1
|
Bojórquez-Quintal E, Xotlanihua-Flores D, Bacchetta L, Diretto G, Maccioni O, Frusciante S, Rojas-Abarca LM, Sánchez-Rodríguez E. Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico. PLANTS (BASEL, SWITZERLAND) 2024; 13:2741. [PMID: 39409611 PMCID: PMC11478550 DOI: 10.3390/plants13192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The by-products of green coffee processing are rich in compounds that can be recycled for their possible use in the production of beverages, fertilizers and weed control in production areas. The objective of this work was to identify the organic and inorganic bioactive compounds of green coffee and the coffee by-products related to the production of origin, such as dried cascara (skin-pulp), parchment and silverskin (unroasted), in order to investigate the role their biomolecules may have in reuse through practices and local knowledge, not yet valued. The metabolomic profile by HPLC-ESI-HRMS of the aqueous extract of the dried cascara highlighted 93 non-volatile molecules, the highest number reported for dried cascara. They belong to groups of organic acids (12), alkaloids (5), sugars (5), fatty acids (2), diglycerides (1), amino acids (18), phospholipids (7), vitamins (5), phenolic acids (11), flavonoids (8), chlorogenic acids (17), flavones (1) and terpenes (1). For the first time, we report the use of direct analysis in real-time mass spectrometry (DART-MS) for the identification of metabolites in aqueous extracts of dried cascara, parchment, silverskin and green coffee. The DART analysis mainly showed the presence of caffeine and chlorogenic acids in all the extracts; additionally, sugar adducts and antioxidant compounds such as polyphenols were detected. The mineral content (K, Ca, P, S, Mg and Cl) by EDS spectrometry in the by-products and green coffee showed a relatively high content of K in the dried cascara and green coffee, while Ca was detected in double quantity in the silverskin. These metabolomic and mineral profile data allow enhancement of the link between the quality of green coffee and its by-products and the traditional local practices in the crop-growing area. This consolidates the community's experience in reusing by-products, thereby minimizing the impact on the environment and generating additional income for coffee growers' work, in accordance with the principles of circular economy and bioeconomy.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONAHCYT, Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico
| | - Damián Xotlanihua-Flores
- Ingeniería en Desarrollo Comunitario, Instituto Tecnológico Superior de Zongolica, Km 4 Carretera a la Compañía S/N, Tepetlitlanapa, Zongolica 95005, Veracruz, Mexico;
| | - Loretta Bacchetta
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Gianfranco Diretto
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Oliviero Maccioni
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Sarah Frusciante
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Luis M. Rojas-Abarca
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| | - Esteban Sánchez-Rodríguez
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| |
Collapse
|
2
|
Ribeiro RC, Mota MFS, Silva RMV, Silva DC, Novaes FJM, da Veiga VF, Bizzo HR, Teixeira RSS, Rezende CM. Coffee Oil Extraction Methods: A Review. Foods 2024; 13:2601. [PMID: 39200528 PMCID: PMC11353398 DOI: 10.3390/foods13162601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
Green and roasted coffee oils are products rich in bioactive compounds, such as linoleic acid and the diterpenes cafestol and kahweol, being a potential ingredient for food and cosmetic industries. An overview of oil extraction techniques most applied for coffee beans and their influence on the oil composition is presented. Both green and roasted coffee oil extractions are highlighted. Pressing, Soxhlet, microwave, and supercritical fluid extraction were the most used techniques used for coffee oil extraction. Conventional Soxhlet is most used on a lab scale, while pressing is most used in industry. Supercritical fluid extraction has also been evaluated mainly due to the environmental approach. One of the highlighted activities in Brazilian agribusiness is the industrialization of oils due to their increasing use in the formulation of cosmetics, pharmaceuticals, and foods. Green coffee oil (raw bean) has desirable bioactive compounds, increasing the interest of private companies and research institutions in its extraction process to preserve the properties contained in the oils.
Collapse
Affiliation(s)
- Raquel C. Ribeiro
- Aroma Analysis Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (R.C.R.); (R.M.V.S.)
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Maria Fernanda S. Mota
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21949-909, Brazil;
| | - Rodrigo M. V. Silva
- Aroma Analysis Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (R.C.R.); (R.M.V.S.)
| | - Diana C. Silva
- Chemistry Department, Federal University of Viçosa, Viçosa 36570-900, Brazil; (D.C.S.); (F.J.M.N.)
| | - Fabio J. M. Novaes
- Chemistry Department, Federal University of Viçosa, Viçosa 36570-900, Brazil; (D.C.S.); (F.J.M.N.)
| | - Valdir F. da Veiga
- Chemistry Section, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil;
| | - Humberto R. Bizzo
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, Brazil;
| | - Ricardo S. S. Teixeira
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Claudia M. Rezende
- Aroma Analysis Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (R.C.R.); (R.M.V.S.)
| |
Collapse
|
3
|
Gallego-Barceló P, Benítez-Álvarez D, Bagues A, Silván-Ros B, Montalbán-Rodríguez A, López-Gómez L, Vera G, del Castillo MD, Uranga JA, Abalo R. Ex Vivo Study of Colon Health, Contractility and Innervation in Male and Female Rats after Regular Exposure to Instant Cascara Beverage. Foods 2024; 13:2474. [PMID: 39200401 PMCID: PMC11353626 DOI: 10.3390/foods13162474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Instant Cascara (IC) is a sustainable beverage made from dried coffee cherry pulp, a by-product of coffee processing. It is rich in nutrients and bioactive compounds and has a high concentration of antioxidants. This study explored the impact of regular IC consumption on colonic motor function and innervation. Over a period of 4 weeks, male and female healthy rats were given drinking water containing 10 mg/mL of IC. Thereafter, colon samples were obtained to evaluate the longitudinal (LM) and circular (CM) smooth muscle contractile response to acetylcholine (ACh) and electrical field stimulation (EFS) in an organ bath, before and after atropine administration (10-6 M). Histological and immunohistochemical analyses assessed colon damage, muscle thickness, and immunoreactivity to substance P (SP) and neuronal nitric oxide synthase (nNOS). ACh and EFS induced similar responses across groups, but the CM response to EFS was greater in females compared with males, despite their lower body weight. Atropine completely blocked the response to ACh but only partially antagonized the neural response to EFS, particularly that of CM in females treated with IC, which had a greater liquid intake than those exposed to water. However, in the myenteric ganglia, no statistically significant differences were observed in SP or nNOS. Our results suggest that regular IC exposure may enhance specific neural pathway functions, particularly in females, possibly due to their increased IC consumption.
