1
|
Vu L, Xu F, Li T, Hua Q, Kuang X, Jiang Y, Liang Y, Niu X, Chen Y, Huang C, Mo W, Wang K, Tang K, Mo J, Lu KE, Mo Y, Mo S, Yang D, Zhao J. Analysis of immune cell activation in patients with diabetes foot ulcer from the perspective of single cell. Eur J Med Res 2024; 29:606. [PMID: 39702546 DOI: 10.1186/s40001-024-02179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) can cause severe complications, including diabetic foot ulcers (DFU). There is a significant gap in understanding the single-cell ecological atlas of DM and DFU tissues. METHODS Single-cell RNA sequencing data were used to create a detailed single-cell ecological landscape of DM and DFU. Enrichment analysis identified pathways involved in cellular subpopulations, and pseudo-time analysis inferred cell development processes. A gene regulatory network explored the role of transcription factors in DFU progression, and a potential herbal drug-target gene interaction network was constructed. RESULTS In the DFU group, immune cells were activated, with notable changes in several subpopulations. ATP5E was significantly overexpressed in Naive T cells, fibroblasts, endothelial cells, and CD8+ T cells in DM patients. Specific immune cell subsets, such as Naive T_RGCC, CTL_TYROBP_CL4, Mac_SLC40A1, and M1_CCL3L1, likely contribute to DFU formation through overactivation and proliferation, leading to tissue damage and ulcer exacerbation. Key genes TPP1, TLR4, and RIPK2 were identified, and 88 active ingredients in the herbal drug-target network showed strong correlations with these targets. Herbs like Angelica dahurica, Angelica sinensis, Boswellia carterii, liquorice, myrrh, and Semen armeniacae amarae were included. CONCLUSIONS This study offers insights into DM and DFU cytology. T cells in DFU are activated, attacking normal tissues and worsening tissue damage. The ATP5E gene may be related to the ecological remodeling of DM, and TPP1, TLR4, and RIPK2 are potential targets for DFU treatment.
Collapse
Affiliation(s)
- Lehoanganh Vu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fei Xu
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Ting Li
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Qikai Hua
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaocong Kuang
- Department of Physiology and Pathophysiology, Yulin Campus of Guangxi Medical University, Yulin, 537000, Guangxi, China
| | - Yongqiang Jiang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
| | - Yanfei Liang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Xing Niu
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Yixuan Chen
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Chengyu Huang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Weiliang Mo
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Kejian Wang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Kaihua Tang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Jianwen Mo
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Ke-Er Lu
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Yan Mo
- Department of Pathology, Yulin Campus of Guangxi Medical University, Yulin, 537000, Guangxi, China
| | - Steven Mo
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China.
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China.
| | - Dengfeng Yang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China.
| | - Jinmin Zhao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
3
|
Rachmawati D, Ermawati T, Rahmatillah NI, Meylina N, Safitri NY, Sutjiati R, Jansen ID. Green Robusta Coffee Bean Extract (GRCBE) inhibits bone loss in wistar rat models of Lps P. gingivalis and NiTi wire-induced experimental periodontitis. PHYTOMEDICINE PLUS 2024; 4:100535. [DOI: 10.1016/j.phyplu.2024.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Elmoslemany AM, Elzallat M, Abd-Elfatah MH, Mohammed DM, Elhady EE. Possible therapeutic effect of frankincense (Gum olibanum) and myrrh (Commiphora myrrha) resins extracts on DEN/CCL4 induced hepatocellular carcinoma in rats. PHYTOMEDICINE PLUS 2024; 4:100517. [DOI: 10.1016/j.phyplu.2023.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
|
5
|
Chen G, Lv C, Nie Q, Li X, Lv Y, Liao G, Liu S, Ge W, Chen J, Du Y. Essential Oil of Matricaria chamomilla Alleviate Psoriatic-Like Skin Inflammation by Inhibiting PI3K/Akt/mTOR and p38MAPK Signaling Pathway. Clin Cosmet Investig Dermatol 2024; 17:59-77. [PMID: 38222858 PMCID: PMC10785696 DOI: 10.2147/ccid.s445008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Background The traditional Matricaria chamomilla L. has been used to treat dermatitis for thousands of years. Due to emerging trends in alternative medicine, patients prefer natural remedies to relieve their symptoms. Therefore, finding safe and effective plant medicines for topical applications on the skin is an important treatment strategy for dermatologists. German chamomile (Matricaria chamomilla L.) from the Compositae family is a famous medicinal plant, often known as the "star of medicinal species."However, the function of Matricaria chamomilla essential oil on skin inflammation has not been thoroughly examined in earlier research. Methods GC-MS analyzed the components of MCEO, and this study explored the anti-inflammation effects of MCEO on psoriasis with network pharmacological pathway prediction. Following this, we used clinical samples of psoriasis patients to confirm the secretory characteristic of relative inflammatory markers. The therapeutic effect of MCEO on skin inflammation was detected by examination of human keratinocytes HaCaT. At the same time, we prepared imiquimod-induced psoriatic-like skin inflammation in mice to investigate thoroughly