1
|
Li L, Lv J, Wang X, Li X, Guo D, Wang L, Zhang N, Jia Q. Green Extraction of Polyphenols from Elaeagnus angustifolia L. Using Natural Deep Eutectic Solvents and Evaluation of Bioactivity. Molecules 2024; 29:2412. [PMID: 38893285 PMCID: PMC11173772 DOI: 10.3390/molecules29112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
In the study, natural deep eutectic solvents (NADESs) were used as alternatives to traditional chemical solvents for the extraction of polyphenols from Elaeagnus angustifolia L. Nine NADESs were tested for the first time and compared with ethanol and water (traditional solvents) regarding the extraction of phenolic compounds from E. angustifolia L. These solvents were particularly effective at extracting polyphenols, whose low water solubility usually requires high amounts of organic solvents. The solvent based on choline chloride and malonic acid provided optimal results and was selected for further optimization. The effects of material-to-liquid ratio, ultrasound time, and ultrasound temperature on the extraction efficiency were studied through single-factor experiments. These parameters were optimized by Box-Behnken design using response surface methodology. The optimal conditions identified were 49.86 g/mL of material-to-liquid ratio, 31.10 min of ultrasound time, and 62.35 °C of ultrasound temperature, resulting in a high yield of 140.30 ± 0.19 mg/g. The results indicated that the NADES extraction technique provided a higher yield than the conventional extraction process. The antioxidant activity of the extract of polyphenols from E. angustifolia L. was determined, and UPLC-IMS-QTOF-MS was used to analyze the phenolic compounds in it. The results revealed that the scavenging ability of 1,1-diphenyl-2-picryl-hydrazil and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) extracted by NADES was higher than that of polyphenols extracted by water and ethanol. Furthermore, a total of 24 phenolic compounds were identified in the extract. To the best of our knowledge, this is the first study in which a green and efficient NADES extraction method has been used to extract bioactive polyphenols from E. angustifolia L., which could provide potential value in pharmaceuticals, cosmetics, and food additives.
Collapse
Affiliation(s)
- Lu Li
- College of Food Science and Engineering, Tarim University, Alar 843300, China; (L.L.)
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Jingjing Lv
- College of Food Science and Engineering, Tarim University, Alar 843300, China; (L.L.)
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Xiaoqin Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, China; (L.L.)
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Xiujun Li
- College of Food Science and Engineering, Tarim University, Alar 843300, China; (L.L.)
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Dongqi Guo
- College of Food Science and Engineering, Tarim University, Alar 843300, China; (L.L.)
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Liling Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, China; (L.L.)
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Na Zhang
- College of Food Science and Engineering, Tarim University, Alar 843300, China; (L.L.)
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Qinghua Jia
- Analysis and Testing Center, Tarim University, Alar 843300, China
| |
Collapse
|
2
|
Ahmed SHH, Gonda T, Agbadua OG, Girst G, Berkecz R, Kúsz N, Tsai MC, Wu CC, Balogh GT, Hunyadi A. Preparation and Evaluation of 6-Gingerol Derivatives as Novel Antioxidants and Antiplatelet Agents. Antioxidants (Basel) 2023; 12:antiox12030744. [PMID: 36978992 PMCID: PMC10045534 DOI: 10.3390/antiox12030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Ginger (Zingiber officinale) is widely used as a spice and a traditional medicine. Many bioactivities have been reported for its extracts and the isolated compounds, including cardiovascular protective effects. Different pathways were suggested to contribute to these effects, like the inhibition of platelet aggregation. In this study, we synthesised fourteen 6-gingerol derivatives, including eight new compounds, and studied their antiplatelet, COX-1 inhibitor, and antioxidant activities. In silico docking of selected compounds to h-COX-1 enzyme revealed favourable interactions. The investigated 6-gingerol derivatives were also characterised by in silico and experimental physicochemical and blood-brain barrier-related parameters for lead and preclinical candidate selection. 6-Shogaol (2) was identified as the best overall antiplatelet lead, along with compounds 3 and 11 and the new compound 17, which require formulation to optimize their water solubility. Compound 5 was identified as the most potent antioxidant that is also promising for use in the central nervous system (CNS).
Collapse
Affiliation(s)
- Sara H H Ahmed
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Tímea Gonda
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Orinamhe G Agbadua
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Girst
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Meng-Chun Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - György T Balogh
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Abstract
The term "scavengome" refers to the chemical space of all the metabolites that may be formed from an antioxidant upon scavenging reactive oxygen or nitrogen species (ROS/RNS). This chemical space covers a wide variety of free radical metabolites with drug discovery potential. It is very rich in structures representing an increased chemical complexity as compared to the parent antioxidant: a wide range of unusual heterocyclic structures, new CC bonds, etc. may be formed. Further, in a biological environment, this increased chemical complexity is directly translated from the localized conditions of oxidative stress that determines the amounts and types of ROS/RNS present. Biomimetic oxidative chemistry provides an excellent tool to model chemical reactions between antioxidants and ROS/RNS. In this chapter, we provide an overview on the known metabolites obtained by biomimetic oxidation of a few selected natural antioxidants, i.e., a stilbene (resveratrol), a pair of hydroxycinnamates (caffeic acid and methyl caffeate), and a flavonol (quercetin), and discuss the drug discovery perspectives of the related chemical space.
