1
|
Jang J, He Z, Huang L, Hwang JY, Kim MY, Cho JY. Upregulation of NK cell activity, cytokine expression, and NF-κB pathway by ginsenoside concentrates from Panax ginseng berries in healthy mice and macrophage cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118681. [PMID: 39121929 DOI: 10.1016/j.jep.2024.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C.A. Meyer. Has been studied for decades for its various biological activities, especially in terms of immune-regulatory properties. Traditionally, it has been known that root, leaves, and fruits of P. ginseng were eaten for improving body's Qi and homeostasis. Also, these were used to protect body from various types of infectious diseases. However, molecular mechanisms of immunomodulatory activities of ginseng berries have not been systemically studied as often as other parts of the plant. AIM OF THE STUDY The aim of this research is to discover the regulatory effects of P. ginseng berries, more importantly, their ginsenosides, on innate immune responses and to elucidate the molecular mechanism. MATERIALS AND METHODS Ginseng berry concentrate (GBC) was orally injected into BALB/c mice for 30 days, and spleens were extracted for evaluation of immune-regulatory effects. Murine macrophage RAW264.7 cells were used for detailed molecular mechanism studies. Splenic natural killer (NK) cells were isolated using the magnetic-activated cell sorting (MACS) system, and the cytotoxic activity of isolated NK cells was measured using a lactate dehydrogenase (LDH) release assay. The splenic immune cell population was determined by flow-cytometry. NF-κB promoter activity was assessed by in vitro luciferase assay. Expression of inflammatory proteins and cytokines of the spleen and RAW264.7 cells were evaluated using western blotting and real-time PCR, respectively. RESULTS The GBC enhanced cytotoxic activity of NK cells and the immune-regulation-related splenic cell population. Moreover, GBC promoted NF-κB promoter activity and stimulated the NF-κB signaling cascade. In spleen and RAW264.7 cells, expression of pro-inflammatory cytokines was increased upon GBC application, while expression of anti-inflammatory cytokines decreased. CONCLUSIONS These results suggest that P. ginseng berry can stimulate innate immune responses and help maintain a balanced immune condition, mostly due to the action of its key ginsenoside Re, along with other protopanaxadiol- and protopanaxatriol-type ginsenosides. Such finding will provide a new insight into the field of well-being diet research as well as non-chemical immune modulator, by providing nature-derived and plant-based bioactive materials.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ziliang He
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Yeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Maia CMDA, Vasconcelos PGS, Pasetto S, Godwin WC, Silva JPRE, Tavares JF, Pardi V, Costa EMMDB, Murata RM. Anadenanthera colubrina regulated LPS-induced inflammation by suppressing NF-κB and p38-MAPK signaling pathways. Sci Rep 2024; 14:16028. [PMID: 38992070 PMCID: PMC11239917 DOI: 10.1038/s41598-024-66590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
We aimed to determine the chemical profile and unveil Anadenanthera colubrina (Vell.) Brenan standardized extract effects on inflammatory cytokines expression and key proteins from immunoregulating signaling pathways on LPS-induced THP-1 monocyte. Using the RT-PCR and Luminex Assays, we planned to show the gene expression and the levels of IL-8, IL-1β, and IL-10 inflammatory cytokines. Key proteins of NF-κB and MAPK transduction signaling pathways (NF-κB, p-38, p-NF-κB, and p-p38) were detected by Simple Western. Using HPLC-ESI-MSn (High-Performance Liquid-Chromatography) and HPLC-HRESIMS, we showed the profile of the extract that includes an opus of flavonoids, including the catechins, quercetin, kaempferol, and the proanthocyanidins. Cell viability was unaffected up to 250 µg/mL of the extract (LD50 = 978.7 µg/mL). Thereafter, the extract's impact on the cytokine became clear. Upon LPS stimuli, in the presence of the extract, gene expression of IL-1β and IL-10 were downregulated and the cytokines expression of IL-1β and IL-10 were down an upregulated respectively. The extract is involved in TLR-4-related NF-κB/MAPK pathways; it ignited phosphorylation of p38 and NF-κB, orchestrating a reduced signal intensity. Therefore, Anadenanthera colubrina's showed low cytotoxicity and profound influence as a protector against the inflammation, modulating IL-1β and IL-10 inflammatory cytokines gene expression and secretion by regulating intracellular NF-κB and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | | | - Silvana Pasetto
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Walton Colby Godwin
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Joanda Paolla Raimundo E Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Edja Maria Melo de Brito Costa
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil.
| | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
3
|
Xu ZH, Dang Y, Dong Y, Dong CY, Liu Y, Chen X, Yao Z, Shi JP. Anti-hepatocellular carcinoma activity of Sorbaria sorbifolia by regulating VEGFR and c-Met/apoptotic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117758. [PMID: 38246481 DOI: 10.1016/j.jep.2024.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sorbaria sorbifolia (SS) is a traditional Chinese medicine (TCM) that has been employed anti-hepatocellular carcinoma (HCC) for over 2000 years; yet, its underlying mechanism is still not fully understood. AIM OF THE STUDY In this study, we evaluated the anti-HCC effect on the freeze-dried powder of the water extract of SS (FDSS) by inhibiting tumor-induced neovascularization, and promoting apoptosis, and elucidated the underlying mechanisms. MATERIALS AND METHODS HCC cell lines (HepG2 and Huh7 cells) and HepG2 xenograft tumors in zebrafish were employed as in vivo and in vitro models, respectively, to evaluate the anti- HCC-indued neovascularization and apoptosis. In HCC cell lines, CCK-8 assay, wound-healing assay, transwell assay, cell circle assay, apoptosis assay, transmission electron microscopy, and co-culture assay were performed in vitro; in HepG2 xenograft tumor-zebrafish, tumor growth inhibition assay, hematoxylin and eosin (HE) staining, xenograft tumor-zebrafish apoptosis assay, and HCC-indued neovascularization assay were performed to evaluate the effect of FDSS on biological behavior of tumor, HCC-indued neovascularization, and apoptosis. The expression of VEGFR and c-Met/apoptotic pathway-related proteins was detected by western blotting analysis. Assays for c-Met and VEGFR activation were conducted to assess the impact of FDSS in either agonistic or inhibitory roles on these receptor proteins. RESULTS The findings from our study revealed that FDSS effectively suppresses the proliferation, migration, and invasion of HepG2 and Huh7 cells, as well as inhibiting tumor growth in the HepG2 xenograft zebrafish model by downregulating the expression of p-Met and p-AKT proteins. FDSS decreased the tumor growth associated with promoting apoptosis, including arresting HepG2 and Huh7 cells cycle at G0/G1phase, increasing apoptotic cell numbers and apoptotic bodies in cancer cells, and increasing the apoptotic fluorescence of xenograft tumor zebrafish by downregulating Bcl-2 proteins and upregulating Bax, caspase-9, and caspase-3 levels. We also found that FDSS can inhibit HCC-induced neovascularization and regulate VEGFR. Using an agonist or inhibitor of c-Met and VEGFR in HepG2 cells, we discovered that FDSS can downregulate c-Met and VEGFR protein expression. CONCLUSION FDSS exerts an anti-HCC effect by inhibiting HCC-indued neovascularization and pro-apoptosis through the inhibition of the action of VEGFR and c-Met/apoptotic pathway.
Collapse
Affiliation(s)
- Zhao-Hua Xu
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| | - Ying Dang
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| | - Yu Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| | - Chong-Yang Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| | - Yu Liu
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| | - Xu Chen
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| | - Zhi Yao
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| | - Jian-Ping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical College, Hohhot, China.
| |
Collapse
|
4
|
Zheleznichenko TV, Veklich TN, Kostikova VA. Investigation of Phenolic Compounds and Antioxidant Activity of Sorbaria pallasii (Rosaceae) Microshoots Grown In Vitro. Life (Basel) 2023; 13:life13020557. [PMID: 36836913 PMCID: PMC9963493 DOI: 10.3390/life13020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Sorbaria pallasii is an endemic species of the Far East and Siberia and grows along the Goltsy altitudinal belt. Data on micropropagation and phytochemical characteristics of this plant are not available, probably because of the inaccessibility of the plant material. Morphogenesis initiation from flower buds of S. pallasii in vitro and micropropagation were performed here in the Murashige and Skoog medium supplemented with 5.0 µM 6-benzylaminopurine and 0.0-1.0 µM α-naphthylacetic acid; elongation was implemented in the same medium without the hormones. A well-growing sterile culture of S. pallasii was obtained; the number of microshoots per explant reached 5.7 ± 1.2. Phytochemical analyses of in vitro propagated S. pallasii detected 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in a water-ethanol extract from its microshoots and revealed phenolic compounds in it. The phenolic compounds that likely contribute to its biological activity are tannins (74.9 mg/g), phenolcarboxylic acids (30.8 mg/g), and catechins (13.3 mg/g). In the microshoot extract, high-performance liquid chromatography identified three catechins. Microshoots showed the highest concentration of (±)-catechin (3.03 mg/(g of absolutely dry mass; ADM)). Concentrations of epigallocatechin gallate (0.38 mg/(g of ADM)) and (-)-epicatechin (0.55 mg/(g of ADM)) were significantly lower. This study paves the way for further biotechnological and phytochemical research on S. pallasii.