the potential inhibition functions of MCEO on psoriatic skin injury and inflammation. Results MCEO significantly reduced interleukin-22/tumor necrosis factor α/lipopolysaccharide-stimulated elevation of HaCaT cell inflammation, which was correlated with downregulating PI3K/Akt/mTOR and p38MAPK pathways activation mediated by MCEO in HaCaT cells treated with IL-22/TNF-α/LPS. Skin inflammation was evaluated based on the PASI score, HE staining, and relative inflammatory cytokine levels. The results showed that MCEO could significantly contribute to inflammatory skin disease treatment. Conclusion MCEO inhibited inflammation in HaCaT keratinocytes induced by IL-22/TNF-α/LPS, the potential mechanisms associated with inhibiting excessive activation and crosstalk between PI3K/Akt/mTOR and p38MAPK pathways. MCEO ameliorated skin injury in IMQ-induced psoriatic-like skin inflammation of mice by downregulating the levels of inflammatory cytokines but not IL-17A. Thus, anti-inflammatory plant drugs with different targets with combined applications were a potential therapeutic strategy in psoriasis.
Collapse
Affiliation(s)
- Guang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Caohua Lv
- Department of Dermatology, Taizhou Second People’s Hospital, Taizhou, 317200, People’s Republic of China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, Weifang, 261061, People’s Republic of China
| | - Xin Li
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Yinyi Lv
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Guoyan Liao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Weiwei Ge
- Department of Dermatology, Taizhou Second People’s Hospital, Taizhou, 317200, People’s Republic of China
| | - Jinguang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Yunting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People’s Republic of China
| |
Collapse
|
6
|
Hader H, Hering NA, Schulzke JD, Bücker R, Rosenthal R. Myrrh protects against IL-13-induced epithelial barrier breakdown in HT-29/B6 cells. Front Pharmacol 2023; 14:1301800. [PMID: 38044939 PMCID: PMC10691275 DOI: 10.3389/fphar.2023.1301800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The oleoresin myrrh has been used for centuries as an anti-inflammatory remedy for a variety of diseases and is said to have a protective effect on the intestinal epithelium. An intact epithelial barrier function is the prerequisite for a healthy gut. Inflammatory and infectious diseases of the intestine, in particular, lead to barrier impairment resulting in leak-flux diarrhea and mucosal immune responses. Therefore, the aim of the present study was to investigate the protective effect of myrrh in an experimental inflammatory situation, namely, under the influence of IL-13, one of the key cytokines in ulcerative colitis. We used human intestinal epithelial HT-29/B6 cell monolayers for functional and molecular assessment of the epithelial barrier under IL-13 and myrrh treatment. IL-13 induced a loss in barrier function that was fully restored with myrrh treatment, as shown by transepithelial electrical resistance measurements. The molecular correlate of the IL-13-mediated barrier dysfunction could be assigned to an upregulation of the channel-forming tight junction (TJ) protein claudin-2 and to a subcellular redistribution of the TJ protein tricellulin, loosening the sealing of tricellular TJs. Moreover, IL-13 exposure leads to an increase in the number of apoptotic cells, contributing to the leak pathway of barrier dysfunction. Myrrh protected against changes in TJ deregulation and decreased the elevated apoptotic ratio under IL-13. The protective effects are mediated through the inhibition of the STAT3 and STAT6 pathway. In conclusion, our results demonstrate that myrrh exhibits antagonizing effects against IL-13-induced barrier impairment in a human intestinal cell model. These data suggest the use of myrrh as a promising option in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Helena Hader
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Nina A. Hering
- Department of General and Visceral Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Bücker
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Rita Rosenthal
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells 2023; 12:1427. [PMID: 37408263 DOI: 10.3390/cells12101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Previously established immune-responsive co-culture models with macrophages have limitations due to the dedifferentiation of macrophages in long-term cultures. This study is the first report of a long-term (21-day) triple co-culture of THP-1 macrophages (THP-1m) with Caco-2 intestinal epithelial cells and HT-29-methotrexate (MTX) goblet cells. We demonstrated that high-density seeded THP-1 cells treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h differentiated stably and could be cultured for up to 21 days. THP-1m were identified by their adherent morphology and lysosome expansion. In the triple co-culture immune-responsive model, cytokine secretions during lipopolysaccharide-induced inflammation were confirmed. Tumor necrosis factor-alpha and interleukin 6 levels were elevated in the inflamed state, reaching 824.7 ± 130.0 pg/mL and 609.7 ± 139.5 pg/mL, respectively. Intestinal membrane integrity was maintained with a transepithelial electrical resistance value of 336.4 ± 18.0 Ω·cm2. Overall, our findings suggest that THP-1m can be effectively employed in models of long-term immune responses in both normal and chronic inflammatory states of the intestinal epithelium, making them a valuable tool for future research on the association between the immune system and gut health.
