of pro-apoptotic protein Bax and anti-apoptotic protein Bcl-2, as well as caspase-3 and caspase-9, and (ii) the effects of the infection on the expression of Bcl-2, Bax, Cas-3 and Cas-9, at the mRNA and protein levels. Molecular tests (including mRNA (qRT PCR) and the protein (Western blot) expression of Bax, Bcl-2, and caspases-3, -9) and immunohistochemical tests were performed during the experiment. They showed that H. diminuta infection activates the intrinsic apoptosis pathway in the small and large intestine of the host. H. diminuta infection triggered the apoptosis via the activation of the caspase cascade, including Cas-3 and Cas-9. Hymenolepiasis enhanced apoptosis in the small and large intestine of the host by increasing the expression of the pro-apoptotic gene and protein Bax and by decreasing the expression of the anti-apoptotic gene and protein Bcl-2.
Collapse
Affiliation(s)
- Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
17
|
Łanocha A, Łanocha-Arendarczyk N, Wilczyńska D, Zdziarska B, Kosik-Bogacka D. Protozoan Intestinal Parasitic Infection in Patients with Hematological Malignancies. J Clin Med 2022; 11:jcm11102847. [PMID: 35628973 PMCID: PMC9146298 DOI: 10.3390/jcm11102847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the frequency of gastrointestinal protozoan infection in patients with hematological malignancies (HMs) undergoing intensive hemato-oncological treatment and to determine the influence of certain biological factors on the incidence of intestinal parasite infection. Stool samples were collected from hematological malignancy patients (n = 50) hospitalized at the Department of Hematology and Transplantology of the Pomeranian Medical University in Szczecin. The control group consisted of 50 healthy participants. We used a direct smear examination and a commercial immunoenzymatic test. Intestinal protozoans were detected in 16% of patients with hematological malignancies and in 6% of individuals in the control group. In stool samples from patients with HM, cysts of Giardia intestinalis (2%), oocysts of Cryptosporidium spp. (10%), vacuolar forms of potentially pathogenic Blastocystis spp. (2%), and cysts of nonpathogenic Entamoeba coli (2%) were found. Cryptosporidium spp. and Giardia intestinalis coproantigens were detected in 5 (10%) and 1 (2%) patients with HM, respectively. In three participants from the control group, vacuolar forms of Blastocystis spp. were found. In the patients with HM, a significantly higher prevalence of intestinal parasite infection was found in individuals working in the garden without protective gloves and those in contact with animals. In patients with hematological malignancies, intestinal parasites should be excluded, even during intensive chemotherapy treatment.
Collapse
Affiliation(s)
- Aleksandra Łanocha
- Department of Hematology with Bone Marrow Transplantation Unit, Pomeranian Medical University in Szczecin, 71-242 Szczecin, Poland; (A.Ł.); (B.Z.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
- Correspondence:
| | - Dominika Wilczyńska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Barbara Zdziarska
- Department of Hematology with Bone Marrow Transplantation Unit, Pomeranian Medical University in Szczecin, 71-242 Szczecin, Poland; (A.Ł.); (B.Z.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| |
Collapse
|
18
|
Guzmán-Guzmán IP, Nogueda-Torres B, Zaragoza-García O, Navarro-Zarza JE, Briceño O, Pérez-Rubio G, Falfán-Valencia R, Gutiérrez-Pérez IA, Parra-Rojas I. The Infection, Coinfection, and Abundance of Intestinal Protozoa Increase the Serum Levels of IFABP2 and TNF-α in Patients With Rheumatoid Arthritis. Front Med (Lausanne) 2022; 9:846934. [PMID: 35492365 PMCID: PMC9039364 DOI: 10.3389/fmed.2022.846934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protozoa, nematodes, and platyhelminths are of clinical interest due to their role on the modulation of the immune responses. To determine the frequency of infection by intestinal parasites as well as the status of single or mixed infection (coinfection) and its relation with inflammation and intestinal permeability markers in patients with rheumatoid arthritis (RA), a cross-sectional study was conducted in 18 women diagnosed with RA. A fecal sample of each participant was analyzed for parasitic identification. The DAS28-erythrocyte sedimentation rate score, as well as the serum levels of TNF-α, IL-10, IL-17A, and the intestinal fatty-acid binding protein 2 (IFABP2), was determined through the ELISA technique. The T CD4+ and CD8+ lymphocytes' proportions were determined by flow cytometry. In this study, 50% (n = 9) of the total sample tested were positive to the presence of intestinal protozoa (27% by single infection and 22.2% by coinfection). Blastocystis sp. and Endolimax nana were the most frequently identified protozoa. The serum levels of IFABP2 were increased in patients with infection by protozoa, mainly in those individuals with coinfection and a larger abundance of Blastocystis sp. We found that coinfection by protozoa was related to higher levels of TNF-α and higher frequency of T CD4+ lymphocytes, mainly in patients under antirheumatic treatment. Infection by intestinal protozoa is associated with increased intestinal permeability in patients with RA; thus, infection, coinfection, and abundance of intestinal protozoa should be clinically screened because they could be an associated factor to the clinical variability of the disease.
