1
|
Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, Amoutzias GD. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom 2023; 9:mgen001028. [PMID: 37266990 PMCID: PMC10327506 DOI: 10.1099/mgen.0.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus Streptomyces, by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species. Even among closely related species, we observed high interspecies variability of chromosomal protein-coding genes, species-level core genes, accessory genes and fingerprints. Notably, secondary metabolite biosynthetic gene clusters (smBGCs), carbohydrate-active enzymes (CAZymes) and protein-coding genes bearing the rare TTA codon demonstrate high intraspecies and interspecies variability, which emphasizes the need for strain-specific genomic mining. Highly conserved genes, such as those specifying genus-level core proteins, tend to occur in the central region of the chromosome, whereas those encoding proteins with evolutionarily volatile species-level fingerprints, smBGCs, CAZymes and TTA-codon-bearing genes are often found towards the ends of the linear chromosome. Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at the species and strain level. Finally, we observed a moderate, but statistically significant, correlation between the total number of CAZymes and three categories of smBGCs (siderophores, e-Polylysin and type III lanthipeptides) that are related to competition among bacteria.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikoletta Frangou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9054 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9054 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
2
|
Martinet L, Naômé A, Rezende LCD, Tellatin D, Pignon B, Docquier JD, Sannio F, Baiwir D, Mazzucchelli G, Frédérich M, Rigali S. Lunaemycins, New Cyclic Hexapeptide Antibiotics from the Cave Moonmilk-Dweller Streptomyces lunaelactis MM109 T. Int J Mol Sci 2023; 24:ijms24021114. [PMID: 36674628 PMCID: PMC9866976 DOI: 10.3390/ijms24021114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Streptomyces lunaelactis strains have been isolated from moonmilk deposits, which are calcium carbonate speleothems used for centuries in traditional medicine for their antimicrobial properties. Genome mining revealed that these strains are a remarkable example of a Streptomyces species with huge heterogeneity regarding their content in biosynthetic gene clusters (BGCs) for specialized metabolite production. BGC 28a is one of the cryptic BGCs that is only carried by a subgroup of S. lunaelactis strains for which in silico analysis predicted the production of nonribosomal peptide antibiotics containing the non-proteogenic amino acid piperazic acid (Piz). Comparative metabolomics of culture extracts of S. lunaelactis strains either holding or not holding BGC 28a combined with MS/MS-guided peptidogenomics and 1H/13C NMR allowed us to identify the cyclic hexapeptide with the amino acid sequence (D-Phe)-(L-HO-Ile)-(D-Piz)-(L-Piz)-(D-Piz)-(L-Piz), called lunaemycin A, as the main compound synthesized by BGC 28a. Molecular networking further identified 18 additional lunaemycins, with 14 of them having their structure elucidated by HRMS/MS. Antimicrobial assays demonstrated a significant bactericidal activity of lunaemycins against Gram-positive bacteria, including multi-drug resistant clinical isolates. Our work demonstrates how an accurate in silico analysis of a cryptic BGC can highly facilitate the identification, the structural elucidation, and the bioactivity of its associated specialized metabolites.
Collapse
Affiliation(s)
- Loïc Martinet
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium
| | - Aymeric Naômé
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium
| | | | - Déborah Tellatin
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
| | - Bernard Pignon
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
| | - Jean-Denis Docquier
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, B-4000 Liege, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, B-4000 Liege, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liege, B-4000 Liege, Belgium
| | - Sébastien Rigali
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium
- Correspondence:
| |
Collapse
|
3
|
Rivera-Chávez J, Ceapă CD, Figueroa M. Biological Dark Matter Exploration using Data Mining for the Discovery of Antimicrobial Natural Products. PLANTA MEDICA 2022; 88:702-720. [PMID: 35697058 DOI: 10.1055/a-1795-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of novel antimicrobials has significantly slowed down over the last three decades. At the same time, humans rely increasingly on antimicrobials because of the progressive antimicrobial resistance in medical practices, human communities, and the environment. Data mining is currently considered a promising option in the discovery of new antibiotics. Some of the advantages of data mining are the ability to predict chemical structures from sequence data, anticipation of the presence of novel metabolites, the understanding of gene evolution, and the corroboration of data from multiple omics technologies. This review analyzes the state-of-the-art for data mining in the fields of bacteria, fungi, and plant genomic data, as well as metabologenomics. It also summarizes some of the most recent research accomplishments in the field, all pinpointing to innovation through uncovering and implementing the next generation of antimicrobials.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Corina-Diana Ceapă