Collapse
Affiliation(s)
- Pornwipa Phuangbubpha
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sanya Thara
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Puretat Saetan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wanwiwa Tumnoi
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
8
|
Kuck K, Unterholzner A, Lipowicz B, Schwindl S, Jürgenliemk G, Schmidt TJ, Heilmann J. Terpenoids from Myrrh and Their Cytotoxic Activity against HeLa Cells. Molecules 2023; 28:molecules28041637. [PMID: 36838624 PMCID: PMC9964945 DOI: 10.3390/molecules28041637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The oleo-gum resin of Commiphora myrrha (Nees) Engl. has a long history of medicinal use, although many of its constituents are still unknown. In the present investigation, 34 secondary metabolites were isolated from myrrh resin using different chromatographic techniques (silica flash chromatography, CPC, and preparative HPLC) and their structures were elucidated with NMR spectroscopy, HRESIMS, CD spectroscopy, and ECD calculations. Among the isolated substances are seven sesquiterpenes (1-7), one disesquiterpene (8), and two triterpenes (23, 24), which were hitherto unknown, and numerous substances are described here for the first time for C. myrrha or the genus Commiphora. Furthermore, the effects of selected terpenes on cervix cancer cells (HeLa) were studied in an MTT-based in vitro assay. Three triterpenes were observed to be the most toxic with moderate IC50 values of 60.3 (29), 74.5 (33), and 78.9 µM (26). Due to the different activity of the structurally similar triterpenoids, the impact of different structural elements on the cytotoxic effect could be discussed and linked to the presence of a 1,2,3-trihydroxy substructure in the A ring. The influence on TNF-α dependent expression of the intercellular adhesion molecule 1 (ICAM-1) in human microvascular endothelial cells (HMEC-1) was also tested for 4-6, 9-11, 17, 18, 20, and 27 in vitro, but revealed less than 20% ICAM-1 reduction and, therefore, no significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Katrin Kuck
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Anna Unterholzner
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Bartosz Lipowicz
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, D-30855 Langenhagen, Germany
| | - Sebastian Schwindl
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Guido Jürgenliemk
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas J. Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie, Corrensstr. 48, D-48149 Münster, Germany
| | - Jörg Heilmann
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Jang JY, Im E, Kim ND. Therapeutic Potential of Bioactive Components from Scutellaria baicalensis Georgi in Inflammatory Bowel Disease and Colorectal Cancer: A Review. Int J Mol Sci 2023; 24:1954. [PMID: 36768278 PMCID: PMC9916177 DOI: 10.3390/ijms24031954] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scutellaria baicalensis Georgi (SBG), an herbal medicine with various biological activities, including anti-inflammatory, anticancer, antiviral, antibacterial, and antioxidant activities, is effective in treatment of colitis, hepatitis, pneumonia, respiratory infections, and allergic diseases. This herbal medicine consists of major active substances, such as baicalin, baicalein, wogonoside, and wogonin. Inflammatory bowel disease (IBD) comprises a group of inflammatory conditions of the colon and small intestine, with Crohn's disease and ulcerative colitis being the main types. IBD can lead to serious complications, such as increased risk of colorectal cancer (CRC), one of the most common cancers worldwide. Currently, there is no cure for IBD, and its incidence has been increasing over the past few decades. This review comprehensively summarizes the efficacy of SBG in IBD and CRC and may serve as a reference for future research and development of drugs for IBD and cancer treatment.