Collapse
Affiliation(s)
| | - Benjamín Nogueda-Torres
- Department of Parasitology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Oscar Zaragoza-García
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | - Olivia Briceño
- Center for Research in Infectious Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Isela Parra-Rojas
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| |
Collapse
|
19
|
Lv XL, Wang YY, Zheng MX, Bai R, Zhang L, Duan BT, Lei X, Zhang XS, Zhao YJ, Cui KL, Xu T. The role of Ca2+ in the injury of host cells during the schizogenic stage of E. tenella. Poult Sci 2022; 101:101916. [PMID: 35523032 PMCID: PMC9079706 DOI: 10.1016/j.psj.2022.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cecal epithelial cell damage is a key factor in host injure during the development of E. tenella. The intracellular free Ca2+ of the host cell is closely related to the invasion, development and proliferation of intracellular parasites, and cell damage. To determine the relationship between Ca2+ and host cell damage in the schizogenic stage of E. tenella, we established a chick embryo cecal epithelial cells model of E. tenella infection. Fluorescence staining, flow cytometry, transmission electron microscopy, inhibition and blocking experiments were used to detect the damage effect and mechanism of host cells during the schizogenic stage of E. tenella. The results showed that the host cells cytoskeletal remodeling, cell and organelle structure was destroyed, and apoptosis and necrosis were increased during the schizont stage of E. tenella. Furthermore, the above-mentioned effects of the schizogenic stage of E. tenella on cells can be alleviated by reducing the intracellular Ca2+ concentration in the host cells. These observations indicate that the effect of host cell injury was closely related to Ca2+ during schizont stage of E. tenella.
Collapse
|
20
|
The Anti-Apoptotic Role of COX-2 during In Vitro Infection of Human Intestinal Cell Line by Giardia duodenalis and The Potential Regulators. Infect Immun 2022; 90:e0067221. [PMID: 35130451 DOI: 10.1128/iai.00672-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Giardia duodenalis inhabits the upper small intestine of mammals including humans and causes a disease known as giardiasis, which can lead to diarrhea, abdominal cramps, and bloating. G. duodenalis was known as a causative factor of intestinal epithelial cell (IEC) apoptosis. Cyclooxygenase-2 (COX-2) has been identified as an influencing factor of pathogen infection by participating in immune response, while its role in host defense against Giardia infection is not clear. Here we initially observed the involvement of COX-2 in the regulation of Giardia-induced IEC apoptosis. Inhibition of COX-2 activity could promote Giardia-induced reduction of IEC viability, increase of reactive oxygen species (ROS) production, and decrease of nitric oxide (NO) release, which would exacerbate IEC apoptosis. In addition, during Giardia-IEC interactions, COX-2 inhibition was able to accelerate caspase-3 activation and PARP cleavage, and inhibit the expressions of some anti-apoptotic proteins like cIAP-2 and survivin. In contrast, COX-2 over-expression could reduce Giardia-induced IEC apoptosis. We further investigated the regulatory mechanisms affecting COX-2 expression in terms of anti-apoptosis. The results showed that p38/ERK/AKT/NF-κB signaling could regulate COX-2-mediated ROS/NO production and anti-IEC apoptosis during Giardia infection. We also found that COX-2-mediated anti-IEC apoptosis induced by Giardia was related to TLR4-dependent activation of p38-NF-κB signaling. Collectively, this study identified COX-2 as a promoter for apoptotic resistance during Giardia-IEC interactions and determined the potential regulators, furthering our knowledge of anti-Giardia host defense mechanism.