Collapse
Affiliation(s)
- Paula Gallego-Barceló
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - David Benítez-Álvarez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Street 34, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Street 21, 50931 Cologne, Germany
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Blanca Silván-Ros
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Alba Montalbán-Rodríguez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Gema Vera
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - María Dolores del Castillo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera Street, 9, 28049 Madrid, Spain
| | - José A. Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
4
|
Memudu AE, Olukade BA, Adebayo OS, Raza ML. Coffee and amyotrophic lateral sclerosis (ALS). PROGRESS IN BRAIN RESEARCH 2024; 289:81-105. [PMID: 39168583 DOI: 10.1016/bs.pbr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by progressive loss of motor neurons. The effective treatments for ALS remain elusive, necessitating exploration into novel preventive strategies. ALS pathogenesis is triggered by oxidative stress which results in neuroinflammation, exicitotoxicity and neuronal cell death. Nutritional mechanism for halting progression of neurodegeneration is through dietary compounds with antioxidants, anti-inflammatory or neuromodulating activity. Coffee is a widely consumed beverage made up of polyphenols, caffeine and other compounds with possible antioxidants and neuro-protective roles. It is important to say that various epidemiological studies have documented association between coffee intake and ALS. This chapter is aimed to present a comprehensive review of existing literature on coffee consumption and ALS, involving epidemiological studies, preclinical research, and its mechanism of actions in animal model of ALS. It highlights key findings regarding the potential neuroprotective properties of coffee constituents such as caffeine, polyphenols, and other bioactive compounds. Furthermore, it discusses possible pathways through which coffee may modulate ALS pathogenesis, including suppressing oxidative stress and neuroinflammation while boosting adenosine function via the adenosine receptor two on the motor neuron cells membrane in the spinal cord to enhance motor function via the corticospinal tract. Overall, this chapter underscores the significance of further research to unravel the specific mechanisms by which coffee exerts its neuroprotective effects in ALS, with the ultimate goal of identifying dietary strategies for ALS prevention and management.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer Institute, University of South Florida, Tampa, FL, United States
| | | | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
López-Parra MB, Gómez-Domínguez I, Iriondo-DeHond M, Villamediana Merino E, Sánchez-Martín V, Mendiola JA, Iriondo-DeHond A, del Castillo MD. The Impact of the Drying Process on the Antioxidant and Anti-Inflammatory Potential of Dried Ripe Coffee Cherry Pulp Soluble Powder. Foods 2024; 13:1114. [PMID: 38611418 PMCID: PMC11011276 DOI: 10.3390/foods13071114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Coffee fruit cascara, which is the skin and pulp of the coffee cherry, has been authorized as a novel food for commercialization in the European Union. The present research assessed the feasibility of using spray drying to produce a soluble powder called instant cascara (IC), employing sun-dried ripe coffee cherry pulp as a raw material. Although there were no significant differences (p > 0.05) in the overall antioxidant capacity between the freeze-dried and spray-dried samples, after an in vitro simulation of the digestion process, the spray-dried sample was significantly (p < 0.05) more antioxidant. Both samples reduced physiological intracellular ROS and significantly decreased (p < 0.05) the secretion of the pro-inflammatory factor NO. Alkaloids and phenolic compounds were detected in intestinal digests. In conclusion, spray drying is a good technique for producing IC as its use does not affect its properties and causes less environmental impact than freeze drying, as calculated by life cycle assessment. Sensory analysis did not show significant differences between the commercial beverage and the IC beverage in the adult population. IC at 10 mg/mL was significantly less accepted in adolescents than the commercial beverage. Future work will include the reformulation of the IC beverage at 10 mg/mL, which has antioxidant and anti-inflammatory potential, to increase its hedonic acceptance in all consumer segments.
Collapse
Affiliation(s)
- Marta B. López-Parra
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.B.L.-P.); (I.G.-D.); (E.V.M.); (V.S.-M.); (J.A.M.)
| | - Irene Gómez-Domínguez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.B.L.-P.); (I.G.-D.); (E.V.M.); (V.S.-M.); (J.A.M.)
| | - Maite Iriondo-DeHond
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38, 200, 28800 Alcalá de Henares, Spain;
| | - Esther Villamediana Merino
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.B.L.-P.); (I.G.-D.); (E.V.M.); (V.S.-M.); (J.A.M.)
| | - Vanesa Sánchez-Martín
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.B.L.-P.); (I.G.-D.); (E.V.M.); (V.S.-M.); (J.A.M.)
| | - Jose A. Mendiola
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.B.L.-P.); (I.G.-D.); (E.V.M.); (V.S.-M.); (J.A.M.)
| | - Amaia Iriondo-DeHond
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain;
| | - Maria Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.B.L.-P.); (I.G.-D.); (E.V.M.); (V.S.-M.); (J.A.M.)
| |
Collapse
|
6
|
Nolasco A, Squillante J, Velotto S, D’Auria G, Ferranti P, Mamone G, Errico ME, Avolio R, Castaldo R, De Luca L, Romano R, Esposito F, Cirillo T. Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach. Foods 2024; 13:1044. [PMID: 38611351 PMCID: PMC11011278 DOI: 10.3390/foods13071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The increasing population, food demand, waste management concerns, and the search for sustainable alternatives to plastic polymers have led researchers to explore the potential of waste materials. This study focused on a waste of pine nut processing referred to in this paper as pine nut skin. For the first time, its nutritional profile, potential bioactive peptide, contaminants, and morphological structure were assessed. Pine nut skin was composed mainly of carbohydrates (56.2%) and fiber (27.5%). The fat (9.8%) was about 45%, 35%, and 20% saturated, monounsaturated, and polyunsaturated fatty acid, respectively, and Omega-9,-6, and -3 were detected. Notably, oleic acid, known for its health benefits, was found in significant quantities, resembling its presence in pine nut oil. The presence of bioactive compounds such as eicosapentaenoic acid (EPA) and phytosterols further adds to its nutritional value. Some essential elements were reported, whereas most of the contaminants such as heavy metals, polycyclic aromatic hydrocarbons, rare earth elements, and pesticides were below the limit of quantification. Furthermore, the in silico analysis showed the occurrence of potential precursor peptides of bioactive compounds, indicating health-promoting attributes. Lastly, the morphological structural characterization of the pine nut skin was followed by Fourier Transform Infrared and solid-state NMR spectroscopy to identify the major components, such as lignin, cellulose, and hemicellulose. The thermostability of the pine nut skin was monitored via thermogravimetric analysis, and the surface of the integument was analyzed via scanning electron microscopy and volumetric nitrogen adsorption. This information provides a more comprehensive view of the potential uses of pine nut skin as a filler material for biocomposite materials. A full characterization of the by-products of the food chain is essential for their more appropriate reuse.