Collapse
Affiliation(s)
- Titiana V. Zheleznichenko
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), 630090 Novosibirsk, Russia
| | - Tatiana N. Veklich
- Amur Branch of Botanical Garden-Institute, Far Eastern Branch of Russian Academy of Sciences, 675000 Blagoveshchensk, Russia
| | - Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-339-9810
| |
Collapse
|
5
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Anti-Inflammatory Activities of an Anti-Histamine Drug, Loratadine, by Suppressing TAK1 in AP-1 Pathway. Int J Mol Sci 2022; 23:ijms23073986. [PMID: 35409346 PMCID: PMC8999734 DOI: 10.3390/ijms23073986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Loratadine is an anti-histamine routinely used for treating allergies. However, recent findings have shown that Loratadine may also have anti-inflammatory functions, while their exact mechanisms have not yet been fully uncovered. In this paper, we investigated whether Loratadine can be utilized as an anti-inflammatory drug through a series of in vitro and in vivo experiments using a murine macrophage cell line and an acute gastritis mouse model. Loratadine was found to dramatically reduce the expression of pro-inflammatory genes, including MMP1, MMP3, and MMP9, and inhibit AP-1 transcriptional activation, as demonstrated by the luciferase assay. Therefore, we decided to further explore its role in the AP-1 signaling pathway. The expression of c-Jun and c-Fos, AP-1 subunits, was repressed by Loratadine and, correspondingly, the expression of p-JNK, p-MKK7, and p-TAK1 was also inhibited. In addition, Loratadine was able to reduce gastric bleeding in acute gastritis-induced mice; Western blotting using the stomach samples showed reduced p-c-Fos protein levels. Loratadine was shown to effectively suppress inflammation by specifically targeting TAK1 and suppressing consequent AP-1 signaling pathway activation and inflammatory cytokine production.
Collapse
|
7
|
Zhang J, Rho Y, Kim MY, Cho JY. TAK1 in the AP-1 pathway is a critical target of Saururus chinensis (Lour.) Baill in its anti-inflammatory action. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114400. [PMID: 34245837 DOI: 10.1016/j.jep.2021.114400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saururus chinensis (Lour.) Baill (Saururaceae), also known as Asian lizard's tail, is a plant commonly found in East Asia. Its leaves have been used in traditional medicine to treat many diseases such as edema, pneumonia, hypertension, leproma, jaundice, gonorrhea, and rheumatoid arthritis. AIM OF THE STUDY Based on the efficacies of S. chinensis, the anti-inflammatory effects of this plant and the molecular mechanism were evaluated using the ethanol extract of S. chinensis leaves (Sc-EE). MATERIALS AND METHODS The production of pro-inflammatory mediators and cytokines in response to Sc-EE was evaluated using Griess and semi-quantitative reverse transcription-polymerase chain reactions. Furthermore, relevant proteins including c-Jun, c-Fos, p38, JNK, ERK, MEK1/2, MKK3/6, MKK4/7, and TAK1 were detected through immunoblotting. RESULTS Sc-EE diminished production of nitric oxide (NO); decreased expression levels of cyclooxygenase (COX)-2, interleukin (IL)-6, inducible NO synthase (iNOS), and IL-1β in LPS-stimulated RAW264.7 cells; and attenuated activator protein 1 (AP-1)-mediated luciferase activities. The extract markedly downregulated the phosphorylation of TAK1, upregulated thermal stability of TAK1, and reduced TAK1/AP-1-mediated luciferase activity in LPS-treated RAW264.7 cells and TAK1-overexpressing HEK293T cells. CONCLUSIONS These results demonstrated that Sc-EE suppresses pro-inflammatory gene expression through blockade of the TAK1/AP-1 pathway in LPS-treated RAW264.7 macrophages, implying that inhibition of TAK1/AP-1 signaling by S. chinensis is a key event in its anti-inflammatory activity.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yangkook Rho
- Development Center, Dadang and Bio Co., Suwon, 16679, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways. Molecules 2021; 26:molecules26206275. [PMID: 34684856 PMCID: PMC8538959 DOI: 10.3390/molecules26206275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-κB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.