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Martinet L, Baiwir D, Mazzucchelli G, Rigali S. Structure of New Ferroverdins Recruiting Unconventional Ferrous Iron Chelating Agents. Biomolecules 2022; 12:biom12060752. [PMID: 35740878 PMCID: PMC9221444 DOI: 10.3390/biom12060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroverdins are ferrous iron (Fe2+)-nitrosophenolato complexes produced by a few Streptomyces species as a response to iron overload. Previously, three ferroverdins were identified: ferroverdin A, in which three molecules of p-vinylphenyl-3-nitroso-4-hydroxybenzoate (p-vinylphenyl-3,4-NHBA) are recruited to bind Fe2+, and Ferroverdin B and Ferroverdin C, in which one molecule of p-vinylphenyl-3,4-NHBA is substituted by hydroxy-p-vinylphenyl-3,4-NHBA, and by carboxy-p-vinylphenyl-3,4-NHBA, respectively. These molecules, especially ferroverdin B, are potent inhibitors of the human cholesteryl ester transfer protein (CETP) and therefore candidate hits for the development of drugs that increase the serum concentration of high-density lipoprotein cholesterol, thereby diminishing the risk of atherosclerotic cardiovascular disease. In this work, we used high-resolution mass spectrometry combined with tandem mass spectrometry to identify 43 novel ferroverdins from the cytosol of two Streptomyces lunaelactis species. For 13 of them (designated ferroverdins C2, C3, D, D2, D3, E, F, G, H, CD, DE, DF, and DG), we could elucidate their structure, and for the other 17 new ferroverdins, ambiguity remains for one of the three ligands. p-formylphenyl-3,4-NHBA, p-benzoic acid-3,4-NHBA, 3,4-NHBA, p-phenylpropionate-3,4-NHBA, and p-phenyacetate-3,4-NHBA were identified as new alternative chelators for Fe2+-binding, and two compounds (C3 and D3) are the first reported ferroverdins that do not recruit p-vinylphenyl-3,4-NHBA. Our work thus uncovered putative novel CETP inhibitors or ferroverdins with novel bioactivities.
Collapse
Affiliation(s)
- Loïc Martinet
- InBioS, Center for Protein Engineering, University of Liege, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium;
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, B-4000 Liege, Belgium;
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, B-4000 Liege, Belgium;
| | - Sébastien Rigali
- InBioS, Center for Protein Engineering, University of Liege, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium;
- Correspondence:
| |
Collapse
|
5
|
Siupka P, Hansen FT, Schier A, Rocco S, Sørensen T, Piotrowska-Seget Z. Antifungal Activity and Biosynthetic Potential of New Streptomyces sp. MW-W600-10 Strain Isolated from Coal Mine Water. Int J Mol Sci 2021; 22:ijms22147441. [PMID: 34299061 PMCID: PMC8303363 DOI: 10.3390/ijms22147441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Crop infections by fungi lead to severe losses in food production and pose risks for human health. The increasing resistance of pathogens to fungicides has led to the higher usage of these chemicals, which burdens the environment and highlights the need to find novel natural biocontrol agents. Members of the genus Streptomyces are known to produce a plethora of bioactive compounds. Recently, researchers have turned to extreme and previously unexplored niches in the search for new strains with antimicrobial activities. One such niche are underground coal mine environments. We isolated the new Streptomyces sp. MW-W600-10 strain from coal mine water samples collected at 665 m below ground level. We examined the antifungal activity of the strain against plant pathogens Fusarium culmorum DSM62188 and Nigrospora oryzae roseF7. Furthermore, we analyzed the strain’s biosynthetic potential with the antiSMASH tool. The strain showed inhibitory activity against both fungi strains. Genome mining revealed that it has 39 BGCs, among which 13 did not show similarity to those in databases. Additionally, we examined the activity of the Streptomyces sp. S-2 strain isolated from black soot against F. culmorum DSM62188. These results show that coal-related strains could be a source of novel bioactive compounds. Future studies will elucidate their full biotechnological potential.
Collapse
Affiliation(s)
- Piotr Siupka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
- Correspondence:
| | - Frederik Teilfeldt Hansen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Aleksandra Schier
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Simone Rocco
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Trine Sørensen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Zofia Piotrowska-Seget
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| |
Collapse
|
6
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
7
|
Kusuma AB, Nouioui I, Goodfellow M. Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune. Antonie Van Leeuwenhoek 2021; 114:859-873. [PMID: 33797685 PMCID: PMC8137480 DOI: 10.1007/s10482-021-01564-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
A polyphasic study was designed to determine the taxonomic provenance of a strain, isolate PRKS01-29T, recovered from an Indonesian sand dune and provisionally assigned to the Streptomyces violaceusniger clade. Genomic, genotypic and phenotypic data confirmed this classification. The isolate formed an extensively branched substrate mycelium which carried aerial hyphae that differentiated into spiral chains of rugose ornamented spores, contained LL-as the wall diaminopimelic acid, MK-9 (H6, H8) as predominant isoprenologues, phosphatidylethanolamine as the diagnostic phospholipid and major proportions of saturated, iso- and anteiso- fatty acids. Whole-genome sequences generated for the isolate and Streptomyces albiflaviniger DSM 41598T and Streptomyces javensis DSM 41764T were compared with phylogenetically closely related strains, the isolate formed a branch within the S. violaceusniger clade in the resultant phylogenomic tree. Whole-genome sequences data showed that isolate PRKS01-29T was most closely related to the S. albiflaviniger strain but was distinguished from the latter and from other members of the clade using combinations of phenotypic properties and average nucleotide identity and digital DNA:DNA hybridization scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T = NCIMB 15210T) should be classified in the genus Streptomyces as Streptomyces sabulosicollis sp. nov. It is also clear that streptomycetes which produce spiral chains of rugose ornamented spores form a well-defined monophyletic clade in the Streptomyces phylogenomic tree., the taxonomic status of which requires further study. The genome of the type strain of S. sabulosicollis contains biosynthetic gene clusters predicted to produce new natural products.