Collapse
Affiliation(s)
- Agata Nolasco
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Jonathan Squillante
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma “San Raffaele”, Via di Val Cannuta, 247-00166 Roma, Italy
| | - Giovanni D’Auria
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | - Maria Emanuela Errico
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Roberto Avolio
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Rachele Castaldo
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Francesco Esposito
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| |
Collapse
|
7
|
Ruschioni S, Duca D, Tulli F, Zarantoniello M, Cardinaletti G, Corsi L, Olivotto I, Basili D, Naspetti S, Truzzi C, Isidoro N, Riolo P. Evaluation of Growth Performance and Environmental Impact of Hermetia illucens Larvae Reared on Coffee Silverskins Enriched with Schizochytrium limacinum or Isochrysis galbana Microalgae. Animals (Basel) 2024; 14:609. [PMID: 38396577 PMCID: PMC10886010 DOI: 10.3390/ani14040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Hermetia illucens is a promising insect due to its ability to convert low-value substrates as food chain by-products into highly nutritious feed. Its feeding and nutrition are important issues. The aim of this work was to investigate the effect of different substrates consisting of coffee silverskin, a by-product of the roasting process, enriched with different inclusions of microalgae (5%, 10%, 20%, and 25%), Schizochytrium limacinum, and Isochrysis galbana, combined with the assessment of environmental sustainability by LCA. In general, the addition of microalgae led to an increase in larval growth performance due to the higher content of protein and lipids, although S. limacinum showed the best results with respect to larvae fed with coffee silverskin enriched with I. galbana. A higher prepupal weight was observed in larvae fed with 10%, 20%, and 25% S. limacinum; shorter development times in larvae fed with 25% of both S. limacinum and I. galbana; and a higher growth rate in larvae fed with 25% S. limacinum. The 10% S. limacinum inclusion was only slightly different from the higher inclusions. Furthermore, 10% of S. limacinum achieved the best waste reduction index. The greater the inclusion of microalgae, the greater the environmental impact of larval production. Therefore, the addition of 10% S. limacinum appears to be the best compromise for larval rearing, especially considering that a higher inclusion of microalgae did not yield additional benefits in terms of the nutritional value of H. illucens prepupae.
Collapse
Affiliation(s)
- Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.R.); (D.D.); (L.C.); (N.I.)
| | - Daniele Duca
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.R.); (D.D.); (L.C.); (N.I.)
| | - Francesca Tulli
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, Università di Udine, Via Sondrio 2/A, 33100 Udine, Italy; (F.T.); (G.C.)
| | - Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (I.O.); (C.T.)
| | - Gloriana Cardinaletti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, Università di Udine, Via Sondrio 2/A, 33100 Udine, Italy; (F.T.); (G.C.)
| | - Lorenzo Corsi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.R.); (D.D.); (L.C.); (N.I.)
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (I.O.); (C.T.)
| | - Danilo Basili
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Simona Naspetti
- Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cristina Truzzi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (I.O.); (C.T.)
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.R.); (D.D.); (L.C.); (N.I.)
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.R.); (D.D.); (L.C.); (N.I.)
| |
Collapse
|
8
|
Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci Nutr 2024; 12:734-764. [PMID: 38370073 PMCID: PMC10867520 DOI: 10.1002/fsn3.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.
Collapse
Affiliation(s)
- Markos Urugo Makiso
- Department of Food Science and Postharvest TechnologyCollege of Agricultural SciencesWachemo UniversityHossanaEthiopia
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Bekele Tola
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Onwuchekwa Ogah
- Department of Applied BiologyEbonyi State UniversityIsiekeNigeria
| | - Fitsum Liben Endale
- Department of Public HealthCollege of Medicine and Health SciencesWachemo UniversityHossanaEthiopia
| |
Collapse
|
9
|
Gallego-Barceló P, Bagues A, Benítez-Álvarez D, López-Tofiño Y, Gálvez-Robleño C, López-Gómez L, del Castillo MD, Abalo R. Evaluation of the Effects of Instant Cascara Beverage on the Brain-Gut Axis of Healthy Male and Female Rats. Nutrients 2023; 16:65. [PMID: 38201895 PMCID: PMC10780800 DOI: 10.3390/nu16010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Instant cascara (IC) is a sustainable beverage obtained from dried coffee cherry pulp, rich in nutrients and bioactive compounds. The present research aimed to determine the effects of IC on general health and brain-gut axis parameters of healthy female and male rats. Wistar rats were exposed to IC (10 mg/mL) in their drinking water for 3 weeks. Body weight and solid and liquid intakes were monitored as indicators of food safety. Gastrointestinal transit was radiographically evaluated one day (acute) and 3 weeks (chronic) after the start of IC exposure. Locomotor activity, anxiety, and anhedonia of the animals after 3 weeks of treatment was also studied. Overall, compared to water-exposed animals, IC significantly increased food intake in males (p < 0.0001) and liquid intake in females (p < 0.05) without changes in body weight in either case. IC did not significantly modify gastrointestinal motility parameters after its acute or repeated intake and did not cause any significant behavioral alterations in males or females (p > 0.05). In conclusion, repeated intake of IC at the studied concentration did not negatively affect brain-gut axis functions of healthy male and female rats. Anxiety behavior, diarrhea, constipation, abnormal weight modifications, or other typical effects of toxicity were not observed in animals treated with the new powdered beverage, suggesting its food safety under the studied conditions.
Collapse
Affiliation(s)
- Paula Gallego-Barceló
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (Y.L.-T.); (C.G.-R.); (L.L.-G.)
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (Y.L.-T.); (C.G.-R.); (L.L.-G.)
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Calle Juan de la Cierva 3, 28006 Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - David Benítez-Álvarez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (Y.L.-T.); (C.G.-R.); (L.L.-G.)
| | - Yolanda López-Tofiño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (Y.L.-T.); (C.G.-R.); (L.L.-G.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Carlos Gálvez-Robleño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (Y.L.-T.); (C.G.-R.); (L.L.-G.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (Y.L.-T.); (C.G.-R.); (L.L.-G.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentacion (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain;
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (Y.L.-T.); (C.G.-R.); (L.L.-G.)