Collapse
|
9
|
Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, Choung ES, Woo BY, Hong YD, Lee S, Lee BH, Bach TT, Kim JH, Kim JH, Cho JY. Syk/NF-κB-targeted anti-inflammatory activity of Melicope accedens (Blume) T.G. Hartley methanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113887. [PMID: 33539951 DOI: 10.1016/j.jep.2021.113887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | | | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin, 17074, Republic of Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Chen H, Jang J, Kopalli SR, Yum J, Yoon K, Cho JY. Anti-photoaging activities of Sorbaria kirilowii ethanol extract in UVB-damaged cells. Cytotechnology 2021; 73:127-138. [PMID: 33505120 DOI: 10.1007/s10616-020-00449-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
Sorbaria kirilowii (Regel) Maxim, a plant found in China, Korea, Japan, and east of Europe, is a common herb used for traditional medicinal purposes. However, its ability to prevent photoaging has not been studied. In this study, we investigated the anti-photoaging functions of an ethanol extract (Sk-EE) of S. kirilowii (Regel) Maxim using human keratinocytes exposed to UVB. First, we analyzed the cytotoxicity of Sk-EE. Then, we determine the expression of genes related to inflammation, collagen degradation, and moisture retention. We also explored the anti-photoaging mechanism of Sk-EE by determining correlated signaling pathways and target molecules using reporter gene assays and immunoblotting analyses. Sk-EE treatment of cells increased hyaluronic acid synthase (HAS), filaggrin (FLG), and collagen type I alpha 1 (COL1A1) expression. Sk-EE dose-dependently inhibited the UVB-induced expression of matrix metalloproteinases (MMPs) 1, 2, 9 and cyclooxygenase (COX)-2 by blocking the activator protein (AP)-1 signaling pathway, in particular the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular response kinase (ERK). In addition, c-Fos and c-Jun were targeted by Sk-EE. Our results indicate that Sk-EE has anti-inflammatory and skin-protective properties, and could be a candidate to treat signs of photoaging.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience, and Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Jinwhoa Yum
- Ministry of Environment, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
| | - Keejung Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| |
Collapse
|
11
|
Wang L, Liang J, Shang Q, Sa W, Wang L. The complete plastome of Sorbaria kirilowii: genome structure, comparative analysis, and phylogenetic implications. Mol Biol Rep 2020; 47:9677-9687. [PMID: 33159676 DOI: 10.1007/s11033-020-05976-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022]
Abstract
Sorbaria kirilowii is a deciduous perennial admired for its showy white blossoms. Though of importance for horticultural purposes, the plastomic study concerning this species is still lacking. Here, the plastome of S. kirilowii was de novo assembled using the high-throughput sequencing data. The complete plastome assembly of S. kirilowii was 160,810 bp in length, with a GC content of 36.03%. It featured a typical quadripartite structure, containing a pair of inverted repeats (IRs; 26,338 bp) separated by a large single-copy (LSC; 88,762 bp) and a small single-copy (SSC, 19,372 bp). In total, 132 genes were annotated in the plastome, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Furthermore, 63 SSRs, most of which were AT-rich, were identified in the cp genome of S. kirilowii. 71.7% of the cpSSRs were shown to be located in the intergenic regions. In addition, 49 repeats of varying sizes and types were also identified in the plastome. Through comparison, eight divergence hotspots were identified between the plastome of S. kirilowii and S. sorbifolia var. stellipila. These variable regions could potentially be developed into molecular markers for species delimitation or phylogenetics in future studies. We re-investigated the relationship among 17 Rosaceae species using the plastomic sequences, and S. kirilowii was shown to be a sister to S. sorbifolia var. stellipila. Overall, this study provides plastomic resources which could facilitate marker development and phylogenomics of Rosaceae.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Li Wang
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xi'ning, 810016, China. .,Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xi'ning, 810016, Qinghai, China.
| |
Collapse
|