1
|
Xu CM, Sabe SA, Brinck‐Teixeira R, Sabra M, Sellke FW, Abid MR. Visualization of cardiac uptake of bone marrow mesenchymal stem cell-derived extracellular vesicles after intramyocardial or intravenous injection in murine myocardial infarction. Physiol Rep 2023; 11:e15568. [PMID: 36967241 PMCID: PMC10040402 DOI: 10.14814/phy2.15568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 03/29/2023] Open
Abstract
In animal models, human bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EV) have been found to have beneficial effects in cardiovascular disease, but only when administered via intramyocardial injection. The biodistribution of either intravenous or intramyocardial injection of MSC-EV in the presence of myocardial injury is uncharacterized at this time. We hypothesized that intramyocardial injection will ensure delivery of MSC-EV to the ischemic myocardium, while intravenous injection will not. Human bone marrow mesenchymal stem cells were cultured and the MSC-EV were isolated and characterized. The MSC-EVs were then labeled with DiD lipid dye. FVB mice with normal cardiac function underwent left coronary artery ligation followed by either peri-infarct intramyocardial or tail vein injection of 3*106 or 2*109 particles of DiD-labeled MSC-EV or a DiD-saline control. The heart, lungs, liver, spleen and kidneys were harvested 2 h post-injection and were submitted for fluorescent molecular tomography imaging. Myocardial uptake of MSC-EV was only visualized after intramyocardial injection of 2*109 MSC-EV particles (p = 0.01) compared to control, and there were no differences in cardiac fluorescence after tail vein injection of MSC-EV (p = 0.5). There was no significantly detectable MSC-EV uptake in other organs after intramyocardial injection. After tail vein injection of 2*109 particles of MSC-EV, the liver (p = 0.02) and spleen (p = 0.04) appeared to have diffuse MSC-EV uptake compared to controls. Even in the presence of myocardial injury, only intramyocardial but not intravenous administration resulted in detectable levels of MSC-EV in the ischemic myocardium. This study confirms the role for intramyocardial injection in maximal and effective delivery of MSC-EV. Our ongoing studies aimed at developing bioengineered MSC-EV for targeted delivery to the heart may render MSC-EV clinically applicable for cardiovascular disease.
Collapse
Affiliation(s)
- Cynthia M. Xu
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - Sharif A. Sabe
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - Rayane Brinck‐Teixeira
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - Mohamed Sabra
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
| | - Frank W. Sellke
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - M. Ruhul Abid
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| |
Collapse
|
2
|
Thankam FG, Radwan M, Keklikian A, Atwal M, Rai T, Agrawal DK. Fluoroscopy Guided Minimally Invasive Swine Model of Myocardial Infarction by Left Coronary Artery Occlusion for Regenerative Cardiology. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2022; 6:466-472. [PMID: 36203790 PMCID: PMC9534332 DOI: 10.26502/fccm.92920284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Despite the recent advancements in the cardiac regenerative technologies, the lack of an ideal translationally relevant experimental model simulating the clinical setting of acute myocardial infarction (MI) hurdles the success of cardiac regenerative strategies. METHODS We developed a modified minimally invasive acute MI model in Yucatan miniswine by catheter-driven controlled occlusion of LCX branches for regenerative cardiology. Using a balloon catheter in three pigs, the angiography guided occlusion of LCX for 10-15 minutes resulted in MI induction which was confirmed by the pathological ECG changes compared to the baseline control. RESULTS Ejection fraction was considerably decreased post-procedure compared to the baseline. Importantly, the highly sensitive MI biomarker Troponin I was significantly increased in post-MI and follow-up groups along with LDH and CCK than the baseline control. The postmortem infarct zone tissue displayed the classical features of MI including ECM disorganization, hypertrophy, inflammation, and angiogenesis confirming the MI at the tissue level. CONCLUSIONS The present model possesses the advantage of minimal mortality, simulating the pathological features of clinical MI and the suitability for injectable regenerative therapies suggesting the translational significance in regenerative cardiology.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mohamed Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Angelo Keklikian
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Manreet Atwal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Taj Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
3
|
Application of Fibrin Associated with Photobiomodulation as a Promising Strategy to Improve Regeneration in Tissue Engineering: A Systematic Review. Polymers (Basel) 2022; 14:polym14153150. [PMID: 35956667 PMCID: PMC9370794 DOI: 10.3390/polym14153150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Fibrin, derived from proteins involved in blood clotting (fibrinogen and thrombin), is a biopolymer with different applications in the health area since it has hemostasis, biocompatible and three-dimensional physical structure properties, and can be used as scaffolds in tissue regeneration or drug delivery system for cells and/or growth factors. Fibrin alone or together with other biomaterials, has been indicated for use as a biological support to promote the regeneration of stem cells, bone, peripheral nerves, and other injured tissues. In its diversity of forms of application and constitution, there are platelet-rich fibrin (PRF), Leukocyte- and platelet-rich fibrin (L-PRF), fibrin glue or fibrin sealant, and hydrogels. In order to increase fibrin properties, adjuvant therapies can be combined to favor tissue repair, such as photobiomodulation (PBM), by low-level laser therapy (LLLT) or LEDs (Light Emitting Diode). Therefore, this systematic review aimed to evaluate the relationship between PBM and the use of fibrin compounds, referring to the results of previous studies published in PubMed/MEDLINE, Scopus and Web of Science databases. The descriptors “fibrin AND low-level laser therapy” and “fibrin AND photobiomodulation” were used, without restriction on publication time. The bibliographic search found 44 articles in PubMed/MEDLINE, of which 26 were excluded due to duplicity or being outside the eligibility criteria. We also found 40 articles in Web of Science and selected 1 article, 152 articles in Scopus and no article selected, totaling 19 articles for qualitative analysis. The fibrin type most used in combination with PBM was fibrin sealant, mainly heterologous, followed by PRF or L-PRF. In PBM, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 830 nm, followed by 810 nm. Among the preclinical studies, the most researched association of fibrin and PBM was the use of fibrin sealants in bone or nerve injuries; in clinical studies, the association of PBM with medication-related treatments osteonecrosis of the jaw (MRONJ). Therefore, there is scientific evidence of the contribution of PBM on fibrin composites, constituting a supporting therapy that acts by stimulating cell activity, angiogenesis, osteoblast activation, axonal growth, anti-inflammatory and anti-edema action, increased collagen synthesis and its maturation, as well as biomolecules.