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Calle Juan de la Cierva 3, 28006 Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor), 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society (Grupo de Trabajo de Cannabinoides de la Sociedad Española del Dolor), 28046 Madrid, Spain
| |
Collapse
|
10
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Potprommanee S, Kiattisin K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023; 12:4292. [PMID: 38231740 DOI: 10.3390/foods12234292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the main toxic components of ambient air particulate matter (PM), causing oxidative damage to the skin and ultimately resulting in skin aging. This study was conducted to determine the anti-oxidant, anti-aging properties and protective effects of the extracts of coffee cherry pulp (Coffea arabica L.), which is a by-product of the coffee industry, against the oxidative damage induced by PAH exposure in human epidermal keratinocytes (HaCaT). Three different techniques were used to extract the coffee cherry pulp: maceration, Soxhlet and ultrasonication to obtain CCM, CCS and CCU extract, respectively, which were then compared to investigate the total phenolic content (TPC) and total flavonoid content (TFC). The chemical compositions were identified and quantified using high-performance liquid chromatography (HPLC). The results demonstrated that Soxhlet could extract the highest content of chlorogenic acid, caffeine and theophylline. CCS showed the significantly highest TPC (324.6 ± 1.2 mg GAE/g extract), TFC (296.8 ± 1.2 mg QE/g extract), anti-radical activity against DPPH free radicals (98.2 ± 0.8 µM Trolox/g extract) and lipid peroxidation inhibition (136.6 ± 6.2 µM Trolox/g extract). CCS also showed the strongest anti-aging effects based on collagenase, elastase, hyaluronidase and tyrosinase inhibitory enzymes. In addition, CCS can protect human keratinocyte cells from PAH toxicity by increasing the cellular anti-oxidant capacity. This study suggests that CCS has the potential to be used as a cosmetic material that helps alleviate skin damage caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Doctor of Philosophy Program in Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Poláková K, Bobková A, Demianová A, Bobko M, Lidiková J, Jurčaga L, Belej Ľ, Mesárošová A, Korčok M, Tóth T. Quality Attributes and Sensory Acceptance of Different Botanical Coffee Co-Products. Foods 2023; 12:2675. [PMID: 37509767 PMCID: PMC10378423 DOI: 10.3390/foods12142675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Coffee processing is a major contributor to the creation of food and product waste. Using coffee co-products can play an essential role in addressing environmental problems and issues with nutritionally unbalanced foods, population growth, and food-related diseases. This research aimed to determine the quality and sensory parameters (aw, pH, dry matter, TAC, TPC, fat, fatty acids profile, fiber, caffeine, chlorogenic acids, color, and sensory analysis) of different botanical origins of cascara (coffee husks) and silverskin (thin layer). The results of this study show that silverskin and cascara are a good source of TAC (1S 58.17 ± 1.28%, 2S 46.65 ± 1.20%, 1C 36.54 ± 1.84%, 2C 41.12 ± 2.11%). Cascara showed the presence of polyphenols (2C 49.135 g GAE·kg-1). Coffee co-products are good sources of fiber. Silverskin had higher values of caffeine than cascara. Palmitic, stearic, oleic, linoleic, and arachidic acids were the most represented acids in the samples. Given the obtained results, cascara can be considered "low-fat" (1C 4.240 g·kg-1 and 2C 5.4 g·kg-1). Based on the sensory evaluation, no sample reached the acceptable index value of 70%. Understanding the link between the character, identification properties, and composition of coffee co-products of different botanical origins can enable their application in the food industry.
Collapse
Affiliation(s)
- Katarína Poláková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Bobková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alžbeta Demianová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Bobko
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Judita Lidiková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lukáš Jurčaga
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ľubomír Belej
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Andrea Mesárošová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Melina Korčok
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Tomáš Tóth
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
12
|
Rennert M, Hiller BT. Influence of Coffee Variety and Processing on the Properties of Parchments as Functional Bioadditives for Biobased Poly( butylene succinate) Composites. Polymers (Basel) 2023; 15:2985. [PMID: 37514375 PMCID: PMC10386071 DOI: 10.3390/polym15142985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Fermented polymers like biobased poly(butylene succinate) (BioPBS) have become more relevant as technical substitutes for ductile petrochemical-based polymers but require biogenic functional additives to deaccelerate undesired thermo-oxidative degradation and keep a fully biobased character. In this paper, the influence of coffee parchment (PMT) from two different varieties and processings on the thermo-oxidative stabilization and mechanical properties of poly(butylene succinate) composites up to 20 wt.-% PMT were investigated. Micronized with a TurboRotor mill, both PMT powders differ in particle size and shape, moisture ab- and adsorption behavior and antioxidative properties. It could be shown that pulped-natural PMT consists partially of coffee cherry residues, which leads to a higher total polyphenol content and water activity. The homogeneous PMT from fully washed processing has a higher thermal degradation resistance but consists of fibers with larger diameters. Compounded with the BioPBS and subsequent injection molded, the fully washed PMT leads to higher stiffness and equal tensile strength but lower toughness compared to the pulped-natural PMT, especially at lower deformation speed. Surprisingly, the fully washed PMT showed a higher stability against thermo-oxidative decomposition despite the lower values in the total phenol content and antioxidative activity. The required antioxidative stabilizers might be extracted at higher temperatures from the PMT fibers, making it a suitable biogenic stabilizer for extrusion processes.
Collapse
Affiliation(s)
- Mirko Rennert
- Institute for Circular Economy of Bio:Polymers at Hof University (ibp), Hof University of Applied Sciences, 95028 Hof, Germany
| | - Benedikt T Hiller
- Institute for Circular Economy of Bio:Polymers at Hof University (ibp), Hof University of Applied Sciences, 95028 Hof, Germany
| |
Collapse
|
13
|
Sales AL, Iriondo-DeHond A, DePaula J, Ribeiro M, Ferreira IMPLVO, Miguel MAL, Del Castillo MD, Farah A. Intracellular Antioxidant and Anti-Inflammatory Effects and Bioactive Profiles of Coffee Cascara and Black Tea Kombucha Beverages. Foods 2023; 12:foods12091905. [PMID: 37174444 PMCID: PMC10177953 DOI: 10.3390/foods12091905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a functional beverage obtained through fermentation of sweetened Camellia sinensis infusion by a symbiotic culture of bacteria and yeasts that exerts many beneficial biological effects, mostly related to its antioxidant and anti-inflammatory effects. Alternative raw materials have been used to create new kombucha or kombucha-like products. Coffee is the most important food commodity worldwide and generates large amounts of by-products during harvest and post-harvest processing. The main coffee by-product is the dried fruit skin and pulp, popularly known as cascara. To date, no studies have evaluated the potential bioactivity of coffee cascara kombucha. In this study, we aimed to measure and compare the effects of infusions and kombuchas made with arabica coffee cascaras (n = 2) and black tea leaves (n = 1), fermented for 0, 3, 6, and 9 days on the intracellular production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) in model cells. Oxidative stress was induced in HK-2 cells with indoxyl sulfate (IS) and high glucose (G). Inflammation was induced with lipopolysaccharide (LPS) in RAW 264.7 macrophage. The contents of phenolic compounds, caffeine, and other physicochemical parameters were evaluated. To the best of our knowledge, this is the first study providing information on the bioactive profile and on the potential biological effects of coffee cascara kombucha. Fermentation caused the release of bound phenolic compounds from the infusions, especially total chlorogenic acids, with an average increase from 5.4 to 10.7 mg/100 mL (98%) and 2.6-3.4 mg/100 mL (30%) in coffee cascara and black tea kombucha, respectively, up to day 9. All evaluated beverages reduced (p < 0.0001) similarly the intracellular ROS (41% reduction, on average) and uric acid (10-55%) concentrations in HK-2 model cells, reversing the induced oxidative stress. All beverages also reduced (p < 0.0001, 81-90%) NO formation in LPS-induced macrophages, exhibiting an anti-inflammatory effect. These potential health benefits may be mostly attributed to polyphenols and caffeine, whose contents were comparable in all beverages. Coffee cascara showed similar potential to C. sinensis to produce healthy beverages and support sustainable coffee production.