Collapse
Affiliation(s)
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Wu Y, Zhou T, Qian D, Liu X, Xu Y, Hong W, Meng X, Tang H. Z-Guggulsterone Induces Cell Cycle Arrest and Apoptosis by Targeting the p53/CCNB1/PLK1 Pathway in Triple-Negative Breast Cancer. ACS OMEGA 2023; 8:2780-2792. [PMID: 36687039 PMCID: PMC9851028 DOI: 10.1021/acsomega.2c07480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 06/12/2023]
Abstract
Myrrh is the dried resin of Commiphora Myrrh Engl., which exerts anticancer properties. However, its effects and molecular mechanisms in triple-negative breast cancer (TNBC) remain unclear. In this study, we used network pharmacology to screen Z-Guggulsterone (Z-GS) as a characteristic active component of myrrh. Cell Counting Kit-8 proliferation assays showed that Z-GS inhibited proliferation of the TNBC cell lines MDA-MB-468 and BT-549. Transwell assays also showed that Z-GS inhibited TNBC migration and invasion phenotypes. Our network pharmacology combined with RNA-sequencing analyses showed that Z-GS affected cell cycle and apoptosis processes in TNBC cells, mainly via p53 signaling, to regulate key CCNB1 (cyclin B1), PLK1 (polo-like kinase 1), and p53 targets. Flow cytometry revealed that Z-GS arrested the cell cycle at the G2/M phase and increased apoptosis in TNBC cells. Western blotting and quantitative real-time polymerase chain reaction studies confirmed that Z-GS functioned via the p53-mediated downregulation of CCNB1 and PLK1 expression. In vivo studies showed that Z-GS effectively inhibited TNBC progression. Collectively, Z-GS exhibited potential anti-TNBC activity and may functions via the p53/CCNB1/PLK1 pathway.
Collapse
Affiliation(s)
- Yihao Wu
- College
of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Zhou
- Zhejiang
Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Da Qian
- Department
of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.
1 People’s Hospital, Changshu 215500, Jiangsu, China
| | - Xiaozhen Liu
- General
Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s
Hospital, Hangzhou Medical College), Hangzhou 310053, Zhejiang, China
| | - Yuhao Xu
- The
Second Clinical Medical College, Zhejiang
Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Weimin Hong
- Zhejiang
Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xuli Meng
- General
Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s
Hospital, Hangzhou Medical College), Hangzhou 310053, Zhejiang, China
| | - Hongchao Tang
- General
Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s
Hospital, Hangzhou Medical College), Hangzhou 310053, Zhejiang, China
| |
Collapse
|
11
|
Bao B, Zhu C, Shi J, Lu C. Causal association between inflammatory bowel disease and hidradenitis suppurativa: A two-sample bidirectional Mendelian randomization study. Front Immunol 2023; 14:1071616. [PMID: 36776852 PMCID: PMC9909343 DOI: 10.3389/fimmu.2023.1071616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Epidemiological studies have revealed a link between inflammatory bowel disease (IBD) and hidradenitis suppurativa (HS). To determine whether IBD and HS are causally related, we used the Mendelian randomization (MR) approach. Methods A two-sample MR was performed using an analysis of 12,882 patients and 21,770 controls with IBD and its main subtypes, ulcerative colitis (UC) and Crohn's disease (CD). A total of 409 cases and 211,139 controls without hidradenitis suppurativa (HS) were included in the data for this condition from various GWAS investigations. Odds ratios (ORs) with 95% confidence intervals (CIs) are used to estimate causal effects. Results The study assessed the causal relationship between HS and IBD in both directions. The risk of HS was increased by IBD (IVW OR = 1.34, 95% CI = 1.20-1.49, p = 2.15E-07) and, in addition, HS was affected by UC (IVW OR = 1.27, 95% CI = 1.13-1.43, p = 8.97E-04) and CD (IVW OR = 1.18, 95% CI = 1.08-1.29, p = 4.15E-04). However, there was no evidence of a causal relationship between HS and IBD or its subtypes (IBD IVW OR = 1.00, 95% CI = 0.96-1.05, p = 0.85; UC IVW OR = 0.99, 95% CI = 0.95-1.03, p = 0.65; CD IVW OR = 1.03, 95% CI = 0.98- 1.07, p = 0.28). Conclusion This study demonstrates that IBD and its subtypes have a causal effect on HS, whereas HS does not affect IBD. Gut-skin axis interactions may help to understand this association. Nevertheless, further studies are needed to clarify the pathophysiology of the causal relationship between IBD and HS.
