1
|
Wangchuk P, Yeshi K. Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites. Animals (Basel) 2024; 14:2671. [PMID: 39335259 PMCID: PMC11428429 DOI: 10.3390/ani14182671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrointestinal parasites (GIPs) are organisms known to have coevolved for millennia with their mammalian hosts. These parasites produce small molecules, peptides, and proteins to evade or fight their hosts' immune systems and also to protect their host for their own survival/coexistence. The small molecules include polar compounds, amino acids, lipids, and carbohydrates. Metabolomics and lipidomics are emerging fields of research that have recently been applied to study helminth infections, host-parasite interactions and biochemicals of GIPs. This review comprehensively discusses metabolomics and lipidomics studies of the small molecules of GIPs, providing insights into the available tools and techniques, databases, and analytical software. Most metabolomics and lipidomics investigations employed LC-MS, MS or MS/MS, NMR, or a combination thereof. Recent advancements in artificial intelligence (AI)-assisted software tools and databases have propelled parasitomics forward, offering new avenues to explore host-parasite interactions, immunomodulation, and the intricacies of parasitism. As our understanding of AI technologies and their utilisation continue to expand, it promises to unveil novel perspectives and enrich the knowledge of these complex host-parasite relationships.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- College of Public Health, Medical and Veterinary Sciences (CPHMVS), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| | - Karma Yeshi
- College of Public Health, Medical and Veterinary Sciences (CPHMVS), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| |
Collapse
|
2
|
Cui Z, Du F, Yu W, Wang Z, Kong F, Xie Z, Zhao Q, Zhang H, Wang H, Fan H, Ren L. Alterations of mouse gut microbiome in alveolar echinococcosis. Heliyon 2024; 10:e32860. [PMID: 38988523 PMCID: PMC11234002 DOI: 10.1016/j.heliyon.2024.e32860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Alveolar echinococcosis (AE) may affect the composition of the host's gut microbiota, potentially disrupting the balance between the gut microbiota and metabolites. Metagenomics and untargeted metabolomics were employed to characterize changes in the gut microbiota and metabolites in mouse models infected with E. multilocularis. Pearson correlation coefficients were calculated to compare the distribution of microbiota and metabolites, revealing synergistic or mutually exclusive relationships. Functional outputs of the gut microbiota were explored using the CAZy database and six enzymes involved in carbohydrate metabolism were identified with statistically significant differential expression between infected and control groups. The resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database from the metagenomes of the groups. Firmicutes are the main carrier of ARGs in the host gut with tetQ being most prevalent. Antibiotic efflux, inactivation and target modification were the principal mechanisms of resistance. Comparison and analysis of two sets of antibiotic metabolic pathways allowed the identification of enzyme reactions unique to infected mice. KEGG pathway overview shows phenazine biosynthesis involving phzG to be one of them. In conclusion, infection with AE in mice leads to an overall disruption of gut microbiota and metabolites with the involvement of enzymes related to carbohydrate metabolism. Furthermore, antibiotic-resistance genes may play a role in disease progression, offering potential insights into the relationship between antibiotic use in AE and treatment outcomes.
Collapse
Affiliation(s)
- Ziyan Cui
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Department of Postgraduate, Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Fei Du
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Department of Postgraduate, Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Wenhao Yu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Fanyu Kong
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Zhi Xie
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Qian Zhao
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Hanxi Zhang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| |
Collapse
|
3
|
Wang N, Sieng S, Liang T, Xu J, Han Q. Intestine proteomic and metabolomic alterations in dogs infected with Toxocara canis. Acta Trop 2024; 252:107140. [PMID: 38341054 DOI: 10.1016/j.actatropica.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Toxocariasis is an important zoonotic parasitic disease. Toxocaris canis adults live and reproduce in the intestinal tract of dogs and other canine hosts, and the infectious eggs are continuously excreted in feces, which causes environmental contamination and has an important public health significance. In this study, TMT proteomic and untargeted metabolomic methods were used to explore the physiological and pathological effects on the intestinal tract of dogs which infected with T. canis, and a series of bioinformatics analyses were conducted to identify differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs). The proteomics results showed that 198 DEPs were mainly enriched in the immune system and signal transduction pathway, and involved in the regulation of the occurrence and development of cancer and infectious diseases. T. canis could disrupt intestinal permeability by increasing the expression of proteins such as zinc finger protein DZIP1L and myosin heavy chain 10. Additionally, T. canis infection could also inhibit the host immune response by decreasing the expression of MHC-II, NF-κB, DLA and other immune-related molecules. While, the metabolomics results revealed that the expression of oxoglutaric acid, glutamate, d-aspartate, arginine, taurochenodeoxycholic acid and taurocholic acid which participated in tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, bile secretion, biosynthesis of amino acids pathway were significantly decreased. The correlation results of proteomics and metabolomics showed that DEPs and DEMs were mainly co-enriched in bile secretion pathway to regulate intestinal peristalsis. Analyzing DEPs and DEMs will not only provide insights into the mechanisms of host parasite interaction, but also aid in identifying potential targets for therapy and diagnosis, thus setting the groundwork for effectively preventing and managing toxocariasis.