Collapse
Affiliation(s)
- Ali B Kusuma
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.
- Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, 84371, Indonesia.
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
8
|
Świecimska M, Golińska P, Nouioui I, Wypij M, Rai M, Sangal V, Goodfellow M. Streptomyces alkaliterrae sp. nov., isolated from an alkaline soil, and emended descriptions of Streptomyces alkaliphilus, Streptomyces calidiresistens and Streptomyces durbertensis. Syst Appl Microbiol 2020; 43:126153. [PMID: 33161356 DOI: 10.1016/j.syapm.2020.126153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
A polyphasic study was undertaken to establish the taxonomic position of six representative streptomycetes isolated from an alkaline soil adjacent to a meteoric alkaline soda lake in India. Chemotaxonomic, cultural and morphological properties of the isolates were consistent with their classification in the genus Streptomyces. The isolates formed extensively branched substrate mycelia and aerial hyphae that differentiated in straight chains of spores with smooth surfaces. They contained LL-diaminopimelic acid in the wall peptidoglycan, produced either hexa- or octa-hydrogenated menaquinones with nine isoprene units, major amounts of saturated, iso- and anteiso- fatty acids and phosphatidylethanolamine as the characteristic polar lipid. The isolates grew well at 30 °C, pH 9 and in the presence of 3 to 5% (w/v) sodium chloride. Isolates OF1T, OF3 and OF8 formed a distinct clade within the Streptomyces 16S rRNA gene tree sharing relatively high sequence similarities with the type strains of Streptomyces durbertensis (99.3%), Streptomyces palmae (98.1%) and Streptomyces xinghaiensis (98.3%), but can be distinguished from them using combinations of phenotypic properties. A phylogenomic tree based on draft genome sequences of the isolates and S. durbertensis DSM 104538T confirmed the phylogenetic relationships. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values calculated from the whole genome sequences of isolate OF1T and S. durbertensis DSM 104538T were low at 92.0% and 45.2%, respectively, indicating that they belong to different genomic species. Consequently, on the basis of the genomic, phylogenetic and associated phenotypic data it is proposed that isolates OF1T, OF3 and OF8 be assigned to the genus Streptomyces as Streptomyces alkaliterrae sp. nov. with strain OF1T (NCIMB 15195T =PCM 3001T) as the type strain. Isolates IF11, IF17 and IF19, and S. alkaliphilus DSM 42118T were shown to belong to the same taxospecies and together with S. calidiresistens DSM 42108T comprised a well supported clade in the Streptomyces 16S rRNA gene tree. Isolate IF17 and S. alkaliphilus DSM 42118T formed a well-supported clade in the phylogenomic tree, had almost identical digital G + C similarity values, produced long straight chains of smooth-surfaced spores and shared ANI and dDDH values (98.0 and 79.6%, respectively) consistent with their assignment to the same genomic species. In light of all of the data isolates IF11, IF17 and IF19 should be seen as authentic stains of S. alkalihilus. Data acquired in the present study have also been used to emend the descriptions of S. alkaliphilus, S. calidiresistens and S. durbertensis. The genomes of isolates IF17, and OF1T, OF3 and OF8 contain relatively high numbers of biosynthetic gene clusters some of which were discontinously distributed indicating ones predicted to express for novel specialised metabolites.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland.
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Magdalena Wypij
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati-444602, Maharashtra, India
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
9
|
Mangzira Kemung H, Tan LTH, Chan KG, Ser HL, Law JWF, Lee LH, Goh BH. Streptomyces sp. Strain MUSC 125 from Mangrove Soil in Malaysia with Anti-MRSA, Anti-Biofilm and Antioxidant Activities. Molecules 2020; 25:E3545. [PMID: 32756432 PMCID: PMC7435833 DOI: 10.3390/molecules25153545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.
Collapse
Affiliation(s)
- Hefa Mangzira Kemung
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Malaysia
| |
Collapse
|