Collapse
Affiliation(s)
- Bingzhou Bao
- Department of Anorectal, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Chao Zhu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Shi
- Department of Anorectal, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Canxing Lu
- Department of Anorectal, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Altenbernd F, Schwarz L, Lipowicz B, Vissiennon C. Myrrh and Chamomile Flower Extract Inhibit Mediator Release from IgE-stimulated Mast-Cell-Like RBL-2H3 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:3422. [PMID: 36559534 PMCID: PMC9783512 DOI: 10.3390/plants11243422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Recent clinical evidence supports the efficacy of a traditional medicinal product (TMP) containing a combination of myrrh (Commiphora myrrha (Nees) Engl.), coffee charcoal (Coffea arabica L.), and chamomile flower dry extract (Matricaria chamomilla L.) in the therapy of diarrhea and inflammatory bowel disease. Mast cells seem to play a key role in the symptom generation of irritable bowel syndrome (IBS). To evaluate the use of the TMP in IBS treatment, the effects of the herbal extracts on the release of mast-cell mediators from stimulated RBL-2H3 cells were investigated. Therefore, degranulation was induced by phorbol-12-myristate-13-acetate (PMA) and calcium ionophore A13187 (CI) or IgE stimulation, and the amounts of released β-hexosaminidase and histamine were quantified. The extracts showed no effect on the mediator release of PMA- and CI-stimulated RBL-2H3 cells. Myrrh and chamomile were able to reduce the β-hexosaminidase release of IgE-stimulated cells, while myrrh showed stronger inhibition of the mediator release than chamomile, which reduced only IgE-stimulated histamine release. Thus, these results indicate a mechanistic basis for the use of the herbal combination of myrrh, coffee charcoal, and chamomile flower extract in the symptom-oriented treatment of IBS patients with diarrheal symptoms.
Collapse
Affiliation(s)
- Fabian Altenbernd
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, 30855 Langenhagen, Germany
| | - Lena Schwarz
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Bartosz Lipowicz
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, 30855 Langenhagen, Germany
| | - Cica Vissiennon
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, 30855 Langenhagen, Germany
| |
Collapse
|
13
|
A Comprehensive Study of Therapeutic Applications of Chamomile. Pharmaceuticals (Basel) 2022; 15:ph15101284. [PMID: 36297396 PMCID: PMC9611340 DOI: 10.3390/ph15101284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chamomile has a long history of traditional medicinal uses. The two commonly used varieties with therapeutic applications are German chamomile known as Matricaria chamomilla L. and Roman chamomile or Chamaemelum nobile L. The plant contains many components, namely, flavonoids, terpenoids, and coumarins, which are responsible for its medicinal properties. The review discusses recent developments that help in establishing its role as a therapeutic agent in various areas as an anti-inflammatory, antioxidant, analgesic, antimicrobial, hepatoprotective, anti-allergic, anticancer, and anti-hypertensive agent. Not much is known about its role in the treatment of CNS disorders and metabolic syndromes, which are also discussed. The chemical components responsible for the therapeutic activity and the respective mechanism of action are also elaborated.