Collapse
Affiliation(s)
- Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary.
| | - Orinhamhe G Agbadua
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Gábor Takács
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest, Hungary; Mcule.com Ltd., Budapest, Hungary
| | - Gyorgy T Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest, Hungary; Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Agbadua OG, Kúsz N, Berkecz R, Gáti T, Tóth G, Hunyadi A. Oxidized Resveratrol Metabolites as Potent Antioxidants and Xanthine Oxidase Inhibitors. Antioxidants (Basel) 2022; 11:1832. [PMID: 36139906 PMCID: PMC9495788 DOI: 10.3390/antiox11091832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a well-known natural polyphenol with a plethora of pharmacological activities. As a potent antioxidant, resveratrol is highly oxidizable and readily reacts with reactive oxygen species (ROS). Such a reaction not only leads to a decrease in ROS levels in a biological environment but may also generate a wide range of metabolites with altered bioactivities. Inspired by this notion, in the current study, our aim was to take a diversity-oriented chemical approach to study the chemical space of oxidized resveratrol metabolites. Chemical oxidation of resveratrol and a bioactivity-guided isolation strategy using xanthine oxidase (XO) and radical scavenging activities led to the isolation of a diverse group of compounds, including a chlorine-substituted compound (2), two iodine-substituted compounds (3 and 4), two viniferins (5 and 6), an ethoxy-substituted compound (7), and two ethoxy-substitute,0d dimers (8 and 9). Compounds 4, 7, 8, and 9 are reported here for the first time. All compounds without ethoxy substitution exerted stronger XO inhibition than their parent compound, resveratrol. By enzyme kinetic and in silico docking studies, compounds 2 and 4 were identified as potent competitive inhibitors of the enzyme, while compound 3 and the viniferins acted as mixed-type inhibitors. Further, compounds 2 and 9 had better DPPH scavenging activity and oxygen radical absorbing capacity than resveratrol. Our results suggest that the antioxidant activity of resveratrol is modulated by the effect of a cascade of chemically stable oxidized metabolites, several of which have significantly altered target specificity as compared to their parent compound.
Collapse
Affiliation(s)
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Gáti
- Servier Research Institute of Medicinal Chemistry (SRIMC), H-1031 Budapest, Hungary
| | - Gábor Tóth
- NMR Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Issaadi HM, Béni Z, Tóth T, Dékány M, Hsieh TJ, Balogh GT, Hunyadi A. Diversity-oriented synthesis through gamma radiolysis: Preparation of unusual ecdysteroid derivatives activating Akt and AMPK in skeletal muscle cells. Bioorg Chem 2021; 112:104951. [PMID: 34000705 DOI: 10.1016/j.bioorg.2021.104951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Gamma-ray radiation is a unique way to induce chemical transformations of bioactive compounds. In the present study, we pursued this approach to the diversity-oriented synthesis of analogs of 20-hydroxyecdysone (20E), an abundant ecdysteroid with a range of beneficial, non-hormonal bioactivities in mammals including humans. Gamma irradiations of aqueous solutions of 20E were conducted either in N2- or N2O-saturated solutions. Centrifugal partition chromatography was used to fractionate crude resulting irradiated materials using a biphasic solvent system composed of tert-butyl alcohol - ethyl acetate - water (0.45:0.9:1, v/v/v) in ascending mode. Subsequently, the products were purified by RP-HPLC. Fourteen ecdysteroids, including five new compounds, were isolated, and their structure were elucidated by 1D and 2D NMR and HRMS. Compounds 2-4, 7, 9, 12 and 15 were tested for their capacity to increase the Akt- and AMPK-phosphorylation of C2C12 murine skeletal myotubes in vitro. The compounds were similarly active on Akt as their parent compound. Stachysterone B (7) and a new ring-rearranged compound (12) were more potent than 20E in activating AMPK, indicating a stronger cytoprotective effect. Our results demonstrate the use of gamma irradiation in expanding the chemical diversity of ecdysteroids to obtain new, unusual bioactive metabolites.
Collapse
Affiliation(s)
- Halima Meriem Issaadi
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, 6726 Szeged, Hungary
| | - Zoltán Béni
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, PO Box 91, H-1521 Budapest, Hungary; Institute for Energy Security and Environmental Safety, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | - Miklós Dékány
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary
| | - Tusty-Jiuan Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - György Tibor Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary; Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary.
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, 6726 Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, 6720 Szeged, Hungary.
| |
Collapse
|