Collapse
Affiliation(s)
- Amanda L Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Ribeiro
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Marco Antonio L Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro21941-902, Brazil
| | - María Dolores Del Castillo
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
14
|
Bevilacqua E, Cruzat V, Singh I, Rose’Meyer RB, Panchal SK, Brown L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023; 15:nu15040994. [PMID: 36839353 PMCID: PMC9963703 DOI: 10.3390/nu15040994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Coffee is a popular and widely consumed beverage worldwide, with epidemiological studies showing reduced risk of cardiovascular disease, cancers and non-alcoholic fatty liver disease. However, few studies have investigated the health effects of the post-brewing coffee product, spent coffee grounds (SCG), from either hot- or cold-brew coffee. SCG from hot-brew coffee improved metabolic parameters in rats with diet-induced metabolic syndrome and improved gut microbiome in these rats and in humans; further, SCG reduced energy consumption in humans. SCG contains similar bioactive compounds as the beverage including caffeine, chlorogenic acids, trigonelline, polyphenols and melanoidins, with established health benefits and safety for human consumption. Further, SCG utilisation could reduce the estimated 6-8 million tonnes of waste each year worldwide from production of coffee as a beverage. In this article, we explore SCG as a major by-product of coffee production and consumption, together with the potential economic impacts of health and non-health applications of SCG. The known bioactive compounds present in hot- and cold-brew coffee and SCG show potential effects in cardiovascular disease, cancer, liver disease and metabolic disorders. Based on these potential health benefits of SCG, it is expected that foods including SCG may moderate chronic human disease while reducing the environmental impact of waste otherwise dumped in landfill.
Collapse
Affiliation(s)
- Elza Bevilacqua
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
| | - Indu Singh
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Roselyn B. Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
15
|
Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. COSMETICS 2023. [DOI: 10.3390/cosmetics10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Upcycling is a modern trend in the cosmetic sector, focusing on by-products reuse and waste reduction. Consumers are more aware of the origin of cosmetic products and their environmental impact, promoting the upcycling phenomenon. Converting these raw materials into products of higher quality or value contributes to the final product’s sustainability. In fact, several agri-food by-products that are typically discarded have generated great interest, due to their value-added compounds with high functionality and/or bioactivity. Coffee is well known as a cosmetic ingredient, particularly due to the presence of phenolic compounds, such as chlorogenic acids, and caffeine. Caffeine is widely used in cosmetic formulations due to its photoprotector and anti-aging properties, as well as lipolytic action in cellulitis, and hair regrowth. Chlorogenic acids are powerful antioxidants and exhibit anti-aging and photoprotector abilities. Coffee by-products, such as coffee beans, possess these bioactive compounds and other chemical characteristics that can provide functional properties in cosmetic formulations. Coffee silverskin and spent coffee grounds are high-volume by-products of the coffee industry. Their use has been explored in different cosmetic formulations demonstrating safety, stability, acceptability as well as skin improvement, thus supporting their valorization as natural and sustainable new ingredients in skincare products.
Collapse
|
16
|
Barrea L, Pugliese G, Frias-Toral E, El Ghoch M, Castellucci B, Chapela SP, Carignano MDLA, Laudisio D, Savastano S, Colao A, Muscogiuri G. Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit Rev Food Sci Nutr 2023; 63:1238-1261. [PMID: 34455881 DOI: 10.1080/10408398.2021.1963207] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coffee is one of the most popular beverages worldwide; however, its impact on health outcomes and adverse effects is not fully understood. The current review aims to establish an update about the benefits of coffee consumption on health outcomes highlighting its side effects, and finally coming up with an attempt to provide some recommendations on its doses. A literature review using the PubMed/Medline database was carried out and the data were summarized by applying a narrative approach using the available evidence based on the literature. The main findings were the following: first, coffee may contribute to the prevention of inflammatory and oxidative stress-related diseases, such as obesity, metabolic syndrome and type 2 diabetes; second, coffee consumption seems to be associated with a lower incidence of several types of cancer and with a reduction in the risk of all-cause mortality; finally, the consumption of up to 400 mg/day (1-4 cups per day) of caffeine is safe. However, the time gap between coffee consumption and some drugs should be taken into account in order to avoid interaction. However, most of the data were based on cross-sectional or/and observational studies highlighting an association of coffee intake and health outcomes; thus, randomized controlled studies are needed in order to identify a causality link.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, isola F2, 80143 Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon
| | - Bianca Castellucci
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Sebastián Pablo Chapela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- Hospital Británico de Buenos Aires, Departamento de Terapia Intensiva, Buenos Aires, Argentina
| | | | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
17
|
Barreto Peixoto JA, Silva JF, Oliveira MBPP, Alves RC. Sustainability issues along the coffee chain: From the field to the cup. Compr Rev Food Sci Food Saf 2023; 22:287-332. [PMID: 36479852 DOI: 10.1111/1541-4337.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
The coffee industry is one of the most important commercial value chains worldwide. Nonetheless, it is also associated to several social, economic, and environmental concerns that impair its sustainability. The present review is focused on these main sustainability concerns from the field to the coffee cup, as well as on the strategies that are being developed and/or implemented to attain sustainability and circular economy principles in the different chain segments. In this context, distinct approaches have been applied, such as sustainable certifications (e.g., voluntary sustainability standards), corporate sustainability initiatives, direct trade, relationship coffee concepts, geographical indication, legislations, waste management, and byproducts valorization, among others. These strategies are addressed and discussed throughout this review, as well as their recognized advantages and limitations. Overall, there is still a long way to go to attain the much-desired sustainability in the coffee chain, being essential to join the efforts of all actors and entities directly or indirectly involved, namely, producers, retailers, roasters, governments, educational institutions (such as universities and scientific research institutes), and organizations.
Collapse
Affiliation(s)
- Juliana A Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana F Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Eckhardt S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Coffee Cherry (Cascara) Fruit Products for Flour Replacement and Other Alternative Food Uses. Molecules 2022; 27:8435. [PMID: 36500526 PMCID: PMC9740254 DOI: 10.3390/molecules27238435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Coffee bean harvesting incurs various by-products known for their long traditional use. However, they often still end up being a waste instead of being used to their full potential. On the European market, coffee cherry (cascara) products are not yet common, and a novel food approval for beverages made from coffee cherry pulp was issued only recently. In this article, exposure and risk assessment of various products such as juice, jam, jelly, puree, and flour made from coffee cherry pulp and husk are reviewed. Since caffeine in particular, as a bioactive ingredient, is considered a limiting factor, safe intake will be derived for different age groups, showing that even adolescents could consume limited quantities without adverse health effects. Moreover, the composition can be influenced by harvesting methods and processing steps. Most interestingly, dried and powdered coffee cherry can substitute the flour in bakery products by up to 15% without losing baking properties and sensory qualities. In particular, this use as a partial flour substitute is a possible approach to counteract rising grain prices, transport costs, and disrupted supply chains, which are caused by the Russia-Ukraine war and changing climatic conditions. Thus, the supply of affordable staple foods could be partially ensured for the inhabitants of countries that depend on imported wheat and cultivate coffee locally by harvesting both beans and by-products.