Collapse
|
14
|
Duan X, Li J, Cui J, Li H, Hasan B, Xin X. Chemical component and in vitro protective effects of Matricaria chamomilla (L.) against lipopolysaccharide insult. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115471. [PMID: 35716917 DOI: 10.1016/j.jep.2022.115471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chamomile (Matricaria chamomilla L.) is a popular herbal tea for the treatment of hepatitis and cholecystitis in traditional Uygur medicines. AIM OF THE STUDY To investigate the anti-inflammatory activity and chemical composition of M. chamomilla, and clarify its molecular mechanism. MATERIALS AND METHODS M. chamomilla was extracted with 75% ethanol and then extracted with different solvents to obtain five fractions, namely petroleum ether fraction (EOPE), dichloromethane fraction (EOD), ethyl acetate fraction (EOEA), n-butanol fraction (EOB), and water fraction (EOW). Cytotoxicity and the effect on the nitric oxide (NO) production of RAW264.7 cells induced by LPS of the five fractions were screened, and the most active one (EOD) was selected for further investigations. The components of EOD were identified by LC-MS/MS analysis in combination with comparison of retention time and UV absorption with authentic compounds by HPLC. In addition, five most abundant compounds of EOD were isolation by column chromatography and semi-preparative HPLC and their structures were further confirmed by HRMS and NMR data analysis and comparison with data in literatures. Then the underlying anti-inflammatory mechanism of EOD were predicted through Network pharmacology using the identified compounds from EOD, and further verified by Western Blot and ELISA experiments. RESULTS EOD showed the most significant inhibition ratio against NO in RAW264.7 cells without toxicity among the tested five fractions. Thirty-seven compounds including flavonoid-O-glycoside, flavonoid aglycone, methylated flavonoid aglycone, phenolic acid, coumarin, sesquiterpene, and triterpene were identified from EOD by LC-MS/MS and comparison with authentic compounds. The five most abundant compounds in EOD were isolated and determined to be axillarin (26), tricin (30), chrysoeriol (31), centaureidin (33) and chrysosplenetin (35). IL-6, NF-κB, ERK1 and ERK2 cascade, TNF were the most important anti-inflammatory targets of EOD predicted by Network pharmacology. Western Blot and ELISA experiments revealed that EOD significantly decreased the protein expression levels of inflammatory factors (PGE2, MCP-1, IL-6, TNF-α), iNOS, COX-2, NF-κB (p-P65 and p-IκBα), MAPKs (p-p38, p-ERK and p-JNK), and increased the protein expression levels of Nrf2, HO-1 and CYP2E1. In addition, EOD blocked the p65 protein into the nucleus and promoted the nuclear translocation of Nrf2 in RAW264.7 cells induced by LPS. CONCLUSION M. chamomilla exerted anti-inflammatory effect via NF-κB, MAPK and Nrf2/HO-1 pathways. It could be further applied as a safe anti-inflammatory agent from natural source.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongliang Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bilal Hasan
- Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Department of Cardiology, Laboratory of Pulmonary Hypertension, 116 Huanghe Rd, Urumqi, Xinjiang, China.
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Lykov A, Rachkovskaya L, Rachkovsky E, Poveshchenko O. Biocompatibility of composition of aluminum-silica carrier and extract of Matricaria chamomilla and Bidens tripartita with monocytic lines. 2022 URAL-SIBERIAN CONFERENCE ON COMPUTATIONAL TECHNOLOGIES IN COGNITIVE SCIENCE, GENOMICS AND BIOMEDICINE (CSGB) 2022:370-372. [DOI: 10.1109/csgb56354.2022.9865503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alexander Lykov
- Research Institute of Clinical ans Experimental Lymphology- Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk Tuberculosis Reseacrh Institute,Novosibirsk,Russia
| | - Lubov Rachkovskaya
- Research Institute of Clinical ans Experimental Lymphology- Branch of the Institute of Cytology and Genetics, SB RAS,Novosibirsk,Russia
| | - Edmund Rachkovsky
- Research Institute of Clinical ans Experimental Lymphology- Branch of the Institute of Cytology and Genetics, SB RAS,Novosibirsk,Russia
| | - Olga Poveshchenko
- Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS,Novosibirsk,Russia
| |
Collapse
|
16
|
Joshi A, Soni A, Acharya S. In vitro models and ex vivo systems used in inflammatory bowel disease. IN VITRO MODELS 2022; 1:213-227. [PMID: 37519330 PMCID: PMC9036838 DOI: 10.1007/s44164-022-00017-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal condition. Ulcerative colitis and Crohn's disease are types of inflammatory bowel disease. Over many decades, the disease has been a topic of study, with experts still trying to figure out its cause and pathology. Researchers have established many in vivo animal models, in vitro cell lines, and ex vivo systems to understand its cause ultimately and adequately identify a therapy. However, in vivo animal models cannot be regarded as good models for studying IBD since they cannot completely simulate the disease. Furthermore, because species differences are a crucial subject of concern, in vitro cell lines and ex vivo systems can be employed to recreate the condition properly. In vitro models serve as the starting point for biological and medical research. Ex vivo and in vitro models for replicating gut physiology have been developed. This review aims to present a clear understanding of several in vitro and ex vivo models of IBD and provide insights into their benefits and limits and their value in understanding intestinal physiology.