Collapse
|
4
|
Peters MC, Di Martino S, Boelens T, Qin J, van Mil A, Doevendans PA, Chamuleau SAJ, Sluijter JPG, Neef K. Follistatin-like 1 promotes proliferation of matured human hypoxic iPSC-cardiomyocytes and is secreted by cardiac fibroblasts. Mol Ther Methods Clin Dev 2022; 25:3-16. [PMID: 35317048 PMCID: PMC8917270 DOI: 10.1016/j.omtm.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022]
Abstract
The human heart has limited regenerative capacity. Therefore, patients often progress to heart failure after ischemic injury, despite advances in reperfusion therapies generally decreasing mortality. Depending on its glycosylation state, Follistatin-like 1 (FSTL1) has been shown to increase cardiomyocyte (CM) proliferation, decrease CM apoptosis, and prevent cardiac rupture in animal models of ischemic heart disease. To explore its therapeutic potential, we used a human in vitro model of cardiac ischemic injury with human induced pluripotent stem cell-derived CMs (iPSC-CMs) and assessed regenerative effects of two differently glycosylated variants of human FSTL1. Furthermore, we investigated the FSTL1-mediated interplay between human cardiac fibroblasts (cFBs) and iPSC-CMs in hypoxia. Both FSTL1 variants increased viability, while only hypo-glycosylated FSTL1 increased CM proliferation post-hypoxia. Human fetal cardiac fibroblasts (fcFBs) expressed and secreted FSTL1 under normoxic conditions, while FSTL1 secretion increased by iPSC-cFBs upon hypoxia but decreased in iPSC-CMs. Co-culture of iPSC-CMs and cFBs increased FSTL1 secretion compared with cFB mono-culture. Taken together, we confirm that FSTL1 induces iPSC-CM proliferation in a human cardiac in vitro hypoxia damage model. Furthermore, we show hypoxia-related FSTL1 secretion by human cFBs and indications for FSTL1-mediated intercellular communication between cardiac cell types in response to hypoxic conditions.
Collapse
Affiliation(s)
- Marijn C Peters
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sofia Di Martino
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Thomas Boelens
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jiabin Qin
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Alain van Mil
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands.,Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, the Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| | - Klaus Neef
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
5
|
Efficacy of Stem Cell Therapy in Large Animal Models of Ischemic Cardiomyopathies: A Systematic Review and Meta-Analysis. Animals (Basel) 2022; 12:ani12060749. [PMID: 35327146 PMCID: PMC8944644 DOI: 10.3390/ani12060749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Stem-cell therapy provides a promising strategy for patients with ischemic heart disease. In recent years, numerous studies related to this therapeutic approach were performed; however, the results were often heterogeneous and contradictory. For this reason, we conducted a systematic review and meta-analysis of trials, reporting the use of stem-cell treatment against acute or chronic ischemic cardiomyopathies in large animal models with regard to Left Ventricular Ejection Fraction (LVEF). The defined research strategy was applied to the PubMed database to identify relevant studies published from January 2011 to July 2021. A random-effect meta-analysis was performed on LVEF mean data at follow-up between control and stem-cell-treated animals. In order to improve the definition of the effect measure and to analyze the factors that could influence the outcomes, a subgroup comparison was conducted. Sixty-six studies (n = 1183 animals) satisfied our inclusion criteria. Ischemia/reperfusion infarction was performed in 37 studies, and chronic occlusion in 29 studies; moreover, 58 studies were on a pig animal model. The meta-analysis showed that cell therapy increased LVEF by 7.41% (95% Confidence Interval 6.23−8.59%; p < 0.001) at follow-up, with significative heterogeneity and high inconsistency (I2 = 82%, p < 0.001). By subgroup comparison, the follow-up after 31−60 days (p = 0.025), the late cell injection (>7 days, p = 0.005) and the route of cellular delivery by surgical treatment (p < 0.001) were significant predictors of LVEF improvement. This meta-analysis showed that stem-cell therapy may improve heart function in large animal models and that the swine specie is confirmed as a relevant animal model in the cardiovascular field. Due to the significative heterogeneity and high inconsistency, future translational studies should be designed to take into account the evidenced predictors to allow for the reduction of the number of animals used.