Collapse
Affiliation(s)
- Sara Eckhardt
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
19
|
Nadaleti DHS, de Rezende Abrahão JC, Malta MR, Dos Santos CS, Pereira AA, Carvalho GR. Influence of postharvest processing on the quality and sensory profile of groups of arabica coffee genotypesc. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6899-6906. [PMID: 35661162 DOI: 10.1002/jsfa.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study combined qualitative and quantitative approaches to obtain a better understanding of the sensory quality of beverages made from Arabic coffee genotypes subjected to different processing methods. Over 3 consecutive years, 270 accessions of Arabic coffee from the germplasm collection of Minas Gerais State, Brazil, were sensorially characterized after dry postharvest processing. At the end of this period, the 26 genotypes with the greatest potential for the production of specialty coffees were subjected to dry and wet processing. Granulometry and sensory quality were evaluated by scoring and describing the sensory profiles of the samples. RESULTS Adequate management during all postharvest stages maintained the potential coffee quality, regardless of processing. All of the coffees studied were classified as special. There was variation in the perceived nuances of the sensory attributes among the groups of genotypes and as a function of postharvest processing, with emphasis on the increased frequency of high levels of sweetness in wet processing. Among the aroma/flavor sensory attributes, the caramel subcategory, as a long and pleasant aftertaste, were predominant in all of the genotypes studied, regardless of the type of processing. CONCLUSION The differences in the perceptions of aroma/flavor and aftertaste in different processes were easier to identify in the commercial cultivars studied, as well as in the Bourbon accessions of Timor Hybrid and their derivatives. The access MG 0159 Maragogipe Hybrid F1 stood out in terms of all of the evaluated characteristics, regardless of the processing method used. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Marcelo Ribeiro Malta
- Epamig South, Empresa de Pesquisa Agropecuária de Minas Gerais/EPAMIG, Lavras, Brazil
| | | | - Antonio Alves Pereira
- Epamig South, Empresa de Pesquisa Agropecuária de Minas Gerais/EPAMIG, Lavras, Brazil
| | | |
Collapse
|
20
|
Ribeiro M, Alvarenga L, Cardozo LFMF, Kemp JA, Lima LS, Almeida JSD, Leal VDO, Stenvinkel P, Shiels PG, Mafra D. The magical smell and taste: Can coffee be good to patients with cardiometabolic disease? Crit Rev Food Sci Nutr 2022; 64:562-583. [PMID: 35930394 DOI: 10.1080/10408398.2022.2106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is a beverage consumed globally. Although few studies have indicated adverse effects, it is typically a beneficial health-promoting agent in a range of diseases, including depression, diabetes, cardiovascular disease, and obesity. Coffee is rich in caffeine, antioxidants, and phenolic compounds, which can modulate the composition of the gut microbiota and mitigate both inflammation and oxidative stress, common features of the burden of lifestyle diseases. This review will discuss the possible benefits of coffee on complications present in patients with diabetes, cardiovascular disease and chronic kidney disease, outwith the social and emotional benefits attributed to caffeine consumption.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Livia Alvarenga
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Julie A Kemp
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ligia S Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Jonatas S de Almeida
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Viviane de O Leal
- Nutrition Division, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
21
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Development of Cascara Tea from Coffee Cherry Pulp. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
22
|
Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. SUSTAINABILITY 2022. [DOI: 10.3390/su14148435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coffee silverskin (CS) is the only byproduct of the roasting process for coffee beans and is rich in phenolic compounds with various bioactivities. This study proposes a valorization option for bioactive compounds (T-CQA) based on a subcritical water extraction (SWE) technique, which is known for its high efficiency and feasibility for use on an industrial scale. The use of water as a sole solvent requires a minimum number of cleaning steps and renders the extract safe for further applications, such as in either the cosmetic or food industry. Response surface methodology with a Box–Behnken design is effectively used to optimize and explain the individual and interactive process variables (i.e., extraction temperature, extraction time, and solid–liquid ratio) on the T-CQA content obtained from coffee silverskin by the SWE technique. The final model exhibits a precise prediction of the experimental data obtained for the maximum T-CQA content. Under the optimum conditions, the CS extract is found to contain a higher content of T-CQA and TPC than that reported previously. For antioxidant activity, up to 26.12 ± 3.27 mg Trolox equivalent/g CS is obtained.
Collapse
|
23
|
Preliminary Characterization of Phytochemicals and Polysaccharides in Diverse Coffee Cascara Samples: Identification, Quantification and Discovery of Novel Compounds. Foods 2022; 11:foods11121710. [PMID: 35741907 PMCID: PMC9222401 DOI: 10.3390/foods11121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coffee cascara is the first and most significant by-product of the coffee processing industry, whose valorization has become an urgent priority to reduce harmful environmental impacts. This work aimed to provide an improved understanding of phytochemicals and polysaccharides in coffee cascara in order to offer information for the better evaluation of potential applications. Phytochemicals in 20 different coffee cascara samples were ultrasonically extracted and analyzed by HPLC-UV and HPLC-MS/MS. Four novel compounds were isolated for the first time from coffee cascara, including two still unknown tautomers (337 Da), and two dihydroflavonol glycosides (dihydromyricetin glycoside and dihydromyricetin rhamnosylglycoside). Their presence can contribute to the design of new value-added applications of coffee cascara. Chemical characterization of two polysaccharides from two of the coffee cascara pulp samples showed that they were mainly composed of homogalacturonan, with rhamnose and arabinose as minor neutral sugars. In addition, principal component analysis results indicated that coffee cultivar and/or country significantly impacted the phytochemical composition of coffee cascara, although differences may be reduced by the external environment and processing method. It is suggested that processing method should be carefully designed when generating coffee cascara from the same cultivar and country/farm.