Collapse
Affiliation(s)
- Na Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Soben Sieng
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Tian Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Jingyun Xu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
4
|
Wangchuk P, Yeshi K, Loukas A. Metabolomics and lipidomics studies of parasitic helminths: molecular diversity and identification levels achieved by using different characterisation tools. Metabolomics 2023; 19:63. [PMID: 37356029 PMCID: PMC10290966 DOI: 10.1007/s11306-023-02019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/15/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Helminths are parasitic worms that infect millions of people worldwide and secrete a variety of excretory-secretory products (ESPs), including proteins, peptides, and small molecules. Despite this, there is currently no comprehensive review article on cataloging small molecules from helminths, particularly focusing on the different classes of metabolites (polar and lipid molecules) identified from the ESP and somatic tissue extracts of helminths that were studied in isolation from their hosts. OBJECTIVE This review aims to provide a comprehensive assessment of the metabolomics and lipidomics studies of parasitic helminths using all available analytical platforms. METHOD To achieve this objective, we conducted a meta-analysis of the identification and characterization tools, metabolomics approaches, metabolomics standard initiative (MSI) levels, software, and databases commonly applied in helminth metabolomics studies published until November 2021. RESULT This review analyzed 29 studies reporting the metabolomic assessment of ESPs and somatic tissue extracts of 17 helminth species grown under ex vivo/in vitro culture conditions. Of these 29 studies, 19 achieved the highest level of metabolite identification (MSI level-1), while the remaining studies reported MSI level-2 identification. Only 155 small molecule metabolites, including polar and lipids, were identified using MSI level-1 characterization protocols from various helminth species. Despite the significant advances made possible by the 'omics' technology, standardized software and helminth-specific metabolomics databases remain significant challenges in this field. Overall, this review highlights the potential for future studies to better understand the diverse range of small molecules that helminths produce and leverage their unique metabolomic features to develop novel treatment options.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| | - Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| |
Collapse
|
5
|
Gao J, Zou Y, Wu XJ, Xu Y, Zhu XQ, Zheng WB. Differential miRNA expression profiles in the bone marrow of Beagle dogs at different stages of Toxocara canis infection. BMC Genomics 2022; 23:847. [PMID: 36544082 PMCID: PMC9773451 DOI: 10.1186/s12864-022-09081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toxocara canis is distributed worldwide, posing a serious threat to both human and dog health; however, the pathogenesis of T. canis infection in dogs remains unclear. In this study, the changes in microRNA (miRNA) expression profiles in the bone marrow of Beagle dogs were investigated by RNA-seq and bioinformatics analysis. RESULTS Thirty-nine differentially expressed (DE) miRNAs (DEmiRNAs) were identified in this study. Among these, four DEmiRNAs were identified at 24 h post-infection (hpi) and all were up-regulated; eight DEmiRNAs were identified with two up-regulated miRNAs and six down-regulated miRNAs at 96 hpi; 27 DEmiRNAs were identified with 13 up-regulated miRNAs and 14 down-regulated miRNAs at 36 days post-infection (dpi). Among these DEmiRNAs, cfa-miR-193b participates in the immune response by regulating the target gene cd22 at 24 hpi. The novel_328 could participate in the inflammatory and immune responses through regulating the target genes tgfb1 and tespa1, enhancing the immune response of the host and inhibiting the infection of T. canis at 96 hpi. In addition, cfa-miR-331 and novel_129 were associated with immune response and self-protection mechanisms at 36 dpi. 20 pathways were significantly enriched by KEGG pathway analysis, most of which were related to inflammatory response, immune response and cell differentiation, such as Cell adhesion molecules (CAMs), ECM-receptor interaction and Focal adhesion. CONCLUSIONS These findings suggested that miRNAs of Beagle dog bone marrow play important roles in the pathogenesis of T. canis infection in dogs and provided useful resources to better understand the interaction between T. canis and the hosts.