Collapse
Affiliation(s)
- Abhishek Joshi
- Department of Pharmacology, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| | - Arun Soni
- Department of Pharmacology, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| | - Sanjeev Acharya
- Department of Pharmacognosy, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| |
Collapse
|
17
|
Zahid TM, Khan NS. Myrrh And Chlorhexidine Mouthwashes Comparison For Plaque, Gingivitis And Inflammation Reduction: A 3-Arm Randomized Controlled Trial. ANNALS OF DENTAL SPECIALTY 2022. [DOI: 10.51847/ajwgutvunv] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Zang L, Zhang Y, Zhao J, Yuan Y, Wen Y, Lian J, Chen S, Chen Y, Liu W, Niu Z, Wang X, Peng C, Zhang W, Meng Z, Lu J. A metabolomics study of Qianliexin capsule treatment of benign prostatic hyperplasia induced by testosterone propionate in the rat model. Anal Biochem 2021; 628:114258. [PMID: 34081927 DOI: 10.1016/j.ab.2021.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022]
Abstract
A metabolomics investigation of the treatment effect of Qianliexin (QLX) capsules was conducted on rats with benign prostatic hyperplasia (BPH) induced by testosterone propionate. Establishment of the BPH model was confirmed using the prostatic index. Hematoxylin and eosin (HE) staining for TGF-β, EGFR, collagen, IL-1 β, TNF-α was performed and changes in urine volume were measured. Urine and serum samples were collected from three groups, including a control group, a BPH model group and a QLX-treated group and subjected to metabolomics profiling based on ultrahigh-performance liquid chromatography-mass spectrometry. Pharmacodynamics analysis showed that the QLX group had significantly lower histopathological damage, fibrosis damage, and inflammation and higher urine output compared with the model group. Twenty-two potential biomarkers were identified in urine samples and 23 metabolites were identified in plasma samples. Alterations in metabolic patterns were evident in all sample types. The treatment effects of QLX appear to involve various metabolic pathways including lipid metabolism, fatty acid metabolism and purine generation and significantly reduced the pathological symptoms and related biochemical indicators of BPH and improved the level of potential marker metabolites. This comprehensive study suggested that differential markers provided insights into the metabolic pathways involved in BPH and the treatment effects of QLX.
Collapse
Affiliation(s)
- Linghe Zang
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yuwei Zhang
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, Shandong Province, China
| | - Jing Zhao
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yunxia Yuan
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yi Wen
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Jiaxin Lian
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Shuailong Chen
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yiran Chen
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Weiyi Liu
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Ze Niu
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Xinyue Wang
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Chunlin Peng
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Wenxin Zhang
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Zhaoqing Meng
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, Shandong Province, China.
| | - Jincai Lu
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
19
|
Romano B, Lucariello G, Capasso R. Topical Collection "Pharmacology of Medicinal Plants". Biomolecules 2021; 11:biom11010101. [PMID: 33466709 PMCID: PMC7828774 DOI: 10.3390/biom11010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy; (B.R.); (G.L.)
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy; (B.R.); (G.L.)
| | - Raffaele Capasso
- Department of Agricultural Science, University of Naples Federico II, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
20
|
Effects of Coffee and Its Components on the Gastrointestinal Tract and the Brain-Gut Axis. Nutrients 2020; 13:nu13010088. [PMID: 33383958 PMCID: PMC7824117 DOI: 10.3390/nu13010088] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most popular beverages consumed worldwide. Roasted coffee is a complex mixture of thousands of bioactive compounds, and some of them have numerous potential health-promoting properties that have been extensively studied in the cardiovascular and central nervous systems, with relatively much less attention given to other body systems, such as the gastrointestinal tract and its particular connection with the brain, known as the brain–gut axis. This narrative review provides an overview of the effect of coffee brew; its by-products; and its components on the gastrointestinal mucosa (mainly involved in permeability, secretion, and proliferation), the neural and non-neural components of the gut wall responsible for its motor function, and the brain–gut axis. Despite in vitro, in vivo, and epidemiological studies having shown that coffee may exert multiple effects on the digestive tract, including antioxidant, anti-inflammatory, and antiproliferative effects on the mucosa, and pro-motility effects on the external muscle layers, much is still surprisingly unknown. Further studies are needed to understand the mechanisms of action of certain health-promoting properties of coffee on the gastrointestinal tract and to transfer this knowledge to the industry to develop functional foods to improve the gastrointestinal and brain–gut axis health.