Collapse
|
24
|
Peixoto JAB, Andrade N, Machado S, Costa ASG, Puga H, Oliveira MBPP, Martel F, Alves RC. Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods 2022; 11:1671. [PMID: 35741869 PMCID: PMC9222947 DOI: 10.3390/foods11121671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
This study investigates the possibility of valorizing coffee silverskin through the recovery of its bioactive compounds using a sustainable extraction method that could be industrially applied. For that, aqueous extracts were prepared using ultrasonic-assisted extraction (laboratorial scale) and, for comparison, a scale-up of the process was developed using the Multi-frequency Multimode Modulated technology. A concentration procedure at the pilot scale was also tested. The three types of extracts obtained were characterized regarding caffeine and chlorogenic acids contents, and the effects on intestinal glucose and fructose uptake (including sugar transporters expression) in human intestinal epithelial (Caco-2) cells were ascertained. The phytochemical contents of the extracts prepared at the laboratory and pilot scale were comparable (caffeine: 27.7 vs. 29.6 mg/g freeze-dried extract; 3-, 4-, and 5-caffeoylquinic acids: 0.19 vs. 0.31, 0.15 vs. 0.42, and 1.04 vs. 1.98 mg/g, respectively; 4- and 5- feruloylquinic acids: 0.39 vs. 0.43 and 1.05 vs. 1.32 mg/g, respectively). Slight differences were noticed according to the extracts preparation steps, but in general, all the extracts promoted significant inhibitions of [1,2-3H(N)]-deoxy-D-glucose and 14C-D-fructose uptake, which resulted mainly from a decrease on the facilitative glucose transporter 2 (GLUT2) and sodium-glucose linked transporter 1 (SGLT1) genes expression but not on the expression of the facilitative glucose transporter 5 (GLUT5) gene. Moreover, a synergistic effect of caffeine and 5-caffeoylquinic acid on sugars uptake was found. The results clearly show that the Multi-frequency Multimode Modulated technology is a viable option to be applied at an industrial level to recover bioactive components from silverskin and obtain extracts with antidiabetic potential that could be used to develop functional food products or dietary supplements.
Collapse
Affiliation(s)
- Juliana A. Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Helder Puga
- CMEMS-UMinho, Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| |
Collapse
|
25
|
Bijla L, Aissa R, Laknifli A, Bouyahya A, Harhar H, Gharby S. Spent coffee grounds: A sustainable approach toward novel perspectives of valorization. J Food Biochem 2022; 46:e14190. [PMID: 35553079 DOI: 10.1111/jfbc.14190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
Coffee is one of the most popular and preferred drinks in the world, being consumed for its refreshing and energizing properties. As a result, the consumption of coffee generates millions of tons of waste, in particular, spent coffee grounds (SCG). On the contrary, food waste recovery is an incredibly sustainable and convenient solution to the growing need for materials, fuels, and chemicals. SCG has been developed as a precious resource of several high value-added products (oil, proteins, minerals, fatty acids, sterols….). Thus, a transformative pathway to a circular economy that involves the valorization of coffee wastes and by-products is currently attracting the attention of researchers worldwide. The potential growth of scientific papers and publications promotes a comprehensive review to determine the research hotspots, knowledge structure, and to consider future avenues and challenges. Therefore, in this paper, we conducted a systematic review based on 275 indexed papers on the composition and valorization of SCG as a prospective environmental source. PRACTICAL APPLICATIONS: SCG can be applied in agro-food industries.
Collapse
Affiliation(s)
- Laila Bijla
- Laboratory Biotechnology, Materials and Environment Team, LBME, Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Rabha Aissa
- Bioprocesses and Environment Team, LASIME, Ecole Supérieure de Technologie d'Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdellatif Laknifli
- Laboratory Biotechnology, Materials and Environment Team, LBME, Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Abdelhakim Bouyahya
- Laboratoire de Materiaux, Nanotechnologie et Environnement LMNE, Faculte des Sciences, Universite Mohammed V de rabat, Rabat, Morocco
| | - Hicham Harhar
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - Said Gharby
- Laboratory Biotechnology, Materials and Environment Team, LBME, Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Agadir, Morocco
| |
Collapse
|
26
|
Bobková A, Poláková K, Demianová A, Belej Ľ, Bobko M, Jurčaga L, Gálik B, Novotná I, Iriondo-DeHond A, del Castillo MD. Comparative Analysis of Selected Chemical Parameters of Coffea arabica, from Cascara to Silverskin. Foods 2022; 11:1082. [PMID: 35454667 PMCID: PMC9027595 DOI: 10.3390/foods11081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, there is an increased interest in coffee derivatives (green beans, roasted beans, and coffee by-products (Cascara and Silverskin)) due to their particular chemical composition. This study aimed to compare the content of dry matter, total fat, fatty acids, and fiber (ADF, NDF) of coffee by-products (Cascara and Silverskin) and coffee beans (green and roasted under different conditions). Coffee beans and their by-products were obtained from 100% C. arabica coffee cherries from Panama by dry process. The lowest concentrations of fat corresponded to Cascara 4.24 g·kg-1 and Silverskin 23.70 g·kg-1, respectively. The major fatty acids detected in all samples were palmitic, stearic, oleic, and linoleic acids, the latter two being essential fatty acids. LDA showed that 89.01% of the variability between beans and by-products was explained by lignoceric, myristic, behenic, tricosanoic, arachidic, and heneicosanoic acids. Silverskin appeared to be a good source of lignoceric, myristic, and behenic acids and had a higher concentration of dietary fiber (314.95 g·kg-1) than Cascara (160.03 g·kg-1). Coffee by-products (Silverskin and Cascara) are low-fat products enriched in dietary fiber. Their incorporation, after adjustment, into the global diet may contribute to nutrition security, the sustainability of the coffee sector, and human health.
Collapse
Affiliation(s)
- Alica Bobková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Katarína Poláková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Alžbeta Demianová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Ľubomír Belej
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Marek Bobko
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Lukáš Jurčaga
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Branislav Gálik
- Institute of Nutrition and Genomics, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (B.G.); (I.N.)
| | - Ivana Novotná
- Institute of Nutrition and Genomics, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (B.G.); (I.N.)
| | - Amaia Iriondo-DeHond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| |
Collapse
|
27
|
Scientometric Overview of Coffee By-Products and Their Applications. Molecules 2021; 26:molecules26247605. [PMID: 34946683 PMCID: PMC8707742 DOI: 10.3390/molecules26247605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/03/2022] Open
Abstract
As coffee consumption is on the rise, and the global coffee production creates an excess of 23 million tons of waste per year, a revolutionary transition towards a circular economy via the transformation and valorization of the main by-products from its cultivation and preparation (Coffee Husk (CH), Coffee Pulp (CP), Coffee Silverskin (CS), and Spent Coffee Grounds (SCG)) is inspiring researchers around the world. The recent growth of scholarly publications in the field and the emerging applications of coffee by-products published in these scientific papers encourages a systematic review to identify the knowledge structure, research hotspots, and to discuss the challenges and future directions. This paper displays a comprehensive scientometric analysis based on 108 articles with a high level of influence in the field of coffee by-products and their applications. According to our analysis, the research in this field shows an explosive growth since 2017, clustered in five core applications: bioactive compounds, microbial transformation, environmental applications, biofuels from thermochemical processes, and construction materials.