Collapse
Affiliation(s)
- Jin Gao
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yang Zou
- grid.454892.60000 0001 0018 8988State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu Province China
| | - Xiao-Jing Wu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yue Xu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Xing-Quan Zhu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China ,grid.410696.c0000 0004 1761 2898Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan Province China
| | - Wen-Bin Zheng
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| |
Collapse
|
6
|
Lung Lipidomic Alterations in Beagle Dogs Infected with Toxocara canis. Animals (Basel) 2022; 12:ani12223080. [PMID: 36428308 PMCID: PMC9686702 DOI: 10.3390/ani12223080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Toxocariasis, mainly caused by Toxocara canis, and to a lesser extent, Toxocara cati, is a neglected parasitic zoonosis. The mechanisms that underlie the changes in lipid metabolism of T. canis infection in Beagle dogs' lungs remain unclear. Lipidomics is a rapidly emerging approach that enables the global profiling of lipid composition by mass spectrometry. In this study, we performed a non-targeted lipidomic analysis of the lungs of Beagle dogs infected with the roundworm T. canis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1197 lipid species were identified, of which 63, 88, and 157 lipid species were significantly altered at 24 h post-infection (hpi), 96 hpi, and 36 days post-infection (dpi), respectively. This global lipidomic profiling identified infection-specific lipid signatures for lung toxocariasis, and represented a comprehensive comparison between the lipid composition of dogs' lungs in the presence and absence of T. canis infection. The potential roles of the identified lipid species in the pathogenesis of T. canis are discussed, which has important implications for better understanding the interaction mechanism between T. canis and the host lung.
Collapse
|
7
|
Oliveira FMS, Cruz RE, Pinheiro GRG, Caliari MV. Comorbidities involving parasitic diseases: A look at the benefits and complications. Exp Biol Med (Maywood) 2022; 247:1819-1826. [PMID: 35876147 PMCID: PMC9679356 DOI: 10.1177/15353702221108387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parasitic infections acquired by the population cause substantial morbidity worldwide, with individuals from developing countries being most affected. Some parasites remain in the host for long periods, settling in different organs, manipulating the flow of nutrients and metabolites, and influencing the immune response, favoring their adaptation. The host attempts to counteract the metabolic and immunological alterations and the possible damage caused by infection. These metabolic and immunological changes experienced by the host can influence the progression of other existing morbidities or those that will be acquired in the future. Cancer and metabolic diseases are also frequent causes of morbidity in the world population. The large numbers of individuals affected by cancer and metabolic diseases and the high prevalence of morbidity caused by parasitic diseases favor the development of comorbidity involving these pathologies. This review provides an overview of major advances in research on cancer and metabolic diseases associated with parasitic infections. Information about hosts and parasites such as alterations of the immune response, metabolism and adaptation mechanisms of the parasites, and parasitic molecules with therapeutic potential is provided, as well as the beneficial results or complications related to the comorbidities discussed herein. We emphasize the need to conduct additional studies addressing comorbidities associated with parasitic infections to improve the understanding of the impact of this association on the progression of morbidities, as well as the possibility of the therapeutic use of and therapeutic approaches involving parasites.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ruth Elizabeth Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil,Marcelo Vidigal Caliari.
| |
Collapse
|
8
|
Li HY, Zou Y, Elsheikha HM, Xu Y, Cai L, Xie SC, Zhu XQ, Zheng WB. Lipidomic changes in the liver of beagle dogs associated with Toxocara canis infection. Front Cell Infect Microbiol 2022; 12:890589. [PMID: 36176575 PMCID: PMC9514057 DOI: 10.3389/fcimb.2022.890589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
A global lipidomic analysis using liquid chromatography–tandem mass spectrometry was performed on the liver of beagle dogs infected with Toxocara canis to profile hepatic lipid species at 12 h post-infection (hpi), 24 hpi, and 36 days post-infection (dpi). This analysis identified six categories and 42 subclasses of lipids, including 173, 64, and 116 differentially abundant lipid species at 12 hpi, 24 hpi, and 36 dpi, respectively. Many of the identified lysophospholipids, such as lysophosphatidylglycerol, lysophosphatidylserine, and lysophosphatidylcholine, may contribute to the migration and development of T. canis during the early infection stage. Pathway analysis revealed significant alterations of several immune-inflammatory pathways, such as the B-cell receptor signaling pathway, the NF-kappa B signaling pathway, and the C-type lectin receptor signaling pathway at 12 and 24 hpi. These findings demonstrate the value of lipidomic profiling in revealing the extent of changes in the composition and abundance of hepatic lipidome caused by T. canis infection and their relevance to the pathophysiology of toxocariasis in beagle dogs.