Collapse
|
6
|
Fascinating Dendritic Cells—Sentinel Cells of the Immune System a Review. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Dendritic cells (DC) are specialized antigen presenting cells which have the unique ability to activate naive T-lymphocytes. Their role in the immune system is much more sophisticated than it seems, as they do not kill the pathogens directly, but provide a long-lasting antigen specific immune response thanks to that sufficiently bridging the innate and the adaptive immunity. In recent years, there has been a growing interest in studies of their role in immune regulation, autoimmune reactions, as well as in immune responses against pathogens and tumours. Processing and presentation capabilities of a highly specific and unique tumour antigen makes them an interesting tool for stimulating effective anti-tumour immunity. In vitro generations of DC represent a preferred model for more detailed studies of DC biology in other fields. The aim of this review was to discuss the main role of dendritic cells in the body as well as their current use as experimental models for further scientific studies.
Collapse
|
7
|
Crisóstomo V, Baéz-Diaz C, Blanco-Blázquez V, Álvarez V, López-Nieto E, Maestre J, Bayes-Genis A, Gálvez-Montón C, Casado JG, Sánchez-Margallo FM. The epicardial delivery of cardiosphere derived cells or their extracellular vesicles is safe but of limited value in experimental infarction. Sci Rep 2021; 11:22155. [PMID: 34772964 PMCID: PMC8590017 DOI: 10.1038/s41598-021-01728-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
The epicardial administration of therapeutics via the pericardial sac offers an attractive route, since it is minimally invasive and carries no risks of coronary embolization. The aim of this study was to assess viability, safety and effectiveness of cardiosphere-derived cells (CDCs), their extracellular vesicles (EVs) or placebo administered via a mini-thoracotomy 72 h after experimental infarction in swine. The epicardial administration was completed successfully in all cases in a surgery time (knife-to-skin) below 30 min. No significant differences between groups were found in cardiac function parameters evaluated using magnetic resonance imaging before therapy and at the end of the study, despite a trend towards improved function in CDC-treated animals. Moreover, infarct size at 10 weeks was smaller in treated animals, albeit not significantly. Arrhythmia inducibility did not differ between groups. Pathological examination showed no differences, nor were there any pericardial adhesions evidenced in any case 10 weeks after surgery. These results show that the epicardial delivery of CDCs or their EVs is safe and technically easy 3 days after experimental myocardial infarction in swine, but it does not appear to have any beneficial effect on cardiac function. Our results do not support clinical translation of these therapies as implemented in this work.
Collapse
Affiliation(s)
- Verónica Crisóstomo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain. .,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.
| | - Claudia Baéz-Diaz
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Virginia Blanco-Blázquez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Álvarez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain
| | - Esther López-Nieto
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain
| | - Juan Maestre
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayes-Genis
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,ICREC Research Group (Insuficiència Cardíaca i REgeneració Cardíaca), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Carolina Gálvez-Montón
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,ICREC Research Group (Insuficiència Cardíaca i REgeneració Cardíaca), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Javier G Casado
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Immunology Unit, University of Extremadura, Cáceres, Spain.,Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Yuan Z, Huang W. New Developments in Exosomal lncRNAs in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709169. [PMID: 34307511 PMCID: PMC8295603 DOI: 10.3389/fcvm.2021.709169] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs with lengths >200 nt and are involved in the occurrence and development of cardiovascular diseases (CVDs). Exosomes are secreted and produced by various cell types. Exosome contents include various ncRNAs, proteins and lipids. Exosomes are also important mediators of intercellular communication. The proportion of lncRNAs in exosomes is low, but increasing evidence suggests that exosomal lncRNAs play important roles in CVDs. We focused on research progress in exosomal lncRNAs in atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury, cardiac angiogenesis, cardiac aging, rheumatic heart disease, and chronic kidney disease combined with CVD. The potential diagnostic and therapeutic effects of exosomal lncRNAs in CVDs are summarized based on preclinical studies involving animal and cell models and circulating exosomes in clinical patients. Finally, the challenges and possible prospects of exosomes and exosomal lncRNAs in clinical applications related to CVD are discussed.
Collapse
Affiliation(s)
- Zhu Yuan
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Gyöngyösi M. Cell-Free Approaches and Therapeutic Biomolecules for Cardiac Regeneration. Biomolecules 2021; 11:biom11020161. [PMID: 33530565 PMCID: PMC7911580 DOI: 10.3390/biom11020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|