Collapse
|
28
|
Bhandarkar NS, Mouatt P, Majzoub ME, Thomas T, Brown L, Panchal SK. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens 2021; 10:pathogens10111369. [PMID: 34832525 PMCID: PMC8624503 DOI: 10.3390/pathogens10111369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Waste from food production can be re-purposed as raw material for usable products to decrease industrial waste. Coffee pulp is 29% of the dry weight of coffee cherries and contains caffeine, chlorogenic acid, trigonelline, diterpenes and fibre. We investigated the attenuation of signs of metabolic syndrome induced by high-carbohydrate, high-fat diet in rats by dietary supplementation with 5% freeze-dried coffee pulp for the final 8 weeks of a 16-week protocol. Coffee pulp decreased body weight, feed efficiency and abdominal fat; normalised systolic blood pressure, left ventricular diastolic stiffness, and plasma concentrations of triglycerides and non-esterified fatty acids; and improved glucose tolerance in rats fed high-carbohydrate, high-fat diet. Further, the gut microbiota was modulated with high-carbohydrate, high-fat diet and coffee pulp supplementation and 14 physiological parameters were correlated with the changes in bacterial community structures. This study suggested that coffee pulp, as a waste from the coffee industry, is useful as a functional food for improving obesity-associated metabolic, cardiovascular and liver structure and function, and gut microbiota.
Collapse
Affiliation(s)
- Nikhil S. Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
- Correspondence: ; Tel.: +61-2-4570-1932
| |
Collapse
|
29
|
Iriondo-DeHond A, Rodríguez Casas A, del Castillo MD. Interest of Coffee Melanoidins as Sustainable Healthier Food Ingredients. Front Nutr 2021; 8:730343. [PMID: 34712686 PMCID: PMC8545818 DOI: 10.3389/fnut.2021.730343] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coffee melanoidins are generated by the Maillard reaction during the thermal processes occurring in the journey of coffee from the plant to the cup (during drying and roasting). Melanoidins, the brown pigments formed as the end products of this reaction, have been reported in cascara, silverskin, spent coffee grounds, and coffee brew. The latter is one of the main natural sources of melanoidins of the daily diet worldwide. However, their presence in coffee by-products has been recently described. These complex macromolecules possess multiple health-promoting properties, such as antioxidant, anti-inflammatory, dietary fiber effect, and prebiotic capacity, which make them very interesting from a nutritional point of view. In addition, they have a great impact on the sensory profile of foods and their acceptance by the consumers. The present study is a descriptive, narrative, mini-review about the nature, structure, digestibility, properties (sensory, nutritional, and health-promoting), safety and regulatory status of melanoidins from the coffee brew and its by-products with a special emphasis on the latter.
Collapse
Affiliation(s)
| | | | - Maria Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, Madrid, Spain
| |
Collapse
|
30
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|
31
|
Littardi P, Rinaldi M, Grimaldi M, Cavazza A, Chiavaro E. Effect of Addition of Green Coffee Parchment on Structural, Qualitative and Chemical Properties of Gluten-Free Bread. Foods 2020; 10:foods10010005. [PMID: 33375002 PMCID: PMC7822001 DOI: 10.3390/foods10010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Green coffee parchment (GCP) is becoming interesting, due to the diffusion of wet processing in which coffee parchment is collected separately; it is one of the less studied coffee by-products, but it is reported to be rich in phenolic compounds and dietary fiber. The addition of GCP (355–500 μm) at 2% to gluten-free breads was investigated in terms of physical properties (volume, moisture content, water activity, crumb grain, texture, and color), total antioxidant capacity (TAC) and total phenol content during three days of storage. Moreover, the effects of GCP on sensorial characteristics, 5-hydroxymethylfurfural (HMF), and oxidative stability was evaluated. From the sensorial analysis, bread with 2% addition resulted in being acceptable for consumers with no significant differences from the control, while 4% of GCP was discarded by consumers, as it resulted in being too bitter. Moreover, GCP at 2% addition did not modify volume, moisture content, and water activity. On the contrary, GCP deeply affected the color with a darker aspect that was appreciated by consumers. Regarding texture, 2% of GCP did not affect hardness, cohesiveness, and staling process during storage. Interestingly, 2% of GCP significantly improved the TAC and oxidative stability of the bread; in accordance with these results, 2% of GCP reduced the HMF content, thanks to its antioxidant compounds.
Collapse
Affiliation(s)
- Paola Littardi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy; (P.L.); (M.R.)
| | - Massimiliano Rinaldi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy; (P.L.); (M.R.)
| | - Maria Grimaldi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (M.G.); (A.C.)
| | - Antonella Cavazza
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (M.G.); (A.C.)
| | - Emma Chiavaro
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy; (P.L.); (M.R.)
- Correspondence: ; Tel.: +39-0521-905888; Fax: +39-0521-906028
| |
Collapse
|
32
|
Duong B, Marraccini P, Maeght JL, Vaast P, Lebrun M, Duponnois R. Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.607935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intensive coffee production is accompanied by several environmental issues, including soil degradation, biodiversity loss, and pollution due to the wide use of agrochemical inputs and wastes generated by processing. In addition, climate change is expected to decrease the suitability of cultivated areas while potentially increasing the distribution and impact of pests and diseases. In this context, the coffee microbiota has been increasingly studied over the past decades in order to improve the sustainability of the coffee production. Therefore, coffee associated microorganisms have been isolated and characterized in order to highlight their useful characteristics and study their potential use as sustainable alternatives to agrochemical inputs. Indeed, several microorganisms (including bacteria and fungi) are able to display plant growth-promoting capacities and/or biocontrol abilities toward coffee pests and diseases. Despite that numerous studies emphasized the potential of coffee-associated microorganisms under controlled environments, the present review highlights the lack of confirmation of such beneficial effects under field conditions. Nowadays, next-generation sequencing technologies allow to study coffee associated microorganisms with a metabarcoding/metagenomic approach. This strategy, which does not require cultivating microorganisms, now provides a deeper insight in the coffee-associated microbial communities and their implication not only in the coffee plant fitness but also in the quality of the final product. The present review aims at (i) providing an extensive description of coffee microbiota diversity both at the farming and processing levels, (ii) identifying the “coffee core microbiota,” (iii) making an overview of microbiota ability to promote coffee plant growth and to control its pests and diseases, and (iv) highlighting the microbiota potential to improve coffee quality and waste management sustainability.
Collapse
|
33
|
Ancín-Azpilicueta C, Esparza I, Jiménez-Moreno N. Biomolecules from Plant Residues. Biomolecules 2020; 10:biom10111496. [PMID: 33143173 PMCID: PMC7692277 DOI: 10.3390/biom10111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
|