Collapse
Affiliation(s)
- Hao-Yu Li
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Yue Xu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Lang Cai
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Shi-Chen Xie
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- *Correspondence: Xing-Quan Zhu, ; Wen-Bin Zheng,
| | - Wen-Bin Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
- *Correspondence: Xing-Quan Zhu, ; Wen-Bin Zheng,
| |
Collapse
|
9
|
RNA sequencing reveals dynamic expression of spleen lncRNAs and mRNAs in Beagle dogs infected by Toxocara canis. Parasit Vectors 2022; 15:279. [PMID: 35927758 PMCID: PMC9351231 DOI: 10.1186/s13071-022-05380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Toxocara canis is a cosmopolitan parasite with a significant adverse impact on the health of humans and animals. The spleen is a major immune organ that plays essential roles in protecting the host against various infections. However, its role in T. canis infection has not received much attention. METHODS We performed sequencing-based transcriptome profiling of long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression in the spleen of Beagle puppies at 24 h post-infection (hpi), 96 hpi and 36 days post-infection (dpi). Deep sequencing of RNAs isolated from the spleen of six puppies (three infected and three control) at each time point after infection was conducted. RESULTS Our analysis revealed 614 differentially expressed (DE) lncRNAs and 262 DEmRNAs at 24 hpi; 726 DElncRNAs and 878 DEmRNAs at 96 hpi; and 686 DElncRNAs and 504 DEmRNAs at 36 dpi. Of those, 35 DElncRNA transcripts and 11 DEmRNAs were detected at all three time points post-infection. Many DE genes were enriched in immune response, such as ifit1, ifit2 and rorc. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that some genes (e.g. prkx and tnfrsf11a) were involved in the T cell receptor signaling pathway, calcium signaling pathway, Ras signaling pathway and NF-κB signaling pathway. CONCLUSIONS The findings of this study show marked alterations in the expression profiles of spleen lncRNAs and mRNAs, with possible implications in the pathophysiology of toxocariasis.
Collapse
|
10
|
Papaiakovou M, Littlewood DTJ, Doyle SR, Gasser RB, Cantacessi C. Worms and bugs of the gut: the search for diagnostic signatures using barcoding, and metagenomics-metabolomics. Parasit Vectors 2022; 15:118. [PMID: 35365192 PMCID: PMC8973539 DOI: 10.1186/s13071-022-05225-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) helminth infections cause significant morbidity in both humans and animals worldwide. Specific and sensitive diagnosis is central to the surveillance of such infections and to determine the effectiveness of treatment strategies used to control them. In this article, we: (i) assess the strengths and limitations of existing methods applied to the diagnosis of GI helminth infections of humans and livestock; (ii) examine high-throughput sequencing approaches, such as targeted molecular barcoding and shotgun sequencing, as tools to define the taxonomic composition of helminth infections; and (iii) discuss the current understanding of the interactions between helminths and microbiota in the host gut. Stool-based diagnostics are likely to serve as an important tool well into the future; improved diagnostics of helminths and their environment in the gut may assist the identification of biomarkers with the potential to define the health/disease status of individuals and populations, and to identify existing or emerging anthelmintic resistance.
Collapse
Affiliation(s)
- Marina Papaiakovou
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | | | | | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
| |
Collapse
|
11
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
12
|
Monitoring of parasitic diseases of dogs. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the study, dogs were diagnosed with the following helminthic diseases: toxocariasis, echinococcosis, uncinariosis, trichuriasis, capillariosis, dipilidiosis, which took the form of mono and mixed invasions.
The aim of this study was to identify the intensity of helminth infestation of dogs of different ages and methods of keeping.
Materials and methods. Experimental studies were conducted during 2018–2020 on the basis of the laboratory “Innovative technologies and safety and quality of livestock products” and “Veterinary Pharmacy” of the Department of Veterinary Examination, Microbiology, Zoohygiene and Safety and Quality of Livestock Products; epizootology and parasitology of the Faculty of Veterinary Medicine of Sumy National Agrarian University.
In cities and villages, faecal samples were taken from dogs, taking into account the method of keeping (tethered or untethered) and their use (office, hunting, decorative, etc.), which were placed in airtight containers, labeled samples and sent to the laboratory for the research.
The object of clinical and laboratory research were dogs aged one to seven years, admitted to veterinary clinics in the period from 2018 to 2020, with suspected helminthic diseases. Testing of dogs was performed by collecting medical history and clinical examination.
Results. According to the results of the research, it was established that among helminthic diseases during 2018–2020 the following diseases were registered: toxocariasis, cestodes, uncinariosis of dogs. Among the blood-parasitic diseases for the period 2018–2020 were diagnosed with heartworm disease, babesiosis of dogs.
Among ectoparathyroidism, the laboratory diagnosed demodectic mange, otodectosis, canine sarcoptosis, and carnivorous syphonepterosis. A total of 513 surveys were conducted in 2018, of which 80 were positive; for 2019–509, of which positive – 58; for 2020 – 488, of which 62 are positive.
Conclusions. Intestinal helminthiasis has been found to account for the lowest proportion (11 %) of carnivorous parasitic diseases compared to blood parasitic diseases (19 %) and ectoparasitosis (70 %), but they are of great interest for study because of their significant epidemiological significance and may be the cause of disease in humans.
It has been proven that helminthic diseases of dogs run as mixed invasion, and a minority of cases 31.7 % of cases run as mono invasion. Of the total number of patients with helminthic diseases, 73.4 % of the total number of animals were accompanied by other diseases of infectious and non-infectious ethology
Collapse
|