Collapse
|
21
|
Weindl G. Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handb Exp Pharmacol 2020; 265:219-233. [PMID: 33349897 DOI: 10.1007/164_2020_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The intestinal epithelial barrier, together with the microbiome and local immune system, is a critical component that maintains intestinal homeostasis. Dysfunction may lead to chronic inflammation, as observed in inflammatory bowel diseases. Animal models have historically been used in preclinical research to identify and validate new drug targets in intestinal inflammatory diseases. Yet, limitations about their biological relevance to humans and advances in tissue engineering have forced the development of more complex three-dimensional reconstructed intestinal epithelium. By introducing immune and commensal microbial cells, these models more accurately mimic the gut's physiology and the pathophysiological changes occurring in vivo in the inflamed intestine. Specific advantages and limitations of two-dimensional (2D) and three-dimensional (3D) intestinal models such as coculture systems, organoids, and microfluidic devices to study inflammatory and immune-related responses are highlighted. While current cell culture models lack the cellular and molecular complexity observed in vivo, the emphasis is put on how these models can be used to improve preclinical drug development for inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Günther Weindl
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
22
|
Kuck K, Jürgenliemk G, Lipowicz B, Heilmann J. Sesquiterpenes from Myrrh and Their ICAM-1 Inhibitory Activity In Vitro. Molecules 2020; 26:E42. [PMID: 33374825 PMCID: PMC7796156 DOI: 10.3390/molecules26010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
By using various chromatographic steps (silica flash, CPC, preparative HPLC), 16 sesquiterpenes could be isolated from an ethanolic extract of myrrh resin. Their chemical structures were elucidated by 1D and 2D NMR spectroscopy and HRESIMS. Among them, six previously unknown compounds (1-6) and another four metabolites previously not described for the genus Commiphora (7, 10, 12, 13) could be identified. Sesquiterpenes 1 and 2 are novel 9,10-seco-eudesmanes and exhibited an unprecedented sesquiterpene carbon skeleton, which is described here for the first time. New compound 3 is an 9,10 seco-guaian and the only peroxide isolated from myrrh so far. Compounds 1, 2, 4, 7-9, 11, 13-16 were tested in an ICAM-1 in vitro assay. Compound 7, as well as the reference compound furanoeudesma-1,3-diene, acted as moderate inhibitors of this adhesion molecule ICAM-1 (IC50: 44.8 and 46.3 μM, respectively). These results give new hints on the activity of sesquiterpenes with regard to ICAM-1 inhibition and possible modes of action of myrrh in anti-inflammatory processes.
Collapse
Affiliation(s)
- Katrin Kuck
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| | - Guido Jürgenliemk
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| | - Bartosz Lipowicz
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, D-30855 Langenhagen, Germany;
| | - Jörg Heilmann
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| |
Collapse
|
23
|
Luzardo-Ocampo I, Loarca-Piña G, Gonzalez de Mejia E. Gallic and butyric acids modulated NLRP3 inflammasome markers in a co-culture model of intestinal inflammation. Food Chem Toxicol 2020; 146:111835. [PMID: 33130239 DOI: 10.1016/j.fct.2020.111835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
Bioactive compounds from food products made from natural ingredients such as corn and common bean could target the NLRP3 inflammasome, protein scaffolds with a key role in the moderation of intestinal inflammation. This research aimed to evaluate the anti-inflammatory effect from the fermented non-digestible fraction of baked corn and common bean snack (FNDF), and its main components, on the modulation of NLRP3 inflammasome markers in vitro. For this, a THP-1 macrophage/differentiated Caco-2 cell co-culture was used as a model of intestinal inflammation. A disease control (DC) (LPS/human IFN-γ, 10 ng/mL) was compared with FNDF (40-300 μg/mL) and its pure components: gallic (38.85 μM) and butyric acids (6 μM), verbascose (0.06 μM), their mixture, and an anti-inflammatory control (tofacitinib, 5 μM). Compared to DC, FNDF (40 μg/mL) reduced the 48 h-basolateral nitrites (40-60%), IL-1β/IL-18, and TNF-α production. Additionally, it decreased the total reactive oxygen species (36.3%) and nitric oxide synthase (6.9%) activities, increasing superoxide dismutase (228.2%) activity. Compared to NLRP3 positive control, FNDF components decreased NLRP3 markers (caspase-1 activity, IL-1β, and apoptosis). These results highlight NLRP3-anti-inflammatory effects from FNDF components. This is the first report of the NLRP3 inflammasome modulation by digested food matrix components, using a co-culture approach.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA; PROPAC, Research and Graduate Program in Food Science, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, 76010, Queretaro, Qro, Mexico
| | - Guadalupe Loarca-Piña
- PROPAC, Research and Graduate Program in Food Science, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, 76010, Queretaro, Qro, Mexico
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA.
| |
Collapse
|