Collapse
|
21
|
Alinaghipour A, Salami M, Riahi E, Ashabi G, Soheili M, Nabavizadeh F. Protective effects of nanocurcumin against stress-induced deterioration in the intestine. Stress 2022; 25:337-346. [PMID: 36369802 DOI: 10.1080/10253890.2022.2132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The therapeutic activities of curcumin have long been investigated in some chronic and inflammatory diseases. This study was designed to investigate the protective effects of nanocurcumin on intestinal barrier function, apoptosis, and oxidative stress in rats exposed to traffic noise. Forty rats were divided into four groups: two traffic noise-exposed groups of animals that received either vehicle (NOISE) or nanocurcumin (NCUR + NOISE) and two control groups that either remained intact (CON) or received nanocurcumin (NCUR). Nanocurcumin injection (15 mg/Kg/ip) and traffic noise exposure were administered daily for two weeks. The relative protein expression of intestinal tight junctions, occludin, and ZO-1 and Bax/Bcl-2 ratio was measured to evaluate barrier integrity and apoptosis in intestinal samples, respectively. Plasma D-lactate concentration was examined as a criterion of intestinal permeability. Corticosterone, superoxide dismutase (SOD) activity, glutathione (GSH), total antioxidant capacity (TAC), and nitrite were measured in serum. The noise exposure increased Bax/Bcl-2 ratio, corticosterone, and oxidative stress in the NOISE animals. Nanocurcumin treatment improved the Bax/Bcl-2 ratio and reduced corticosterone and oxidative stress in the NCUR + NOISE animals. The expression of tight junction proteins was decreased while the concentration of D-lactate was increased in the NOISE animals. Nanocurcumin did not efficiently impact the expression of tight junction proteins and the D-lactate level in the NCUR + NOISE group. Nanocurcumin administration displayed antioxidant and anti-apoptotic roles in the noise-exposed rats, however, it did not affect the intestinal barrier integrity. We concluded that reduced apoptosis in the intestine might be related to the antioxidant activity of nanocurcumin and its modulatory effects on the HPA axis in the nanocurcumin-treated animals.
Collapse
Affiliation(s)
- Azam Alinaghipour
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmail Riahi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kot K, Łanocha-Arendarczyk N, Ptak M, Łanocha A, Kalisińska E, Kosik-Bogacka D. Pathomechanisms in the Kidneys in Selected Protozoan Parasitic Infections. Int J Mol Sci 2021; 22:4209. [PMID: 33921746 PMCID: PMC8073708 DOI: 10.3390/ijms22084209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis, malaria, toxoplasmosis, and acanthamoebiasis are protozoan parasitic infections. They remain important contributors to the development of kidney disease, which is associated with increased patients' morbidity and mortality. Kidney injury mechanisms are not fully understood in protozoan parasitic diseases, bringing major difficulties to specific therapeutic interventions. The aim of this review is to present the biochemical and molecular mechanisms in kidneys infected with Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Acanthamoeba spp. We present available mechanisms of an immune response, oxidative stress, apoptosis process, hypoxia, biomarkers of renal injury in the serum or urine, and the histopathological changes of kidneys infected with the selected parasites. Pathomechanisms of Leishmania spp. and Plasmodium spp. infections have been deeply investigated, while Toxoplasma gondii and Acanthamoeba spp. infections in the kidneys are not well known yet. Deeper knowledge of kidney involvement in leishmaniasis and malaria by presenting their mechanisms provides insight into how to create novel and effective treatments. Additionally, the presented work shows gaps in the pathophysiology of renal toxoplasmosis and acanthamoebiasis, which need further research.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Michał Ptak
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
23
|
Deng L, Wojciech L, Gascoigne NRJ, Peng G, Tan KSW. New insights into the interactions between Blastocystis, the gut microbiota, and host immunity. PLoS Pathog 2021; 17:e1009253. [PMID: 33630979 PMCID: PMC7906322 DOI: 10.1371/journal.ppat.1009253] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human gut microbiota is a diverse and complex ecosystem that is involved in beneficial physiological functions as well as disease pathogenesis. Blastocystis is a common protistan parasite and is increasingly recognized as an important component of the gut microbiota. The correlations between Blastocystis and other communities of intestinal microbiota have been investigated, and, to a lesser extent, the role of this parasite in maintaining the host immunological homeostasis. Despite recent studies suggesting that Blastocystis decreases the abundance of beneficial bacteria, most reports indicate that Blastocystis is a common component of the healthy gut microbiome. This review covers recent finding on the potential interactions between Blastocystis and the gut microbiota communities and its roles in regulating host immune responses.
Collapse
Affiliation(s)
- Lei Deng
- Laboratory of Molecular and Cellular Parasitology, Healthy Aging Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lukasz Wojciech
- Immunology Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas R. J. Gascoigne
- Immunology Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kevin S. W. Tan
- Laboratory of Molecular and Cellular Parasitology, Healthy Aging Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|